Now Open MPI requires a C99 compiler. Checking availability of
the following types is no more needed.
- `long long` (`signed` and `unsigned`)
- `long double`
- `float _Complex`
- `double _Complex`
- `long double _Complex`
Furthermore, the `#if HAVE_[TYPE]` style checking is not correct.
Availability of C types is checked by `AC_CHECK_TYPES` in `configure.ac`.
`AC_CHECK_TYPES` defines macro `HAVE_[TYPE]` as `1` in `opal_config.h`
if the `[TYPE]` is available. But it does not define `HAVE_[TYPE]`
(instead of defining as `0`) if it is not available. So even if we
need `HAVE_[TYPE]` checking, it should be `#if defined(HAVE_[TYPE])`.
I didn't remove `AC_CHECK_TYPES` for these types in `configure.ac`
since someone may use `HAVE_[TYPE]` macros somewhere.
Signed-off-by: KAWASHIMA Takahiro <t-kawashima@jp.fujitsu.com>
The Open MPI code base assumed that asprintf always behaved like
the FreeBSD variant, where ptr is set to NULL on error. However,
the C standard (and Linux) only guarantee that the return code will
be -1 on error and leave ptr undefined. Rather than fix all the
usage in the code, we use opal_asprintf() wrapper instead, which
guarantees the BSD-like behavior of ptr always being set to NULL.
In addition to being correct, this will fix many, many warnings
in the Open MPI code base.
Signed-off-by: Brian Barrett <bbarrett@amazon.com>
This commit updates the entire codebase to use specific opal types for
all atomic variables. This is a change from the prior atomic support
which required the use of the volatile keyword. This is the first step
towards implementing support for C11 atomics as that interface
requires the use of types declared with the _Atomic keyword.
Signed-off-by: Nathan Hjelm <hjelmn@lanl.gov>
This commit renames the arithmetic atomic operations in opal to
indicate that they return the new value not the old value. This naming
differentiates these routines from new functions that return the old
value.
Signed-off-by: Nathan Hjelm <hjelmn@lanl.gov>
* Resolves#3705
* Components should link against the project level library to better
support `dlopen` with `RTLD_LOCAL`.
* Extend the `mca_FRAMEWORK_COMPONENT_la_LIBADD` in the `Makefile.am`
with the appropriate project level library:
```
MCA components in ompi/
$(top_builddir)/ompi/lib@OMPI_LIBMPI_NAME@.la
MCA components in orte/
$(top_builddir)/orte/lib@ORTE_LIB_PREFIX@open-rte.la
MCA components in opal/
$(top_builddir)/opal/lib@OPAL_LIB_PREFIX@open-pal.la
MCA components in oshmem/
$(top_builddir)/oshmem/liboshmem.la"
```
Note: The changes in this commit were automated by the script in
the commit that proceeds it with the `libadd_mca_comp_update.py`
script. Some components were not included in this change because
they are statically built only.
Signed-off-by: Joshua Hursey <jhursey@us.ibm.com>
The expected sequence of events for processing info during object creation
is that if there's an incoming info arg, it is opal_info_dup()ed into the obj
at obj->s_info first. Then interested components register callbacks for
keys they want to know about using opal_infosubscribe_infosubscribe().
Inside info_subscribe_subscribe() the specified callback() is called with
whatever matching k/v is in the object's info, or with the default. The
return string from the callback goes into the new k/v stored in info, and
the input k/v is saved as __IN_<key>/<val>. It's saved the same way
whether the input came from info or whether it was a default. A null return
from the callback indicates an ignored key/val, and no k/v is stored for
it, but an __IN_<key>/<val> is still kept so we still have access to the
original.
At MPI_*_set_info() time, opal_infosubscribe_change_info() is used. That
function calls the registered callbacks for each item in the provided info.
If the callback returns non-null, the info is updated with that k/v, or if
the callback returns null, that key is deleted from info. An __IN_<key>/<val>
is saved either way, and overwrites any previously saved value.
