881 строка
24 KiB
Plaintext
881 строка
24 KiB
Plaintext
|
ad_ktest
|
|||
|
|
|||
|
SYNOPSIS
|
|||
|
k-sample Anderson-Darling test
|
|||
|
|
|||
|
USAGE
|
|||
|
p = ad_ktest ({X1, X2, ...} [,&statistic] [;qualifiers])
|
|||
|
|
|||
|
DESCRIPTION
|
|||
|
The `ad_ktest' function performs a k-sample Anderson-Darling
|
|||
|
test, which may be used to test the hypothesis that two or more
|
|||
|
statistical samples come from the same underlying parent population.
|
|||
|
|
|||
|
The function returns the p-value representing the probability that
|
|||
|
the samples are consistent with a common parent distribution. If
|
|||
|
the last parameter is a reference, then the variable that it
|
|||
|
references will be set to the value of the statistic upon return.
|
|||
|
|
|||
|
The paper that this test is based upon presents two statistical
|
|||
|
tests: one for continuous data where ties are improbable, and one
|
|||
|
for data where ties can occur. This function returns the p-value
|
|||
|
and statistic for the latter case. A qualifier may be used to
|
|||
|
obtain the p-value and statistic for the continuous case.
|
|||
|
|
|||
|
QUALIFIERS
|
|||
|
; pval2=&var: Set the variable `var' to the p-value for continuous case
|
|||
|
; stat2=&var: Set the variable `var' to the statistic for the continuous case.
|
|||
|
|
|||
|
NOTES
|
|||
|
The k-sample test was implemented from the equations found in
|
|||
|
Scholz F.W. and Stephens M.A., "K-Sample Anderson-Darling Tests",
|
|||
|
Journal of the American Statistical Association, Vol 82, 399 (1987).
|
|||
|
|
|||
|
SEE ALSO
|
|||
|
ks_test2, ad_test
|
|||
|
|
|||
|
--------------------------------------------------------------
|
|||
|
|
|||
|
ad_test
|
|||
|
|
|||
|
SYNOPSIS
|
|||
|
Anderson-Darling test for normality
|
|||
|
|
|||
|
USAGE
|
|||
|
pval = ad_test (X [,&statistic] [;qualifiers])
|
|||
|
|
|||
|
DESCRIPTION
|
|||
|
The `ad_test' function may be used to test the hypothesis that
|
|||
|
random samples `X' come from a normal distribution. It returns
|
|||
|
the p-value representing the probability of obtaining such a dataset
|
|||
|
under the assumption that the data represent random samples of the
|
|||
|
underlying distribution. If the optional second parameter is
|
|||
|
present, then it must be a reference to a variable that will be set
|
|||
|
to the value of the statistic upon return.
|
|||
|
|
|||
|
QUALIFIERS
|
|||
|
; mu=value: Specifies the known mean of the normal distribution.
|
|||
|
; sigma: Specifies the known standard deviation of the normal distribution
|
|||
|
; cdf: If present, the data will be interpreted as a CDFs of a known, but unspecified, distribution.
|
|||
|
|
|||
|
NOTES
|
|||
|
For testing the hypothesis that a dataset is sampled from a known,
|
|||
|
not necessarily normal, distribution, convert the random samples
|
|||
|
into CDFs and pass those as the value of X to the `ad_test'
|
|||
|
function. Also use the `cdf' qualifier to let the function
|
|||
|
know that the values are CDFs and not random samples. When this is
|
|||
|
done, the values of the CDFs will range from 0 to 1, and the p-value
|
|||
|
returned by the function will be computed using an algorithm by
|
|||
|
Marsaglia and Marsaglia: Evaluating the Anderson-Darling
|
|||
|
Distribution, Journal of Statistical Software, Vol. 9, Issue 2, Feb
|
|||
|
2004.
|
|||
|
|
|||
|
SEE ALSO
|
|||
|
ad_ktest, ks_test, t_test, z_test, normal_cdf,
|
|||
|
|
|||
|
--------------------------------------------------------------
|
|||
|
|
|||
|
median
|
|||
|
|
|||
|
SYNOPSIS
|
|||
|
Compute the median of an array of values
|
|||
|
|
|||
|
USAGE
|
|||
|
m = median (a [,i])
|
|||
|
|
|||
|
DESCRIPTION
|
|||
|
This function computes the median of an array of values. The median
|
|||
|
is defined to be the value such that half of the the array values will be
|
|||
|
less than or equal to the median value and the other half greater than or
|
|||
|
equal to the median value. If the array has an even number of
|
|||
|
values, then the median value will be the smallest value that is
|
|||
|
greater than or equal to half the values in the array.
|
|||
|
|
|||
|
If called with a second argument, then the optional argument
|
|||
|
specifies the dimension of the array over which the median is to be
|
|||
|
taken. In this case, an array of one less dimension than the input
|
|||
|
array will be returned.
