1
1
openmpi/ompi/mpi/man/man3/MPI_Gatherv.md
2020-10-30 20:03:59 -04:00

380 строки
12 KiB
Markdown

# Name
`MPI_Gatherv`, `MPI_Igatherv` - Gathers varying amounts of data from all
processes to the root process
# Syntax
## C Syntax
```c
#include <mpi.h>
int MPI_Gatherv(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, const int recvcounts[], const int displs[], MPI_Datatype recvtype,
int root, MPI_Comm comm)
int MPI_Igatherv(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, const int recvcounts[], const int displs[], MPI_Datatype recvtype,
int root, MPI_Comm comm, MPI_Request *request)
```
## Fortran Syntax
```fortran
USE MPI
! or the older form: INCLUDE 'mpif.h'
MPI_GATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS,
DISPLS, RECVTYPE, ROOT, COMM, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*)
INTEGER RECVTYPE, ROOT, COMM, IERROR
MPI_IGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS,
DISPLS, RECVTYPE, ROOT, COMM, REQUEST, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*)
INTEGER RECVTYPE, ROOT, COMM, REQUEST, IERROR
```
## Fortran 2008 Syntax
```fortran
USE mpi_f08
MPI_Gatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,
recvtype, root, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSION(..) :: recvbuf
INTEGER, INTENT(IN) :: sendcount, recvcounts(*), displs(*), root
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Igatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,
recvtype, root, comm, request, ierror)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
INTEGER, INTENT(IN) :: sendcount, root
INTEGER, INTENT(IN), ASYNCHRONOUS :: recvcounts(*), displs(*)
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```
# Input Parameters
* `sendbuf` : Starting address of send buffer (choice).
* `sendcount` : Number of elements in send buffer (integer).
* `sendtype` : Datatype of send buffer elements (handle).
* `recvcounts` : Integer array (of length group size) containing the number of
elements that are received from each process (significant only at
root).
* `displs` : Integer array (of length group size). Entry i specifies the
displacement relative to recvbuf at which to place the incoming data
from process i (significant only at root).
* `recvtype` : Datatype of recv buffer elements (significant only at root)
(handle).
* `root` : Rank of receiving process (integer).
* `comm` : Communicator (handle).
# Output Parameters
* `recvbuf` : Address of receive buffer (choice, significant only at root).
* `request` : Request (handle, non-blocking only).
* `IERROR` : Fortran only: Error status (integer).
# Description
`MPI_Gatherv` extends the functionality of `MPI_Gather` by allowing a
varying count of data from each process, since `recvcounts` is now an
array. It also allows more flexibility as to where the data is placed on
the root, by providing the new argument, `displs`.
The outcome is as if each process, including the root process, sends a
message to the root,
```c
MPI_Send(sendbuf, sendcount, sendtype, root, ...)
```
and the root executes n receives,
```c
MPI_Recv(recvbuf + disp[i] * extent(recvtype),
recvcounts[i], recvtype, i, ...)
```
Messages are placed in the receive buffer of the root process in rank
order, that is, the data sent from process j is placed in the jth
portion of the receive buffer `recvbuf` on process root. The jth portion
of `recvbuf` begins at offset displs[j] elements (in terms of `recvtype`)
into `recvbuf`.
The receive buffer is ignored for all nonroot processes.
The type signature implied by `sendcount`, `sendtype` on process i must be
equal to the type signature implied by `recvcounts[i]`, `recvtype` at the
root. This implies that the amount of data sent must be equal to the
amount of data received, pairwise between each process and the root.
Distinct type maps between sender and receiver are still allowed, as
illustrated in Example 2, below.
All arguments to the function are significant on process `root`, while on
other processes, only arguments `sendbuf`, `sendcount`, `sendtype`, `root`, `comm`
are significant. The arguments `root` and `comm` must have identical values
on all processes.
The specification of counts, types, and displacements should not cause
any location on the `root` to be written more than once. Such a call is
erroneous.
Example 1: Now have each process send 100 ints to `root`, but place
each set (of 100) stride ints apart at receiving end. Use `MPI_Gatherv`
and the `displs` argument to achieve this effect. Assume stride >= 100.
```c
MPI_Comm comm;
int gsize,sendarray[100];
int root, *rbuf, stride;
int *displs,i,*rcounts;
// ...
