Follow the convention established by the ompi/mca/common/sm tree and
prefix both the "install" and "no install" versions of the build with
"lib" so that Automake doesn't complain. Differentiate the two by
adding a "_noinst" suffix to the "no install" version.
This commit was SVN r29462.
The following common shared libraries did not have versioning:
* ompi/common/ofacm
* ompi/common/verbs
* ompi/common/ugni
Additionally, we still had shared library versions in VERSION for the
following libraries, which no longer exist:
* ompi/common/portals
* opal/common/hwloc
This commit was SVN r29421.
Turns out that AC_CHECK_DECLS is one of the "new style" Autoconf
macros that #defines the output to be 0 or 1 (vs. #define'ing or
#undef'ing it). So don't check for "#if defined(..."; just check for
"#if ...".
This commit was SVN r29059.
The following Trac tickets were found above:
Ticket 3730 --> https://svn.open-mpi.org/trac/ompi/ticket/3730
*** THIS RFC INCLUDES A MINOR CHANGE TO THE MPI-RTE INTERFACE ***
Note: during the course of this work, it was necessary to completely separate the MPI and RTE progress engines. There were multiple places in the MPI layer where ORTE_WAIT_FOR_COMPLETION was being used. A new OMPI_WAIT_FOR_COMPLETION macro was created (defined in ompi/mca/rte/rte.h) that simply cycles across opal_progress until the provided flag becomes false. Places where the MPI layer blocked waiting for RTE to complete an event have been modified to use this macro.
***************************************************************************************
I am reissuing this RFC because of the time that has passed since its original release. Since its initial release and review, I have debugged it further to ensure it fully supports tests like loop_spawn. It therefore seems ready for merge back to the trunk. Given its prior review, I have set the timeout for one week.
The code is in https://bitbucket.org/rhc/ompi-oob2
WHAT: Rewrite of ORTE OOB
WHY: Support asynchronous progress and a host of other features
WHEN: Wed, August 21
SYNOPSIS:
The current OOB has served us well, but a number of limitations have been identified over the years. Specifically:
* it is only progressed when called via opal_progress, which can lead to hangs or recursive calls into libevent (which is not supported by that code)
* we've had issues when multiple NICs are available as the code doesn't "shift" messages between transports - thus, all nodes had to be available via the same TCP interface.
* the OOB "unloads" incoming opal_buffer_t objects during the transmission, thus preventing use of OBJ_RETAIN in the code when repeatedly sending the same message to multiple recipients
* there is no failover mechanism across NICs - if the selected NIC (or its attached switch) fails, we are forced to abort
* only one transport (i.e., component) can be "active"
The revised OOB resolves these problems:
* async progress is used for all application processes, with the progress thread blocking in the event library
* each available TCP NIC is supported by its own TCP module. The ability to asynchronously progress each module independently is provided, but not enabled by default (a runtime MCA parameter turns it "on")
* multi-address TCP NICs (e.g., a NIC with both an IPv4 and IPv6 address, or with virtual interfaces) are supported - reachability is determined by comparing the contact info for a peer against all addresses within the range covered by the address/mask pairs for the NIC.
* a message that arrives on one TCP NIC is automatically shifted to whatever NIC that is connected to the next "hop" if that peer cannot be reached by the incoming NIC. If no TCP module will reach the peer, then the OOB attempts to send the message via all other available components - if none can reach the peer, then an "error" is reported back to the RML, which then calls the errmgr for instructions.
* opal_buffer_t now conforms to standard object rules re OBJ_RETAIN as we no longer "unload" the incoming object
* NIC failure is reported to the TCP component, which then tries to resend the message across any other available TCP NIC. If that doesn't work, then the message is given back to the OOB base to try using other components. If all that fails, then the error is reported to the RML, which reports to the errmgr for instructions
* obviously from the above, multiple OOB components (e.g., TCP and UD) can be active in parallel
* the matching code has been moved to the RML (and out of the OOB/TCP component) so it is independent of transport
* routing is done by the individual OOB modules (as opposed to the RML). Thus, both routed and non-routed transports can simultaneously be active
* all blocking send/recv APIs have been removed. Everything operates asynchronously.