|
|||
|
|
|||
|
NOTES
|
|||
|
This function makes a copy of the input array and then partially
|
|||
|
sorts the copy. For large arrays, it may be undesirable to allocate
|
|||
|
a separate copy. If memory use is to be minimized, the
|
|||
|
`median_nc' function should be used.
|
|||
|
|
|||
|
SEE ALSO
|
|||
|
median_nc, mean
|
|||
|
|
|||
|
--------------------------------------------------------------
|
|||
|
|
|||
|
median_nc
|
|||
|
|
|||
|
SYNOPSIS
|
|||
|
Compute the median of an array
|
|||
|
|
|||
|
USAGE
|
|||
|
m = median_nc (a [,i])
|
|||
|
|
|||
|
DESCRIPTION
|
|||
|
This function computes the median of an array. Unlike the
|
|||
|
`median' function, it does not make a temporary copy of the
|
|||
|
array and, as such, is more memory efficient at the expense
|
|||
|
increased run-time. See the `median' function for more
|
|||
|
information.
|
|||
|
|
|||
|
SEE ALSO
|
|||
|
median, mean
|
|||
|
|
|||
|
--------------------------------------------------------------
|
|||
|
|
|||
|
mean
|
|||
|
|
|||
|
SYNOPSIS
|
|||
|
Compute the mean of the values in an array
|
|||
|
|
|||
|
USAGE
|
|||
|
m = mean (a [,i])
|
|||
|
|
|||
|
DESCRIPTION
|
|||
|
This function computes the arithmetic mean of the values in an
|
|||
|
array. The optional parameter `i' may be used to specify the
|
|||
|
dimension over which the mean it to be take. The default is to
|
|||
|
compute the mean of all the elements.
|
|||
|
|
|||
|
EXAMPLE
|
|||
|
Suppose that `a' is a two-dimensional MxN array. Then
|
|||
|
|
|||
|
m = mean (a);
|
|||
|
|
|||
|
will assign the mean of all the elements of `a' to `m'.
|
|||
|
In contrast,
|
|||
|
|
|||
|
m0 = mean(a,0);
|
|||
|
m1 = mean(a,1);
|
|||
|
|
|||
|
will assign the N element array to `m0', and an array of
|
|||
|
M elements to `m1'. Here, the jth element of `m0' is
|
|||
|
given by `mean(a[*,j])', and the jth element of `m1' is
|
|||
|
given by `mean(a[j,*])'.
|
|||
|
|
|||
|
SEE ALSO
|
|||
|
stddev, median, kurtosis, skewness
|
|||
|
|
|||
|
--------------------------------------------------------------
|
|||
|
|
|||
|
stddev
|
|||
|
|
|||
|
SYNOPSIS
|
|||
|
Compute the standard deviation of an array of values
|
|||
|
|
|||
|
USAGE
|
|||
|
s = stddev (a [,i])
|
|||
|
|
|||
|
DESCRIPTION
|
|||
|
This function computes the standard deviation of the values in the
|
|||
|
specified array. The optional parameter `i' may be used to
|
|||
|
specify the dimension over which the standard-deviation it to be
|
|||
|
taken. The default is to compute the standard deviation of all the
|
|||
|
elements.
|
|||
|
|
|||
|
NOTES
|
|||
|
This function returns the unbiased N-1 form of the sample standard
|
|||
|
deviation.
|
|||
|
|
|||
|
SEE ALSO
|
|||
|
mean, median, kurtosis, skewness
|
|||
|
|
|||
|
--------------------------------------------------------------
|
|||
|
|
|||
|
skewness
|
|||
|
|
|||
|
SYNOPSIS
|
|||
|
Compute the skewness of an array of values
|
|||
|
|
|||
|
USAGE
|
|||
|
s = skewness (a)
|
|||
|
|
|||
|
DESCRIPTION
|
|||
|
This function computes the so-called skewness of the array `a'.
|
|||
|
|
|||
|
SEE ALSO
|
|||
|
mean, stddev, kurtosis
|
|||
|
|
|||
|
--------------------------------------------------------------
|
|||
|
|
|||
|
kurtosis
|
|||
|
|
|||
|
SYNOPSIS
|
|||
|
Compute the kurtosis of an array of values
|
|||
|
|
|||
|
USAGE
|
|||
|
s = kurtosis (a)
|
|||
|
|
|||
|
DESCRIPTION
|
|||
|
This function computes the so-called kurtosis of the array `a'.
|
|||
|
|
|||
|
NOTES
|
|||
|
This function is defined such that the kurtosis of the normal
|
|||
|
distribution is 0, and is also known as the ``excess-kurtosis''.