When MPI_*_get_info() is called, opal_info_dup_mpistandard() is used, which
allows relatively easy changes in interpretation of the standard, by looking
at both the <key>/<val> and __IN_<key>/<val> in info. Right now it does
1. includes system extras, eg k/v defaults not expliclty set by the user
2. omits ignored keys
3. shows input values, not callback modifications, eg not the internal values
Currently the callbacks are doing things like
return some_condition ? "true" : "false"
that is, returning static strings that are not to be freed. If the return
strings start becoming more dynamic in the future I don't see how unallocated
strings could support that, so I'd propose a change for the future that
the callback()s registered with info_subscribe_subscribe() do a strdup on
their return, and we change the callers of callback() to free the strings
it returns (there are only two callers).
Rough outline of the smaller changes spread over the less central files:
comm.c
initialize comm->super.s_info to NULL
copy into comm->super.s_info in comm creation calls that provide info
OBJ_RELEASE comm->super.s_info at free time
comm_init.c
initialize comm->super.s_info to NULL
file.c
copy into file->super.s_info if file creation provides info
OBJ_RELEASE file->super.s_info at free time
win.c
copy into win->super.s_info if win creation provides info
OBJ_RELEASE win->super.s_info at free time
comm_get_info.c
file_get_info.c
win_get_info.c
change_info() if there's no info attached (shouldn't happen if callbacks
are registered)
copy the info for the user
The other category of change is generally addressing compiler warnings where
ompi_info_t and opal_info_t were being used a little too interchangably. An
ompi_info_t* contains an opal_info_t*, at &(ompi_info->super)
Also this commit updates the copyrights.
Signed-off-by: Mark Allen <markalle@us.ibm.com>
ompi_communicator_t, ompi_win_t, ompi_file_t all have a super class of type opal_infosubscriber_t instead of a base/super type of opal_object_t (in previous code comm used c_base, but file used super). It may be a bit bold to say that being a subscriber of MPI_Info is the foundational piece that ties these three things together, but if you object, then I would prefer to turn infosubscriber into a more general name that encompasses other common features rather than create a different super class. The key here is that we want to be able to pass comm, win and file objects as if they were opal_infosubscriber_t, so that one routine can heandle all 3 types of objects being passed to it.
MPI_INFO_NULL is still an ompi_predefined_info_t type since an MPI_Info is part of ompi but the internal details of the underlying information concept is part of opal.
An ompi_info_t type still exists for exposure to the user, but it is simply a wrapper for the opal object.
Routines such as ompi_info_dup, etc have all been moved to opal_info_dup and related to the opal directory.
Fortran to C translation tables are only used for MPI_Info that is exposed to the application and are therefore part of the ompi_info_t and not the opal_info_t
The data structure changes are primarily in the following files:
communicator/communicator.h
ompi/info/info.h
ompi/win/win.h
ompi/file/file.h
The following new files were created:
opal/util/info.h
opal/util/info.c
opal/util/info_subscriber.h
opal/util/info_subscriber.c
This infosubscriber concept is that communicators, files and windows can have subscribers that subscribe to any changes in the info associated with the comm/file/window. When xxx_set_info is called, the new info is presented to each subscriber who can modify the info in any way they want. The new value is presented to the next subscriber and so on until all subscribers have had a chance to modify the value. Therefore, the order of subscribers can make a difference but we hope that there is generally only one subscriber that cares or modifies any given key/value pair. The final info is then stored and returned by a call to xxx_get_info.