MPI_Comm_size(comm, &gsize);
rbuf = (int *)malloc(gsize*stride*sizeof(int));
displs = (int *)malloc(gsize*sizeof(int));
rcounts = (int *)malloc(gsize*sizeof(int));
for (i=0; i<gsize; ++i) {
displs[i] = i*stride;
rcounts[i] = 100;
}
MPI_Gatherv(sendarray, 100, MPI_INT, rbuf, rcounts,
displs, MPI_INT, root, comm);
```
Note that the program is erroneous if stride < 100.
Example 2: Same as Example 1 on the receiving side, but send the 100
ints from the 0th column of a 100 150 int array, in C.
```c
MPI_Comm comm;
int gsize,sendarray[100][150];
int root, *rbuf, stride;
MPI_Datatype stype;
int *displs,i,*rcounts;
// ...
MPI_Comm_size(comm, &gsize);
rbuf = (int *)malloc(gsize*stride*sizeof(int));
displs = (int *)malloc(gsize*sizeof(int));
rcounts = (int *)malloc(gsize*sizeof(int));
for (i=0; i<gsize; ++i) {
displs[i] = i*stride;
rcounts[i] = 100;
}
/* Create datatype for 1 column of array
*/
MPI_Type_vector(100, 1, 150, MPI_INT, &stype);
MPI_Type_commit( &stype );
MPI_Gatherv(sendarray, 1, stype, rbuf, rcounts,
displs, MPI_INT, root, comm);
```
Example 3: Process i sends (100-i) ints from the ith column of a 100
x 150 int array, in C. It is received into a buffer with stride, as in
the previous two examples.
```c
MPI_Comm comm;
int gsize,sendarray[100][150],*sptr;
int root, *rbuf, stride, myrank;
MPI_Datatype stype;
int *displs,i,*rcounts;
// ...
MPI_Comm_size(comm, &gsize);
MPI_Comm_rank( comm, &myrank );
rbuf = (int *)malloc(gsize*stride*sizeof(int));
displs = (int *)malloc(gsize*sizeof(int));
rcounts = (int *)malloc(gsize*sizeof(int));
for (i=0; i<gsize; ++i) {
displs[i] = i*stride;
rcounts[i] = 100-i; /* note change from previous example */
}
/* Create datatype for the column we are sending
*/
MPI_Type_vector(100-myrank, 1, 150, MPI_INT, &stype);
MPI_Type_commit( &stype );
/* sptr is the address of start of "myrank" column
*/
sptr = &sendarray[0][myrank];
MPI_Gatherv(sptr, 1, stype, rbuf, rcounts, displs, MPI_INT,
root, comm);
```
Note that a different amount of data is received from each process.
Example 4: Same as Example 3, but done in a different way at the
sending end. We create a datatype that causes the correct striding at
the sending end so that we read a column of a C array.
```c
MPI_Comm comm;
int gsize,sendarray[100][150],*sptr;
int root, *rbuf, stride, myrank, disp[2], blocklen[2];
MPI_Datatype stype,type[2];
int *displs,i,*rcounts;
// ...
MPI_Comm_size(comm, &gsize);
MPI_Comm_rank( comm, &myrank );
rbuf = (int *)alloc(gsize*stride*sizeof(int));
displs = (int *)malloc(gsize*sizeof(int));
rcounts = (int *)malloc(gsize*sizeof(int));
for (i=0; i<gsize; ++i) {
displs[i] = i*stride;
rcounts[i] = 100-i;
}
/* Create datatype for one int, with extent of entire row
*/
disp[0] = 0; disp[1] = 150*sizeof(int);
type[0] = MPI_INT; type[1] = MPI_UB;
blocklen[0] = 1; blocklen[1] = 1;
MPI_Type_struct( 2, blocklen, disp, type, &stype );
MPI_Type_commit( &stype );
sptr = &sendarray[0][myrank];
MPI_Gatherv(sptr, 100-myrank, stype, rbuf, rcounts,
displs, MPI_INT, root, comm);
```
Example 5: Same as Example 3 at sending side, but at receiving side
we make the stride between received blocks vary from block to block.
```c
MPI_Comm comm;
int gsize,sendarray[100][150],*sptr;
int root, *rbuf, *stride, myrank, bufsize;
MPI_Datatype stype;
int *displs,i,*rcounts,offset;
// ...
MPI_Comm_size( comm, &gsize);
MPI_Comm_rank( comm, &myrank );
de = (int *)malloc(gsize*sizeof(int));
// ...