|
|||
|
|
|||
|
SEE ALSO
|
|||
|
mean, stddev, skewness
|
|||
|
|
|||
|
--------------------------------------------------------------
|
|||
|
|
|||
|
binomial
|
|||
|
|
|||
|
SYNOPSIS
|
|||
|
Compute binomial coefficients
|
|||
|
|
|||
|
USAGE
|
|||
|
c = binomial (n [,m])
|
|||
|
|
|||
|
DESCRIPTION
|
|||
|
This function computes the binomial coefficients (n m) where (n m)
|
|||
|
is given by n!/(m!(n-m)!). If `m' is not provided, then an
|
|||
|
array of coefficients for m=0 to n will be returned.
|
|||
|
|
|||
|
--------------------------------------------------------------
|
|||
|
|
|||
|
chisqr_cdf
|
|||
|
|
|||
|
SYNOPSIS
|
|||
|
Compute the Chisqr CDF
|
|||
|
|
|||
|
USAGE
|
|||
|
cdf = chisqr_cdf (Int_Type n, Double_Type d)
|
|||
|
|
|||
|
DESCRIPTION
|
|||
|
This function returns the probability that a random number
|
|||
|
distributed according to the chi-squared distribution for `n'
|
|||
|
degrees of freedom will be less than the non-negative value `d'.
|
|||
|
|
|||
|
NOTES
|
|||
|
The importance of this distribution arises from the fact that if
|
|||
|
`n' independent random variables `X_1,...X_n' are
|
|||
|
distributed according to a gaussian distribution with a mean of 0 and
|
|||
|
a variance of 1, then the sum
|
|||
|
|
|||
|
X_1^2 + X_2^2 + ... + X_n^2
|
|||
|
|
|||
|
follows the chi-squared distribution with `n' degrees of freedom.
|
|||
|
|
|||
|
SEE ALSO
|
|||
|
chisqr_test, poisson_cdf
|
|||
|
|
|||
|
--------------------------------------------------------------
|
|||
|
|
|||
|
poisson_cdf
|
|||
|
|
|||
|
SYNOPSIS
|
|||
|
Compute the Poisson CDF
|
|||
|
|
|||
|
USAGE
|
|||
|
cdf = poisson_cdf (Double_Type m, Int_Type k)
|
|||
|
|
|||
|
DESCRIPTION
|
|||
|
This function computes the CDF for the Poisson probability
|
|||
|
distribution parameterized by the value `m'. For values of
|
|||
|
`m>100' and `abs(m-k)<sqrt(m)', the Wilson and Hilferty
|
|||
|
asymptotic approximation is used.
|
|||
|
|
|||
|
SEE ALSO
|
|||
|
chisqr_cdf
|
|||
|
|
|||
|
--------------------------------------------------------------
|
|||
|
|
|||
|
smirnov_cdf
|
|||
|
|
|||
|
SYNOPSIS
|
|||
|
Compute the Kolmogorov CDF using Smirnov's asymptotic form
|
|||
|
|
|||
|
USAGE
|
|||
|
cdf = smirnov_cdf (x)
|
|||
|
|
|||
|
DESCRIPTION
|
|||
|
This function computes the CDF for the Kolmogorov distribution using
|
|||
|
Smirnov's asymptotic form. In particular, the implementation is based
|
|||
|
upon equation 1.4 from W. Feller, "On the Kolmogorov-Smirnov limit
|
|||
|
theorems for empirical distributions", Annals of Math. Stat, Vol 19
|
|||
|
(1948), pp. 177-190.
|
|||
|
|
|||
|
SEE ALSO
|
|||
|
ks_test, ks_test2, normal_cdf
|
|||
|
|
|||
|
--------------------------------------------------------------
|
|||
|
|
|||
|
normal_cdf
|
|||
|
|
|||
|
SYNOPSIS
|
|||
|
Compute the CDF for the Normal distribution
|
|||
|
|
|||
|
USAGE
|
|||
|
cdf = normal_cdf (x)
|
|||
|
|
|||
|
DESCRIPTION
|
|||
|
This function computes the CDF (integrated probability) for the
|
|||
|
normal distribution.
|
|||
|
|
|||
|
SEE ALSO
|
|||
|
smirnov_cdf, mann_whitney_cdf, poisson_cdf
|
|||
|
|
|||
|
--------------------------------------------------------------
|
|||
|
|
|||
|
mann_whitney_cdf
|
|||
|
|
|||
|
SYNOPSIS
|
|||
|
Compute the Mann-Whitney CDF
|
|||
|
|
|||
|
USAGE
|
|||
|
cdf = mann_whitney_cdf (Int_Type m, Int_Type n, Int_Type s)
|
|||
|
|
|||
|
DESCRIPTION
|
|||
|
This function computes the exact CDF P(X<=s) for the Mann-Whitney
|
|||
|
distribution. It is used by the `mw_test' function to compute
|
|||
|
p-values for small values of `m' and `n'.