The new model can be seen in the following files:
ompi/mpi/c/comm_get_info.c
ompi/mpi/c/comm_set_info.c
ompi/mpi/c/file_get_info.c
ompi/mpi/c/file_set_info.c
ompi/mpi/c/win_get_info.c
ompi/mpi/c/win_set_info.c
The current subscribers where changed as follows:
mca/io/ompio/io_ompio_file_open.c
mca/io/ompio/io_ompio_module.c
mca/osc/rmda/osc_rdma_component.c (This one actually subscribes to "no_locks")
mca/osc/sm/osc_sm_component.c (This one actually subscribes to "blocking_fence" and "alloc_shared_contig")
Signed-off-by: Mark Allen <markalle@us.ibm.com>
Conflicts:
AUTHORS
ompi/communicator/comm.c
ompi/debuggers/ompi_mpihandles_dll.c
ompi/file/file.c
ompi/file/file.h
ompi/info/info.c
ompi/mca/io/ompio/io_ompio.h
ompi/mca/io/ompio/io_ompio_file_open.c
ompi/mca/io/ompio/io_ompio_file_set_view.c
ompi/mca/osc/pt2pt/osc_pt2pt.h
ompi/mca/sharedfp/addproc/sharedfp_addproc.h
ompi/mca/sharedfp/addproc/sharedfp_addproc_file_open.c
ompi/mca/topo/treematch/topo_treematch_dist_graph_create.c
ompi/mpi/c/lookup_name.c
ompi/mpi/c/publish_name.c
ompi/mpi/c/unpublish_name.c
opal/mca/mpool/base/mpool_base_alloc.c
opal/util/Makefile.am
since Open MPI now requires a C99, and ptrdiff_t type is part of C99,
there is no more need for the abstract OPAL_PTRDIFF_TYPE type.
Signed-off-by: Gilles Gouaillardet <gilles@rist.or.jp>
As we changed the ABI (forcing a major release), we can limit
the size of the predefined communicators by moving the collective
structure outside the communicator. This might have a minimal,
but unnoticeable, impact on performance. This approach has been
discussed during the January 2017 devel meeting.
Signed-off-by: George Bosilca <bosilca@icl.utk.edu>
Signed-off-by: Joshua Hursey <jhursey@us.ibm.com>
in this context, AMD64 really means amd64 or em64t, so let's
rename this into X86_64 in order to avoid any confusion
Signed-off-by: Gilles Gouaillardet <gilles@rist.or.jp>
This commit implements onesided operations for noncontiguous
datatypes using two different algorithms.
* If the result and/or origin datatype is noncontiguous and the
target datatype is contiguous, then an iovec MD is created for
the result and origin. The operation is performed using a
single Portals4 call (unless it exceeds the max message size).
* If the target datatype is noncontigous, then an algorithm
similar to the one in osc-rdma is used to loop over the
contiguous blocks of each datatype. The operation is
performed using multiple Portals4 calls.
This commit ensures that individual operations do not exceed the
max atomic size or the max message size supported by the device.
Signed-off-by: Todd Kordenbrock <thkgcode@gmail.com>
Instead of ompi_datatype_get_extent(), use ompi_datatype_get_true_extent()
to get the origin and target lower bound. For derived types like
subarray, true_lb is the correct offset for RDMA operations. Also,
instead of the extent use the size of the datatype.
Fix code paths that didn't convert the MPI datatype to the
corresponding Portals4 datatype.
Thanks to Nicolas Chevalier (@shawone) for finding this bug and
submitting a patch.
In the default mode of operation, the Portals4 components support
dynamic add_procs().
The Portals4 components have two alternate modes (flow control and
logical-to-physical) that require knowledge of all procs at startup.
In these modes, mtl-portals4 sets the MCA_MTL_BASE_FLAG_REQUIRE_WORLD
flag and btl-portals4 sets the MCA_BTL_FLAGS_SINGLE_ADD_PROCS flag
to tell the PML that we need all the procs in one add_procs() call.
This commit modifies the ompi_group_t union/difference code to compare/copy the
raw group values. This will either be a ompi_proc_t or a sentinel value. This
commit also adds helper functions to convert between opal process names and
sentinel values.
Signed-off-by: Nathan Hjelm <hjelmn@me.com>
- MPI_Compare_and_swap
- MPI_Fetch_and_op
- MPI_Raccumulate
- MPI_Win_detach
Thanks to Michael Knobloch and Takahiro Kawashima for bringing this
to our attention
Portals4 supports atomic ops on datatypes less than or equal to
max_fetch_atomic_size bytes. This commit fixes a bug that required
the datatype to be less than max_fetch_atomic_size bytes.
