Official tarball pcre-8.45.tar.gz

This commit is contained in:
commit 0c5004f693
368 changed files with 302041 additions and 0 deletions

313
132html Executable file
View File

@ -0,0 +1,313 @@
#! /usr/bin/perl -w
# Script to turn PCRE man pages into HTML
# Subroutine to handle font changes and other escapes
sub do_line {
my($s) = $_[0];
$s =~ s/</&#60;/g; # Deal with < and >
$s =~ s/>/&#62;/g;
$s =~ s"\\fI(.*?)\\f[RP]"<i>$1</i>"g;
$s =~ s"\\fB(.*?)\\f[RP]"<b>$1</b>"g;
$s =~ s"\\e"\\"g;
$s =~ s/(?<=Copyright )\(c\)/&copy;/g;
$s;
}
# Subroutine to ensure not in a paragraph
sub end_para {
if ($inpara)
{
print TEMP "</PRE>\n" if ($inpre);
print TEMP "</P>\n";
}
$inpara = $inpre = 0;
$wrotetext = 0;
}
# Subroutine to start a new paragraph
sub new_para {
&end_para();
print TEMP "<P>\n";
$inpara = 1;
}
# Main program
$innf = 0;
$inpara = 0;
$inpre = 0;
$wrotetext = 0;
$toc = 0;
$ref = 1;
while ($#ARGV >= 0 && $ARGV[0] =~ /^-/)
{
$toc = 1 if $ARGV[0] eq "-toc";
shift;
}
# Initial output to STDOUT
print <<End ;
<html>
<head>
<title>$ARGV[0] specification</title>
</head>
<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
<h1>$ARGV[0] man page</h1>
<p>
Return to the <a href="index.html">PCRE index page</a>.
</p>
<p>
This page is part of the PCRE HTML documentation. It was generated automatically
from the original man page. If there is any nonsense in it, please consult the
man page, in case the conversion went wrong.
<br>
End
print "<ul>\n" if ($toc);
open(TEMP, ">/tmp/$$") || die "Can't open /tmp/$$ for output\n";
while (<STDIN>)
{
# Handle lines beginning with a dot
if (/^\./)
{
# Some of the PCRE man pages used to contain instances of .br. However,
# they should have all been removed because they cause trouble in some
# (other) automated systems that translate man pages to HTML. Complain if
# we find .br or .in (another macro that is deprecated).
if (/^\.br/ || /^\.in/)
{
print STDERR "\n*** Deprecated macro encountered - rewrite needed\n";
print STDERR "*** $_\n";
die "*** Processing abandoned\n";
}
# Instead of .br, relevent "literal" sections are enclosed in .nf/.fi.
elsif (/^\.nf/)
{
$innf = 1;
}
elsif (/^\.fi/)
{
$innf = 0;
}
# Handling .sp is subtle. If it is inside a literal section, do nothing if
# the next line is a non literal text line; similarly, if not inside a
# literal section, do nothing if a literal follows, unless we are inside
# a .nf/.ne section. The point being that the <pre> and </pre> that delimit
# literal sections will do the spacing. Always skip if no previous output.
elsif (/^\.sp/)
{
if ($wrotetext)
{
$_ = <STDIN>;
if ($inpre)
{
print TEMP "\n" if (/^[\s.]/);
}
else
{
print TEMP "<br>\n<br>\n" if ($innf || !/^[\s.]/);
}
redo; # Now process the lookahead line we just read
}
}
elsif (/^\.TP/ || /^\.PP/ || /^\.P/)
{
&new_para();
}
elsif (/^\.SH\s*("?)(.*)\1/)
{
# Ignore the NAME section
if ($2 =~ /^NAME\b/)
{
<STDIN>;
next;
}
&end_para();
my($title) = &do_line($2);
if ($toc)
{
printf("<li><a name=\"TOC%d\" href=\"#SEC%d\">$title</a>\n",
$ref, $ref);
printf TEMP ("<br><a name=\"SEC%d\" href=\"#TOC1\">$title</a><br>\n",
$ref);
$ref++;
}
else
{
print TEMP "<br><b>\n$title\n</b><br>\n";
}
}
elsif (/^\.SS\s*("?)(.*)\1/)
{
&end_para();
my($title) = &do_line($2);
print TEMP "<br><b>\n$title\n</b><br>\n";
}
elsif (/^\.B\s*(.*)/)
{
&new_para() if (!$inpara);
$_ = &do_line($1);
s/"(.*?)"/$1/g;
print TEMP "<b>$_</b>\n";
$wrotetext = 1;
}
elsif (/^\.I\s*(.*)/)
{
&new_para() if (!$inpara);
$_ = &do_line($1);
s/"(.*?)"/$1/g;
print TEMP "<i>$_</i>\n";
$wrotetext = 1;
}
# A comment that starts "HREF" takes the next line as a name that
# is turned into a hyperlink, using the text given, which might be
# in a special font. If it ends in () or (digits) or punctuation, they
# aren't part of the link.
elsif (/^\.\\"\s*HREF/)
{
$_=<STDIN>;
chomp;
$_ = &do_line($_);
$_ =~ s/\s+$//;
$_ =~ /^(?:<.>)?([^<(]+)(?:\(\))?(?:<\/.>)?(?:\(\d+\))?[.,;:]?$/;
print TEMP "<a href=\"$1.html\">$_</a>\n";
}
# A comment that starts "HTML" inserts literal HTML
elsif (/^\.\\"\s*HTML\s*(.*)/)
{
print TEMP $1;
}
# A comment that starts < inserts that HTML at the end of the
# *next* input line - so as not to get a newline between them.
elsif (/^\.\\"\s*(<.*>)/)
{
my($markup) = $1;
$_=<STDIN>;
chomp;
$_ = &do_line($_);
$_ =~ s/\s+$//;
print TEMP "$_$markup\n";
}
# A comment that starts JOIN joins the next two lines together, with one
# space between them. Then that line is processed. This is used in some
# displays where two lines are needed for the "man" version. JOINSH works
# the same, except that it assumes this is a shell command, so removes
# continuation backslashes.
elsif (/^\.\\"\s*JOIN(SH)?/)
{
my($one,$two);
$one = <STDIN>;
$two = <STDIN>;
$one =~ s/\s*\\e\s*$// if (defined($1));
chomp($one);
$two =~ s/^\s+//;
$_ = "$one $two";
redo; # Process the joined lines
}
# .EX/.EE are used in the pcredemo page to bracket the entire program,
# which is unmodified except for turning backslash into "\e".
elsif (/^\.EX\s*$/)
{
print TEMP "<PRE>\n";
while (<STDIN>)
{
last if /^\.EE\s*$/;
s/\\e/\\/g;
s/&/&amp;/g;
s/</&lt;/g;
s/>/&gt;/g;
print TEMP;
}
}
# Ignore anything not recognized
next;
}
# Line does not begin with a dot. Replace blank lines with new paragraphs
if (/^\s*$/)
{
&end_para() if ($wrotetext);
next;
}
# Convert fonts changes and output an ordinary line. Ensure that indented
# lines are marked as literal.
$_ = &do_line($_);
&new_para() if (!$inpara);
if (/^\s/)
{
if (!$inpre)
{
print TEMP "<pre>\n";
$inpre = 1;
}
}
elsif ($inpre)
{
print TEMP "</pre>\n";
$inpre = 0;
}
# Add <br> to the end of a non-literal line if we are within .nf/.fi
$_ .= "<br>\n" if (!$inpre && $innf);
print TEMP;
$wrotetext = 1;
}
# The TOC, if present, will have been written - terminate it
print "</ul>\n" if ($toc);
# Copy the remainder to the standard output
close(TEMP);
open(TEMP, "/tmp/$$") || die "Can't open /tmp/$$ for input\n";
print while (<TEMP>);
print <<End ;
<p>
Return to the <a href="index.html">PCRE index page</a>.
</p>
End
close(TEMP);
unlink("/tmp/$$");
# End