|
|||
|
|
|||
|
SEE ALSO
|
|||
|
mw_test, ks_test, normal_cdf
|
|||
|
|
|||
|
--------------------------------------------------------------
|
|||
|
|
|||
|
kim_jennrich_cdf
|
|||
|
|
|||
|
SYNOPSIS
|
|||
|
Compute the 2-sample KS CDF using the Kim-Jennrich Algorithm
|
|||
|
|
|||
|
USAGE
|
|||
|
p = kim_jennrich (UInt_Type m, UInt_Type n, UInt_Type c)
|
|||
|
|
|||
|
DESCRIPTION
|
|||
|
This function returns the exact two-sample Kolmogorov-Smirnov
|
|||
|
probability that that `D_mn <= c/(mn)', where `D_mn' is
|
|||
|
the two-sample Kolmogorov-Smirnov statistic computed from samples of
|
|||
|
sizes `m' and `n'.
|
|||
|
|
|||
|
The algorithm used is that of Kim and Jennrich. The run-time scales
|
|||
|
as m*n. As such, it is recommended that asymptotic form given by
|
|||
|
the `smirnov_cdf' function be used for large values of m*n.
|
|||
|
|
|||
|
NOTES
|
|||
|
For more information about the Kim-Jennrich algorithm, see:
|
|||
|
Kim, P.J., and R.I. Jennrich (1973), Tables of the exact sampling
|
|||
|
distribution of the two sample Kolmogorov-Smirnov criterion Dmn(m<n),
|
|||
|
in Selected Tables in Mathematical Statistics, Volume 1, (edited
|
|||
|
by H. L. Harter and D.B. Owen), American Mathematical Society,
|
|||
|
Providence, Rhode Island.
|
|||
|
|
|||
|
SEE ALSO
|
|||
|
smirnov_cdf, ks_test2
|
|||
|
|
|||
|
--------------------------------------------------------------
|
|||
|
|
|||
|
f_cdf
|
|||
|
|
|||
|
SYNOPSIS
|
|||
|
Compute the CDF for the F distribution
|
|||
|
|
|||
|
USAGE
|
|||
|
cdf = f_cdf (t, nu1, nu2)
|
|||
|
|
|||
|
DESCRIPTION
|
|||
|
This function computes the CDF for the distribution and returns its
|
|||
|
value.
|
|||
|
|
|||
|
SEE ALSO
|
|||
|
f_test2
|
|||
|
|
|||
|
--------------------------------------------------------------
|
|||
|
|
|||
|
ks_test
|
|||
|
|
|||
|
SYNOPSIS
|
|||
|
One sample Kolmogorov test
|
|||
|
|
|||
|
USAGE
|
|||
|
p = ks_test (CDF [,&D])
|
|||
|
|
|||
|
DESCRIPTION
|
|||
|
This function applies the Kolmogorov test to the data represented by
|
|||
|
`CDF' and returns the p-value representing the probability that
|
|||
|
the data values are ``consistent'' with the underlying distribution
|
|||
|
function. If the optional parameter is passed to the function, then
|
|||
|
it must be a reference to a variable that, upon return, will be
|
|||
|
set to the value of the Kolmogorov statistic..
|
|||
|
|
|||
|
The `CDF' array that is passed to this function must be computed
|
|||
|
from the assumed probability distribution function. For example, if
|
|||
|
the data are constrained to lie between 0 and 1, and the null
|
|||
|
hypothesis is that they follow a uniform distribution, then the CDF
|
|||
|
will be equal to the data. In the data are assumed to be normally
|
|||
|
(Gaussian) distributed, then the `normal_cdf' function can be
|
|||
|
used to compute the CDF.
|
|||
|
|
|||
|
EXAMPLE
|
|||
|
Suppose that X is an array of values obtained from repeated
|
|||
|
measurements of some quantity. The values are are assumed to follow
|
|||
|
a normal distribution with a mean of 20 and a standard deviation of
|
|||
|
3. The `ks_test' may be used to test this hypothesis using:
|
|||
|
|
|||
|
pval = ks_test (normal_cdf(X, 20, 3));
|
|||
|
|
|||
|
|
|||
|
SEE ALSO
|
|||
|
ks_test2, ad_test, kuiper_test, t_test, z_test
|
|||
|
|
|||
|
--------------------------------------------------------------
|
|||
|
|
|||
|
ks_test2
|
|||
|
|
|||
|
SYNOPSIS
|
|||
|
Two-Sample Kolmogorov-Smirnov test
|
|||
|
|
|||
|
USAGE
|
|||
|
prob = ks_test2 (X, Y [,&d])
|
|||
|
|
|||
|
DESCRIPTION
|
|||
|
This function applies the 2-sample Kolmogorov-Smirnov test to two
|
|||
|
datasets `X' and `Y' and returns p-value for the null
|
|||
|
hypothesis that they share the same underlying distribution.