In days past, some implementations of Portals4 could not cover all
of memory with a single Memory Descriptor so multiple large
overlapping Memory Descriptors were created. Because none of the
current implementations have this limitation (and no future
implementations should either), this commit removes the overlapping
Memory Descriptors code.
Use of the old ompi_free_list_t and ompi_free_list_item_t is
deprecated. These classes will be removed in a future commit.
This commit updates the entire code base to use opal_free_list_t and
opal_free_list_item_t.
Notes:
OMPI_FREE_LIST_*_MT -> opal_free_list_* (uses opal_using_threads ())
Signed-off-by: Nathan Hjelm <hjelmn@lanl.gov>
This commit adds an owner file in each of the component directories
for each framework. This allows for a simple script to parse
the contents of the files and generate, among other things, tables
to be used on the project's wiki page. Currently there are two
"fields" in the file, an owner and a status. A tool to parse
the files and generate tables for the wiki page will be added
in a subsequent commit.
WHAT: Open our low-level communication infrastructure by moving all necessary components (btl/rcache/allocator/mpool) down in OPAL
All the components required for inter-process communications are currently deeply integrated in the OMPI layer. Several groups/institutions have express interest in having a more generic communication infrastructure, without all the OMPI layer dependencies. This communication layer should be made available at a different software level, available to all layers in the Open MPI software stack. As an example, our ORTE layer could replace the current OOB and instead use the BTL directly, gaining access to more reactive network interfaces than TCP. Similarly, external software libraries could take advantage of our highly optimized AM (active message) communication layer for their own purpose. UTK with support from Sandia, developped a version of Open MPI where the entire communication infrastucture has been moved down to OPAL (btl/rcache/allocator/mpool). Most of the moved components have been updated to match the new schema, with few exceptions (mainly BTLs where I have no way of compiling/testing them). Thus, the completion of this RFC is tied to being able to completing this move for all BTLs. For this we need help from the rest of the Open MPI community, especially those supporting some of the BTLs. A non-exhaustive list of BTLs that qualify here is: mx, portals4, scif, udapl, ugni, usnic.
This commit was SVN r32317.
- Portals4/OSC was unable to acquire an exclusive lock due to an invalid
local address in the atomic operation. This caused the reported hang.
- After fixing the hang, the test continued to fail because
ompi_datatype_is_contiguous_memory_layout() reports that MPI_EMPTY (the
origin datatype) is noncontiguous and Portals4/OSC does not support
noncontiguous datatypes at this time. However, in this case the origin
count is zero so contiguous/noncontiguous is irrelevant. Now we skip
the contiguous check if the count is zero.
cmr=v1.8.3:reviewer=regrant:subject=Fix for "Portals4/MTL hangs in c_get_accumulate test"
This commit was SVN r32295.
The following Trac tickets were found above:
Ticket 4662 --> https://svn.open-mpi.org/trac/ompi/ticket/4662
cmr=v1.8.2:reviewer=tkordenbrock:subject=Portals4/MTL hanging fix
This commit was SVN r32113.
The following Trac tickets were found above:
Ticket 4681 --> https://svn.open-mpi.org/trac/ompi/ticket/4681
cmr=v1.8.2:reviewer=tkordenbrock:subject=Move r32112 to v1.8.2 branch
This commit was SVN r32112.
The following SVN revisions from the original message are invalid or
inconsistent and therefore were not cross-referenced:
r32112
The following Trac tickets were found above:
Ticket 4682 --> https://svn.open-mpi.org/trac/ompi/ticket/4682
Dave Goodell correctly pointed out that it is unusual to return MPI
error classes from internal ompi functions. Correct this in the RMA
case by adding an internal error code to match MPI_ERR_RMA_SYNC.
This does change OMPI_ERR_MAX. I don't think this will cause any
problems with ABI.
cmr=v1.7.5:reviewer=jsquyres
This commit was SVN r31012.