This commit decouples OMPI deployment from the version(s) of the lower
layers of the stack by probing for UDP support.
Verbs applications assume a 40-byte header (there is no current
mechanism for querying payload offset). So to support a 42-byte UDP
header without causing existing applications like ibv_ud_pingpong or
older versions of OMPI to crash, we must inform libusnic_verbs that we
are aware of the nonstandard payload offset. We do this by overriding
the `transport_type` field of the device to be 42 before calling
`ibv_open_device`. If the library resets it to something else, then we
know the lower layers are UDP capable. Otherwise we use the older
custom-L2 format.
This necessitated some minor ugliness in common_verbs, but it's as tidy
as Jeff and I know how to make it right now.
This commit only adds support for UDP headers and connectivity over the
same L2 network, it does not touch routing or interface pairing.
Reviewed-by: Jeff Squyres <jsquyres@cisco.com>
cmr=v1.7.5:ticket=trac:4253
This commit was SVN r30838.
The following Trac tickets were found above:
Ticket 4253 --> https://svn.open-mpi.org/trac/ompi/ticket/4253
The logic did not correctly perform the OR behavior that is described
in the doxy docs for this function. This commit fixes the logic so
that a port will be included if it has supports any of the
capabilities indicated by the passed-in flags.
Authored-by: Jeff Squyres <jsquyres@cisco.com>
Reviewed-by: Dave Goodell <dgoodell@cisco.com>
cmr=v1.7.5:ticket=trac:4253
This commit was SVN r30831.
The following Trac tickets were found above:
Ticket 4253 --> https://svn.open-mpi.org/trac/ompi/ticket/4253
1. Changed rng_buff_t --> opal_rng_buff_t
2. All global variables obey the prefix rule
3. Old code has been removed
4. Found a couple of unnecessary includes
Refs trac:4298
This commit was SVN r30807.
The following Trac tickets were found above:
Ticket 4298 --> https://svn.open-mpi.org/trac/ompi/ticket/4298
We're going to be bringing a bunch of usnic code to the SVN trunk
soon, and I basically brought this commit over out of order. So I'm
reverting it for now; the same functionality will come back shortly.
This commit was SVN r30805.
The following SVN revision numbers were found above:
r30804 --> open-mpi/ompi@5bedcc15bf
These constants are now upstream (see
https://git.kernel.org/cgit/libs/infiniband/libibverbs.git/commit/?id=f57a9c67eabb9e7f19c624ac3c8c27b7be55796c),
so let's support them properly in Open MPI.
Added bonus: consolidating these checks up in
ompi_check_openfabrics.m4 allowed removing some custom checks and
AC_DEFINE's from the usnic configure.m4 script.
Also change the usnic/configure.m4 check for IBV_EVENT_GID_CHANGE to
use AC_CHECK_DECLS (vs. AC_CHECK_DECL).
cmr=v1.7.5:reviewer=dgoodell
This commit was SVN r30804.
pkg{data,lib,includedir}, use our own ompi{data,lib,includedir}, which is
always set to {datadir,libdir,includedir}/openmpi. This will keep us from
having help files in prefix/share/open-rte when building without Open MPI,
but in prefix/share/openmpi when building with Open MPI.
This commit was SVN r30140.
To support the new mpool two changes were made to the mpool infrastructure:
1) Added an mpool flag to indicate that an mpool does not need the memory
hooks to use the leave pinned protocols. This flag is checked in the
mpool lookup.
2) Add a mpool context to the base registration. This new member is used
by the udreg mpool to store the udreg context associated with the
particular registration. The new member will not break the ABI
compatibility as the new member is only currently used by the udreg
mpool.
Dynamics support for Cray systems makes use of the global rank provided by
orte to give the ugni library a unique rank for each process. Dynamics
support is not available under direct-launch (srun.)
cmr=v1.7.4
This commit was SVN r29719.
http://www.open-mpi.org/community/lists/devel/2013/10/13072.php
Add support for pinning GPU Direct RDMA in openib BTL for better small message latency of GPU buffers.
Note that none of this is compiled in unless CUDA-aware support is requested.
This commit was SVN r29680.
Follow the convention established by the ompi/mca/common/sm tree and
prefix both the "install" and "no install" versions of the build with
"lib" so that Automake doesn't complain. Differentiate the two by
adding a "_noinst" suffix to the "no install" version.
This commit was SVN r29462.