|
|||
|
If the optional parameter is passed to the function, then
|
|||
|
it must be a reference to a variable that, upon return, will be
|
|||
|
set to the value of the statistic.
|
|||
|
|
|||
|
NOTES
|
|||
|
If `length(X)*length(Y)<=10000', the `kim_jennrich_cdf'
|
|||
|
function will be used to compute the exact probability. Otherwise an
|
|||
|
asymptotic form will be used.
|
|||
|
|
|||
|
SEE ALSO
|
|||
|
ks_test, ad_ktest, kuiper_test, kim_jennrich_cdf
|
|||
|
|
|||
|
--------------------------------------------------------------
|
|||
|
|
|||
|
kuiper_test
|
|||
|
|
|||
|
SYNOPSIS
|
|||
|
Perform a 1-sample Kuiper test
|
|||
|
|
|||
|
USAGE
|
|||
|
pval = kuiper_test (CDF [,&D])
|
|||
|
|
|||
|
DESCRIPTION
|
|||
|
This function applies the Kuiper test to the data represented by
|
|||
|
`CDF' and returns the p-value representing the probability that
|
|||
|
the data values are ``consistent'' with the underlying distribution
|
|||
|
function. If the optional parameter is passed to the function, then
|
|||
|
it must be a reference to a variable that, upon return, will be
|
|||
|
set to the value of the Kuiper statistic.
|
|||
|
|
|||
|
The `CDF' array that is passed to this function must be computed
|
|||
|
from the assumed probability distribution function. For example, if
|
|||
|
the data are constrained to lie between 0 and 1, and the null
|
|||
|
hypothesis is that they follow a uniform distribution, then the CDF
|
|||
|
will be equal to the data. In the data are assumed to be normally
|
|||
|
(Gaussian) distributed, then the `normal_cdf' function can be
|
|||
|
used to compute the CDF.
|
|||
|
|
|||
|
EXAMPLE
|
|||
|
Suppose that X is an array of values obtained from repeated
|
|||
|
measurements of some quantity. The values are are assumed to follow
|
|||
|
a normal distribution with a mean of 20 and a standard deviation of
|
|||
|
3. The `ks_test' may be used to test this hypothesis using:
|
|||
|
|
|||
|
pval = kuiper_test (normal_cdf(X, 20, 3));
|
|||
|
|
|||
|
|
|||
|
SEE ALSO
|
|||
|
kuiper_test2, ks_test, t_test
|
|||
|
|
|||
|
--------------------------------------------------------------
|
|||
|
|
|||
|
kuiper_test2
|
|||
|
|
|||
|
SYNOPSIS
|
|||
|
Perform a 2-sample Kuiper test
|
|||
|
|
|||
|
USAGE
|
|||
|
pval = kuiper_test2 (X, Y [,&D])
|
|||
|
|
|||
|
DESCRIPTION
|
|||
|
This function applies the 2-sample Kuiper test to two
|
|||
|
datasets `X' and `Y' and returns p-value for the null
|
|||
|
hypothesis that they share the same underlying distribution.
|
|||
|
If the optional parameter is passed to the function, then
|
|||
|
it must be a reference to a variable that, upon return, will be
|
|||
|
set to the value of the Kuiper statistic.
|
|||
|
|
|||
|
NOTES
|
|||
|
The p-value is computed from an asymptotic formula suggested by
|
|||
|
Stephens, M.A., Journal of the American Statistical Association, Vol
|
|||
|
69, No 347, 1974, pp 730-737.
|
|||
|
|
|||
|
SEE ALSO
|
|||
|
ks_test2, kuiper_test
|
|||
|
|
|||
|
--------------------------------------------------------------
|
|||
|
|
|||
|
chisqr_test
|
|||
|
|
|||
|
SYNOPSIS
|
|||
|
Apply the Chi-square test to a two or more datasets
|
|||
|
|
|||
|
USAGE
|
|||
|
prob = chisqr_test (X_1[], X_2[], ..., X_N [,&t])
|
|||
|
|
|||
|
DESCRIPTION
|
|||
|
This function applies the Chi-square test to the N datasets
|
|||
|
`X_1', `X_2', ..., `X_N', and returns the probability
|
|||
|
that each of the datasets were drawn from the same underlying
|
|||
|
distribution. Each of the arrays `X_k' must be the same length.
|
|||
|
If the last parameter is a reference to a variable, then upon return
|
|||
|
the variable will be set to the value of the statistic.