KNOWN LIMITATIONS:
* although provision is made for component failover as described above, the code for doing so has not been fully implemented yet. At the moment, if all connections for a given peer fail, the errmgr is notified of a "lost connection", which by default results in termination of the job if it was a lifeline
* the IPv6 code is present and compiles, but is not complete. Since the current IPv6 support in the OOB doesn't work anyway, I don't consider this a blocker
* routing is performed at the individual module level, yet the active routed component is selected on a global basis. We probably should update that to reflect that different transports may need/choose to route in different ways
* obviously, not every error path has been tested nor necessarily covered
* determining abnormal termination is more challenging than in the old code as we now potentially have multiple ways of connecting to a process. Ideally, we would declare "connection failed" when *all* transports can no longer reach the process, but that requires some additional (possibly complex) code. For now, the code replicates the old behavior only somewhat modified - i.e., if a module sees its connection fail, it checks to see if it is a lifeline. If so, it notifies the errmgr that the lifeline is lost - otherwise, it notifies the errmgr that a non-lifeline connection was lost.
* reachability is determined solely on the basis of a shared subnet address/mask - more sophisticated algorithms (e.g., the one used in the tcp btl) are required to handle routing via gateways
* the RML needs to assign sequence numbers to each message on a per-peer basis. The receiving RML will then deliver messages in order, thus preventing out-of-order messaging in the case where messages travel across different transports or a message needs to be redirected/resent due to failure of a NIC
This commit was SVN r29058.
Commit r27211 added ifdef checks for #define
HAVE_IBV_LINK_LAYER_ETHERNET, which is incorrect. The correct #define
is HAVE_DECL_IBV_LINK_LAYER_ETHERNET. This broke OMPI over iWARP.
This fixes trac:3726 and should be added to cmr:v1.7.3:reviewer=jsquyres
This commit was SVN r29053.
The following SVN revision numbers were found above:
r27211 --> open-mpi/ompi@b27862e5c7
The following Trac tickets were found above:
Ticket 3726 --> https://svn.open-mpi.org/trac/ompi/ticket/3726
* add a new MCA param orte_hostname_cutoff to specify the number of nodes at which we stop including hostnames. This defaults to INT_MAX => always include hostnames. If a value is given, then we will include hostnames for any allocation smaller than the given limit.
* remove ompi_proc_get_hostname. Replace all occurrences with a direct link to ompi_proc_t's proc_hostname, protected by appropriate "if NULL"
* modify the OMPI-ORTE integration component so that any call to modex_recv automatically loads the ompi_proc_t->proc_hostname field as well as returning the requested info. Thus, any process whose modex info you retrieve will automatically receive the hostname. Note that on-demand retrieval is still enabled - i.e., if we are running under direct launch with PMI, the hostname will be fetched upon first call to modex_recv, and then the ompi_proc_t->proc_hostname field will be loaded
* removed a stale MCA param "mpi_keep_peer_hostnames" that was no longer used anywhere in the code base
* added an envar lookup in ess/pmi for the number of nodes in the allocation. Sadly, PMI itself doesn't provide that info, so we have to get it a different way. Currently, we support PBS-based systems and SLURM - for any other, rank0 will emit a warning and we assume max number of daemons so we will always retain hostnames
This commit was SVN r29052.
This creates a really bad scaling behavior. Users have found a nearly 20% launch time differential between mpirun and PMI, with PMI being the slower method. Some of the problem is attributable to poor exchange algorithms in RM's like Slurm and Alps, but we make things worse by calling "get" so many times.