The following common shared libraries did not have versioning:
* ompi/common/ofacm
* ompi/common/verbs
* ompi/common/ugni
Additionally, we still had shared library versions in VERSION for the
following libraries, which no longer exist:
* ompi/common/portals
* opal/common/hwloc
This commit was SVN r29421.
Turns out that AC_CHECK_DECLS is one of the "new style" Autoconf
macros that #defines the output to be 0 or 1 (vs. #define'ing or
#undef'ing it). So don't check for "#if defined(..."; just check for
"#if ...".
This commit was SVN r29059.
The following Trac tickets were found above:
Ticket 3730 --> https://svn.open-mpi.org/trac/ompi/ticket/3730
*** THIS RFC INCLUDES A MINOR CHANGE TO THE MPI-RTE INTERFACE ***
Note: during the course of this work, it was necessary to completely separate the MPI and RTE progress engines. There were multiple places in the MPI layer where ORTE_WAIT_FOR_COMPLETION was being used. A new OMPI_WAIT_FOR_COMPLETION macro was created (defined in ompi/mca/rte/rte.h) that simply cycles across opal_progress until the provided flag becomes false. Places where the MPI layer blocked waiting for RTE to complete an event have been modified to use this macro.
***************************************************************************************
I am reissuing this RFC because of the time that has passed since its original release. Since its initial release and review, I have debugged it further to ensure it fully supports tests like loop_spawn. It therefore seems ready for merge back to the trunk. Given its prior review, I have set the timeout for one week.
The code is in https://bitbucket.org/rhc/ompi-oob2
WHAT: Rewrite of ORTE OOB
WHY: Support asynchronous progress and a host of other features
WHEN: Wed, August 21
SYNOPSIS:
The current OOB has served us well, but a number of limitations have been identified over the years. Specifically:
* it is only progressed when called via opal_progress, which can lead to hangs or recursive calls into libevent (which is not supported by that code)
* we've had issues when multiple NICs are available as the code doesn't "shift" messages between transports - thus, all nodes had to be available via the same TCP interface.
* the OOB "unloads" incoming opal_buffer_t objects during the transmission, thus preventing use of OBJ_RETAIN in the code when repeatedly sending the same message to multiple recipients
* there is no failover mechanism across NICs - if the selected NIC (or its attached switch) fails, we are forced to abort
* only one transport (i.e., component) can be "active"
The revised OOB resolves these problems:
* async progress is used for all application processes, with the progress thread blocking in the event library
* each available TCP NIC is supported by its own TCP module. The ability to asynchronously progress each module independently is provided, but not enabled by default (a runtime MCA parameter turns it "on")
* multi-address TCP NICs (e.g., a NIC with both an IPv4 and IPv6 address, or with virtual interfaces) are supported - reachability is determined by comparing the contact info for a peer against all addresses within the range covered by the address/mask pairs for the NIC.
* a message that arrives on one TCP NIC is automatically shifted to whatever NIC that is connected to the next "hop" if that peer cannot be reached by the incoming NIC. If no TCP module will reach the peer, then the OOB attempts to send the message via all other available components - if none can reach the peer, then an "error" is reported back to the RML, which then calls the errmgr for instructions.
* opal_buffer_t now conforms to standard object rules re OBJ_RETAIN as we no longer "unload" the incoming object
* NIC failure is reported to the TCP component, which then tries to resend the message across any other available TCP NIC. If that doesn't work, then the message is given back to the OOB base to try using other components. If all that fails, then the error is reported to the RML, which reports to the errmgr for instructions
* obviously from the above, multiple OOB components (e.g., TCP and UD) can be active in parallel
* the matching code has been moved to the RML (and out of the OOB/TCP component) so it is independent of transport
* routing is done by the individual OOB modules (as opposed to the RML). Thus, both routed and non-routed transports can simultaneously be active
* all blocking send/recv APIs have been removed. Everything operates asynchronously.
KNOWN LIMITATIONS:
* although provision is made for component failover as described above, the code for doing so has not been fully implemented yet. At the moment, if all connections for a given peer fail, the errmgr is notified of a "lost connection", which by default results in termination of the job if it was a lifeline
* the IPv6 code is present and compiles, but is not complete. Since the current IPv6 support in the OOB doesn't work anyway, I don't consider this a blocker
* routing is performed at the individual module level, yet the active routed component is selected on a global basis. We probably should update that to reflect that different transports may need/choose to route in different ways
* obviously, not every error path has been tested nor necessarily covered
* determining abnormal termination is more challenging than in the old code as we now potentially have multiple ways of connecting to a process. Ideally, we would declare "connection failed" when *all* transports can no longer reach the process, but that requires some additional (possibly complex) code. For now, the code replicates the old behavior only somewhat modified - i.e., if a module sees its connection fail, it checks to see if it is a lifeline. If so, it notifies the errmgr that the lifeline is lost - otherwise, it notifies the errmgr that a non-lifeline connection was lost.