|
|||
|
|
|||
|
SEE ALSO
|
|||
|
chisqr_cdf, ks_test2, mw_test
|
|||
|
|
|||
|
--------------------------------------------------------------
|
|||
|
|
|||
|
mw_test
|
|||
|
|
|||
|
SYNOPSIS
|
|||
|
Apply the Two-sample Wilcoxon-Mann-Whitney test
|
|||
|
|
|||
|
USAGE
|
|||
|
p = mw_test(X, Y [,&w])
|
|||
|
|
|||
|
DESCRIPTION
|
|||
|
This function performs a Wilcoxon-Mann-Whitney test and returns the
|
|||
|
p-value for the null hypothesis that there is no difference between
|
|||
|
the distributions represented by the datasets `X' and `Y'.
|
|||
|
|
|||
|
If a third argument is given, it must be a reference to a variable
|
|||
|
whose value upon return will be to to the rank-sum of `X'.
|
|||
|
|
|||
|
QUALIFIERS
|
|||
|
The function makes use of the following qualifiers:
|
|||
|
|
|||
|
side=">" : H0: P(X<Y) >= 1/2 (right-tail)
|
|||
|
side="<" : H0: P(X<Y) <= 1/2 (left-tail)
|
|||
|
|
|||
|
The default null hypothesis is that `P(X<Y)=1/2'.
|
|||
|
|
|||
|
NOTES
|
|||
|
There are a number of definitions of this test. While the exact
|
|||
|
definition of the statistic varies, the p-values are the same.
|
|||
|
|
|||
|
If `length(X)<50', `length(Y)' < 50, and ties are not
|
|||
|
present, then the exact p-value is computed using the
|
|||
|
`mann_whitney_cdf' function. Otherwise a normal distribution is
|
|||
|
used.
|
|||
|
|
|||
|
This test is often referred to as the non-parametric generalization
|
|||
|
of the Student t-test.
|
|||
|
|
|||
|
SEE ALSO
|
|||
|
mann_whitney_cdf, ks_test2, chisqr_test, t_test
|
|||
|
|
|||
|
--------------------------------------------------------------
|
|||
|
|
|||
|
student_t_cdf
|
|||
|
|
|||
|
SYNOPSIS
|
|||
|
Compute the Student-t CDF
|
|||
|
|
|||
|
USAGE
|
|||
|
cdf = student_t_cdf (t, n)
|
|||
|
|
|||
|
DESCRIPTION
|
|||
|
This function computes the CDF for the Student-t distribution for n
|
|||
|
degrees of freedom.
|
|||
|
|
|||
|
SEE ALSO
|
|||
|
t_test, normal_cdf
|
|||
|
|
|||
|
--------------------------------------------------------------
|
|||
|
|
|||
|
f_test2
|
|||
|
|
|||
|
SYNOPSIS
|
|||
|
Apply the Two-sample F test
|
|||
|
|
|||
|
USAGE
|
|||
|
p = f_test2 (X, Y [,&F]
|
|||
|
|
|||
|
DESCRIPTION
|
|||
|
This function computes the two-sample F statistic and its p-value
|
|||
|
for the data in the `X' and `Y' arrays. This test is used
|
|||
|
to compare the variances of two normally-distributed data sets, with
|
|||
|
the null hypothesis that the variances are equal. The return value
|
|||
|
is the p-value, which is computed using the module's `f_cdf'
|
|||
|
function.
|
|||
|
|
|||
|
QUALIFIERS
|
|||
|
The function makes use of the following qualifiers:
|
|||
|
|
|||
|
side=">" : H0: Var[X] >= Var[Y] (right-tail)
|
|||
|
side="<" : H0: Var[X] <= Var[Y] (left-tail)
|
|||
|
|
|||
|
|
|||
|
SEE ALSO
|
|||
|
f_cdf, ks_test2, chisqr_test
|
|||
|
|
|||
|
--------------------------------------------------------------
|
|||
|
|
|||
|
t_test
|
|||
|
|
|||
|
SYNOPSIS
|
|||
|
Perform a Student t-test
|
|||
|
|
|||
|
USAGE
|
|||
|
pval = t_test (X, mu [,&t])
|
|||
|
|
|||
|
DESCRIPTION
|
|||
|
The one-sample t-test may be used to test that the population mean has a
|
|||
|
specified value under the null hypothesis. Here, `X' represents a
|
|||
|
random sample drawn from the population and `mu' is the
|
|||
|
specified mean of the population. This function computes Student's
|
|||
|
t-statistic and returns the p-value
|
|||
|
that the data X were randomly sampled from a population with the
|
|||
|
specified mean.
|
|||
|
If the optional parameter is passed to the function, then
|
|||
|
it must be a reference to a variable that, upon return, will be
|
|||
|
set to the value of the statistic.
|
|||
|
|
|||
|
QUALIFIERS
|
|||
|
The following qualifiers may be used to specify a 1-sided test:
|
|||
|
|
|||
|
side="<" Perform a left-tailed test
|
|||
|
side=">" Perform a right-tailed test
|
|||
|
|
|||
|
|
|||
|
NOTES
|
|||
|
While the parent population need not be normal, the test assumes
|
|||
|
that random samples drawn from this distribution have means that
|
|||
|
are normally distributed.