/* stride[i] for i = 0 to gsize-1 is set somehow
*/
/*set up displs and rcounts vectors first
*/
displs = (int *)malloc(gsize*sizeof(int));
rcounts = (int *)malloc(gsize*sizeof(int));
offset = 0;
for (i=0; i<gsize; ++i) {
displs[i] = offset;
offset += stride[i];
rcounts[i] = 100-i;
}
/* the required buffer size for rbuf is now easily obtained
*/
bufsize = displs[gsize-1]+rcounts[gsize-1];
rbuf = (int *)malloc(bufsize*sizeof(int));
/* Create datatype for the column we are sending
*/
MPI_Type_vector(100-myrank, 1, 150, MPI_INT, &stype);
MPI_Type_commit( &stype );
sptr = &sendarray[0][myrank];
MPI_Gatherv(sptr, 1, stype, rbuf, rcounts,
displs, MPI_INT, root, comm);
```
Example 6: Process i sends num ints from the ith column of a 100 x
150 int array, in C. The complicating factor is that the various values
of num are not known to `root`, so a separate gather must first be run to
find these out. The data is placed contiguously at the receiving end.
```c
MPI_Comm comm;
int gsize,sendarray[100][150],*sptr;
int root, *rbuf, stride, myrank, disp[2], blocklen[2];
MPI_Datatype stype,types[2];
int *displs,i,*rcounts,num;
// ...
MPI_Comm_size( comm, &gsize);
MPI_Comm_rank( comm, &myrank );
/*First, gather nums to root
*/
rcounts = (int *)malloc(gsize*sizeof(int));
MPI_Gather( &num, 1, MPI_INT, rcounts, 1, MPI_INT, root, comm);
/* root now has correct rcounts, using these we set
* displs[] so that data is placed contiguously (or
* concatenated) at receive end
*/
displs = (int *)malloc(gsize*sizeof(int));
displs[0] = 0;
for (i=1; i<gsize; ++i) {
displs[i] = displs[i-1]+rcounts[i-1];
}
/* And, create receive buffer
*/
rbuf = (int *)malloc(gsize*(displs[gsize-1]+rcounts[gsize-1])
*sizeof(int));
/* Create datatype for one int, with extent of entire row
*/
disp[0] = 0; disp[1] = 150*sizeof(int);
type[0] = MPI_INT; type[1] = MPI_UB;
blocklen[0] = 1; blocklen[1] = 1;
MPI_Type_struct( 2, blocklen, disp, type, &stype );
MPI_Type_commit( &stype );
sptr = &sendarray[0][myrank];
MPI_Gatherv(sptr, num, stype, rbuf, rcounts,
displs, MPI_INT, root, comm);
```
# Use Of In-Place Option
The in-place option operates in the same way as it does for `MPI_Gather.`
When the communicator is an intracommunicator, you can perform a gather
operation in-place (the output buffer is used as the input buffer). Use
the variable `MPI_IN_PLACE` as the value of the root process `sendbuf`. In
this case, `sendcount` and `sendtype` are ignored, and the contribution
of the `root` process to the gathered vector is assumed to already be in
the correct place in the receive buffer.
Note that `MPI_IN_PLACE` is a special kind of value; it has the same
restrictions on its use as `MPI_BOTTOM.`
Because the in-place option converts the receive buffer into a
send-and-receive buffer, a Fortran binding that includes INTENT must
mark these as INOUT, not OUT.
# When Communicator Is An Inter-Communicator
When the communicator is an inter-communicator, the `root` process in the
first group gathers data from all the processes in the second group. The
first group defines the root process. That process uses `MPI_ROOT` as the
value of its `root` argument. The remaining processes use `MPI_PROC_NULL`
as the value of their `root` argument. All processes in the second group
use the rank of that root process in the first group as the value of
their `root` argument. The send buffer argument of the processes in the
first group must be consistent with the receive buffer argument of the
`root` process in the second group.
# Errors
Almost all MPI routines return an error value; C routines as the value
of the function and Fortran routines in the last argument.
Before the error value is returned, the current MPI error handler is
called. By default, this error handler aborts the MPI job, except for
I/O function errors. The error handler may be changed with
`MPI_Comm_set_errhandler`; the predefined error handler `MPI_ERRORS_RETURN`
may be used to cause error values to be returned. Note that MPI does not
guarantee that an MPI program can continue past an error.
# See Also
[`MPI_Gather`(3)](MPI_Gather.html)
[`MPI_Scatter`(3)](MPI_Scatter.html)
[`MPI_Scatterv`(3)](MPI_Scatterv.html)