* reachability is determined solely on the basis of a shared subnet address/mask - more sophisticated algorithms (e.g., the one used in the tcp btl) are required to handle routing via gateways
* the RML needs to assign sequence numbers to each message on a per-peer basis. The receiving RML will then deliver messages in order, thus preventing out-of-order messaging in the case where messages travel across different transports or a message needs to be redirected/resent due to failure of a NIC
This commit was SVN r29058.
Commit r27211 added ifdef checks for #define
HAVE_IBV_LINK_LAYER_ETHERNET, which is incorrect. The correct #define
is HAVE_DECL_IBV_LINK_LAYER_ETHERNET. This broke OMPI over iWARP.
This fixes trac:3726 and should be added to cmr:v1.7.3:reviewer=jsquyres
This commit was SVN r29053.
The following SVN revision numbers were found above:
r27211 --> open-mpi/ompi@b27862e5c7
The following Trac tickets were found above:
Ticket 3726 --> https://svn.open-mpi.org/trac/ompi/ticket/3726
* add a new MCA param orte_hostname_cutoff to specify the number of nodes at which we stop including hostnames. This defaults to INT_MAX => always include hostnames. If a value is given, then we will include hostnames for any allocation smaller than the given limit.
* remove ompi_proc_get_hostname. Replace all occurrences with a direct link to ompi_proc_t's proc_hostname, protected by appropriate "if NULL"
* modify the OMPI-ORTE integration component so that any call to modex_recv automatically loads the ompi_proc_t->proc_hostname field as well as returning the requested info. Thus, any process whose modex info you retrieve will automatically receive the hostname. Note that on-demand retrieval is still enabled - i.e., if we are running under direct launch with PMI, the hostname will be fetched upon first call to modex_recv, and then the ompi_proc_t->proc_hostname field will be loaded
* removed a stale MCA param "mpi_keep_peer_hostnames" that was no longer used anywhere in the code base
* added an envar lookup in ess/pmi for the number of nodes in the allocation. Sadly, PMI itself doesn't provide that info, so we have to get it a different way. Currently, we support PBS-based systems and SLURM - for any other, rank0 will emit a warning and we assume max number of daemons so we will always retain hostnames
This commit was SVN r29052.
This creates a really bad scaling behavior. Users have found a nearly 20% launch time differential between mpirun and PMI, with PMI being the slower method. Some of the problem is attributable to poor exchange algorithms in RM's like Slurm and Alps, but we make things worse by calling "get" so many times.
Nathan (with a tad advice from me) has attempted to alleviate this problem by reducing the number of "get" calls. This required the following changes:
* upon first request for data, have the OPAL db pmi component fetch and decode *all* the info from a given remote proc. It turned out we weren't caching the info, so we would continually request it and only decode the piece we needed for the immediate request. We now decode all the info and push it into the db hash component for local storage - and then all subsequent retrievals are fulfilled locally
* reduced the amount of data by eliminating the exchange of the OMPI_ARCH value if heterogeneity is not enabled. This was used solely as a check so we would error out if the system wasn't actually homogeneous, which was fine when we thought there was no cost in doing the check. Unfortunately, at large scale and with direct launch, there is a non-zero cost of making this test. We are open to finding a compromise (perhaps turning the test off if requested?), if people feel strongly about performing the test
* reduced the amount of RTE data being automatically fetched, and fetched the rest only upon request. In particular, we no longer immediately fetch the hostname (which is only used for error reporting), but instead get it when needed. Likewise for the RML uri as that info is only required for some (not all) environments. In addition, we no longer fetch the locality unless required, relying instead on the PMI clique info to tell us who is on our local node (if additional info is required, the fetch is performed when a modex_recv is issued).
Again, all this only impacts direct launch - all the info is provided when launched via mpirun as there is no added cost to getting it
Barring objections, we may move this (plus any required other pieces) to the 1.7 branch once it soaks for an appropriate time.
This commit was SVN r29040.