|
|||
|
|
|||
|
Strictly speaking, this test should only be used if the variance of
|
|||
|
the data are equal to that of the assumed parent distribution. Use
|
|||
|
the Mann-Whitney-Wilcoxon (`mw_test') if the underlying
|
|||
|
distribution is non-normal.
|
|||
|
|
|||
|
SEE ALSO
|
|||
|
mw_test, t_test2
|
|||
|
|
|||
|
--------------------------------------------------------------
|
|||
|
|
|||
|
t_test2
|
|||
|
|
|||
|
SYNOPSIS
|
|||
|
Perform a 2-sample Student t-test
|
|||
|
|
|||
|
USAGE
|
|||
|
pval = t_test2 (X, Y [,&t])
|
|||
|
|
|||
|
DESCRIPTION
|
|||
|
This function compares two data sets `X' and `Y' using the
|
|||
|
Student t-statistic. It is assumed that the the parent populations
|
|||
|
are normally distributed with equal variance, but with possibly
|
|||
|
different means. The test is one that looks for differences in the
|
|||
|
means.
|
|||
|
|
|||
|
NOTES
|
|||
|
The `welch_t_test2' function may be used if it is not known that
|
|||
|
the parent populations have the same variance.
|
|||
|
|
|||
|
SEE ALSO
|
|||
|
t_test2, welch_t_test2, mw_test
|
|||
|
|
|||
|
--------------------------------------------------------------
|
|||
|
|
|||
|
welch_t_test2
|
|||
|
|
|||
|
SYNOPSIS
|
|||
|
Perform Welch's t-test
|
|||
|
|
|||
|
USAGE
|
|||
|
pval = welch_t_test2 (X, Y [,&t])
|
|||
|
|
|||
|
DESCRIPTION
|
|||
|
This function applies Welch's t-test to the 2 datasets `X' and
|
|||
|
`Y' and returns the p-value that the underlying populations have
|
|||
|
the same mean. The parent populations are assumed to be normally
|
|||
|
distributed, but need not have the same variance.
|
|||
|
If the optional parameter is passed to the function, then
|
|||
|
it must be a reference to a variable that, upon return, will be
|
|||
|
set to the value of the statistic.
|
|||
|
|
|||
|
QUALIFIERS
|
|||
|
The following qualifiers may be used to specify a 1-sided test:
|
|||
|
|
|||
|
side="<" Perform a left-tailed test
|
|||
|
side=">" Perform a right-tailed test
|
|||
|
|
|||
|
|
|||
|
SEE ALSO
|
|||
|
t_test2
|
|||
|
|
|||
|
--------------------------------------------------------------
|
|||
|
|
|||
|
z_test
|
|||
|
|
|||
|
SYNOPSIS
|
|||
|
Perform a Z test
|
|||
|
|
|||
|
USAGE
|
|||
|
pval = z_test (X, mu, sigma [,&z])
|
|||
|
|
|||
|
DESCRIPTION
|
|||
|
This function applies a Z test to the data `X' and returns the
|
|||
|
p-value that the data are consistent with a normally-distributed
|
|||
|
parent population with a mean of `mu' and a standard-deviation
|
|||
|
of `sigma'. If the optional parameter is passed to the function, then
|
|||
|
it must be a reference to a variable that, upon return, will be
|
|||
|
set to the value of the Z statistic.
|
|||
|
|
|||
|
SEE ALSO
|
|||
|
t_test, mw_test
|
|||
|
|
|||
|
--------------------------------------------------------------
|
|||
|
|
|||
|
kendall_tau
|
|||
|
|
|||
|
SYNOPSIS
|
|||
|
Kendall's tau Correlation Test
|
|||
|
|
|||
|
USAGE
|
|||
|
pval = kendall_tau (x, y [,&tau])
|
|||
|
|
|||
|
DESCRIPTION
|
|||
|
This function computes Kendall's tau statistic for the paired data
|
|||
|
values (x,y), which may or may not have ties. It returns the
|
|||
|
double-sided p-value associated with the statistic.
|
|||
|
|
|||
|
NOTES
|
|||
|
The implementation is based upon Knight's O(nlogn) algorithm
|
|||
|
described in "A computer method for calculating Kendall’s tau with
|
|||
|
ungrouped data", Journal of the American Statistical Association, 61,
|
|||
|
436-439.
|
|||
|
|
|||
|
In the case of no ties, the exact p-value is computed when length(x)
|
|||
|
is less than 30 using algorithm 71 of Applied Statistics (1974) by
|
|||
|
Best and Gipps. If ties are present, the the p-value is computed
|
|||
|
based upon the normal distribution and a continuity correction.