Nathan (with a tad advice from me) has attempted to alleviate this problem by reducing the number of "get" calls. This required the following changes:
* upon first request for data, have the OPAL db pmi component fetch and decode *all* the info from a given remote proc. It turned out we weren't caching the info, so we would continually request it and only decode the piece we needed for the immediate request. We now decode all the info and push it into the db hash component for local storage - and then all subsequent retrievals are fulfilled locally
* reduced the amount of data by eliminating the exchange of the OMPI_ARCH value if heterogeneity is not enabled. This was used solely as a check so we would error out if the system wasn't actually homogeneous, which was fine when we thought there was no cost in doing the check. Unfortunately, at large scale and with direct launch, there is a non-zero cost of making this test. We are open to finding a compromise (perhaps turning the test off if requested?), if people feel strongly about performing the test
* reduced the amount of RTE data being automatically fetched, and fetched the rest only upon request. In particular, we no longer immediately fetch the hostname (which is only used for error reporting), but instead get it when needed. Likewise for the RML uri as that info is only required for some (not all) environments. In addition, we no longer fetch the locality unless required, relying instead on the PMI clique info to tell us who is on our local node (if additional info is required, the fetch is performed when a modex_recv is issued).
Again, all this only impacts direct launch - all the info is provided when launched via mpirun as there is no added cost to getting it
Barring objections, we may move this (plus any required other pieces) to the 1.7 branch once it soaks for an appropriate time.
This commit was SVN r29040.
Features:
- Support for an override parameter file (openmpi-mca-param-override.conf).
Variable values in this file can not be overridden by any file or environment
value.
- Support for boolean, unsigned, and unsigned long long variables.
- Support for true/false values.
- Support for enumerations on integer variables.
- Support for MPIT scope, verbosity, and binding.
- Support for command line source.
- Support for setting variable source via the environment using
OMPI_MCA_SOURCE_<var name>=source (either command or file:filename)
- Cleaner API.
- Support for variable groups (equivalent to MPIT categories).
Notes:
- Variables must be created with a backing store (char **, int *, or bool *)
that must live at least as long as the variable.
- Creating a variable with the MCA_BASE_VAR_FLAG_SETTABLE enables the use of
mca_base_var_set_value() to change the value.
- String values are duplicated when the variable is registered. It is up to
the caller to free the original value if necessary. The new value will be
freed by the mca_base_var system and must not be freed by the user.
- Variables with constant scope may not be settable.
- Variable groups (and all associated variables) are deregistered when the
component is closed or the component repository item is freed. This
prevents a segmentation fault from accessing a variable after its component
is unloaded.
- After some discussion we decided we should remove the automatic registration
of component priority variables. Few component actually made use of this
feature.
- The enumerator interface was updated to be general enough to handle
future uses of the interface.
- The code to generate ompi_info output has been moved into the MCA variable
system. See mca_base_var_dump().
opal: update core and components to mca_base_var system
orte: update core and components to mca_base_var system
ompi: update core and components to mca_base_var system
This commit also modifies the rmaps framework. The following variables were
moved from ppr and lama: rmaps_base_pernode, rmaps_base_n_pernode,
rmaps_base_n_persocket. Both lama and ppr create synonyms for these variables.
This commit was SVN r28236.
ompi_show_help, because opal_show_help is replaced with an
aggregating version when using ORTE, so there's no reason to
directly call orte_show_help.
This commit was SVN r28051.
flags, and mca flags are kept seperate until the very end. The main configure
wrapper flags should now be modified by using the OPAL_WRAPPER_FLAGS_ADD
macro. MCA components should either let <framework>_<component>_{LIBS,LDFLAGS}
be copied over OR set <framework>_<component>_WRAPPER_EXTRA_{LIBS,LDFLAGS}.
The situations in which WRAPPER CPPFLAGS can be set by MCA components was
made very small to match the one use case where it makes sense.
This commit was SVN r27950.
using the modex or RML to share sm initialization information, have node rank 0
create a file containing initialization information in a well-known place. Then
during add_procs, the rest of the node processes requiring sm BTL initialization
will just read from that file to complete their initialization.
This commit was SVN r27789.