|
|||
|
|
|||
|
QUALIFIERS
|
|||
|
The following qualifiers may be used to specify a 1-sided test:
|
|||
|
|
|||
|
side="<" Perform a left-tailed test
|
|||
|
side=">" Perform a right-tailed test
|
|||
|
|
|||
|
|
|||
|
SEE ALSO
|
|||
|
spearman_r, pearson_r, mann_kendall
|
|||
|
|
|||
|
--------------------------------------------------------------
|
|||
|
|
|||
|
mann_kendall
|
|||
|
|
|||
|
SYNOPSIS
|
|||
|
Mann-Kendall trend test
|
|||
|
|
|||
|
USAGE
|
|||
|
pval = mann_kendall (y [,&tau])
|
|||
|
|
|||
|
DESCRIPTION
|
|||
|
The Mann-Kendall test is a non-parametric test that may be used to
|
|||
|
identify a trend in a set of serial data values. It is closely
|
|||
|
related to the Kendall's tau correlation test.
|
|||
|
|
|||
|
The `mann_kendall' function returns the double-sided p-value
|
|||
|
that may be used as a basis for rejecting the the null-hypothesis
|
|||
|
that there is no trend in the data.
|
|||
|
|
|||
|
QUALIFIERS
|
|||
|
The following qualifiers may be used to specify a 1-sided test:
|
|||
|
|
|||
|
side="<" Perform a left-tailed test
|
|||
|
side=">" Perform a right-tailed test
|
|||
|
|
|||
|
|
|||
|
SEE ALSO
|
|||
|
spearman_r, pearson_r, mann_kendall
|
|||
|
|
|||
|
--------------------------------------------------------------
|
|||
|
|
|||
|
pearson_r
|
|||
|
|
|||
|
SYNOPSIS
|
|||
|
Compute Pearson's Correlation Coefficient
|
|||
|
|
|||
|
USAGE
|
|||
|
pval = pearson_r (X, Y [,&r])
|
|||
|
|
|||
|
DESCRIPTION
|
|||
|
This function computes Pearson's r correlation coefficient of the two
|
|||
|
datasets `X' and `Y'. It returns the the p-value that
|
|||
|
`x' and `y' are mutually independent.
|
|||
|
If the optional parameter is passed to the function, then
|
|||
|
it must be a reference to a variable that, upon return, will be
|
|||
|
set to the value of the correlation coefficient.
|
|||
|
|
|||
|
QUALIFIERS
|
|||
|
The following qualifiers may be used to specify a 1-sided test:
|
|||
|
|
|||
|
side="<" Perform a left-tailed test
|
|||
|
side=">" Perform a right-tailed test
|
|||
|
|
|||
|
|
|||
|
SEE ALSO
|
|||
|
kendall_tau, spearman_r
|
|||
|
|
|||
|
--------------------------------------------------------------
|
|||
|
|
|||
|
spearman_r
|
|||
|
|
|||
|
SYNOPSIS
|
|||
|
Spearman's Rank Correlation test
|
|||
|
|
|||
|
USAGE
|
|||
|
pval = spearman_r(x, y [,&r])
|
|||
|
|
|||
|
DESCRIPTION
|
|||
|
This function computes the Spearman rank correlation coefficient (r)
|
|||
|
and returns the p-value that `x' and `y' are mutually
|
|||
|
independent.
|
|||
|
If the optional parameter is passed to the function, then
|
|||
|
it must be a reference to a variable that, upon return, will be
|
|||
|
set to the value of the correlation coefficient.
|
|||
|
|
|||
|
QUALIFIERS
|
|||
|
The following qualifiers may be used to specify a 1-sided test:
|
|||
|
|
|||
|
side="<" Perform a left-tailed test
|
|||
|
side=">" Perform a right-tailed test
|
|||
|
|
|||
|
|
|||
|
SEE ALSO
|
|||
|
kendall_tau, pearson_r
|
|||
|
|
|||
|
--------------------------------------------------------------
|
|||
|
|
|||
|
correlation
|
|||
|
|
|||
|
SYNOPSIS
|
|||
|
Compute the sample correlation between two datasets
|
|||
|
|
|||
|
USAGE
|
|||
|
c = correlation (x, y)
|
|||
|
|
|||
|
DESCRIPTION
|
|||
|
This function computes Pearson's sample correlation coefficient
|
|||
|
between 2 arrays. It is assumed that the standard deviation of each
|
|||
|
array is finite and non-zero. The returned value falls in the
|
|||
|
range -1 to 1, with -1 indicating that the data are anti-correlated,
|
|||
|
and +1 indicating that the data are completely correlated.
|
|||
|
|
|||
|
SEE ALSO
|
|||
|
covariance, stddev
|
|||
|
|
|||
|
--------------------------------------------------------------
|