45
AUTHORS Normal file
View File

@ -0,0 +1,45 @@
THE MAIN PCRE LIBRARY
---------------------
Written by: Philip Hazel
Email local part: Philip.Hazel
Email domain: gmail.com
University of Cambridge Computing Service,
Cambridge, England.
Copyright (c) 1997-2021 University of Cambridge
All rights reserved
PCRE JUST-IN-TIME COMPILATION SUPPORT
-------------------------------------
Written by: Zoltan Herczeg
Email local part: hzmester
Emain domain: freemail.hu
Copyright(c) 2010-2021 Zoltan Herczeg
All rights reserved.
STACK-LESS JUST-IN-TIME COMPILER
--------------------------------
Written by: Zoltan Herczeg
Email local part: hzmester
Emain domain: freemail.hu
Copyright(c) 2009-2021 Zoltan Herczeg
All rights reserved.
THE C++ WRAPPER LIBRARY
-----------------------
Written by: Google Inc.
Copyright (c) 2007-2012 Google Inc
All rights reserved
####

1067
CMakeLists.txt Normal file

File diff suppressed because it is too large Load Diff

5
COPYING Normal file
View File

@ -0,0 +1,5 @@
PCRE LICENCE
Please see the file LICENCE in the PCRE distribution for licensing details.
End

6246
ChangeLog Normal file

File diff suppressed because it is too large Load Diff

67
CheckMan Executable file
View File

@ -0,0 +1,67 @@
#! /usr/bin/perl
# A script to scan PCRE's man pages to check for typos in the control
# sequences. I use only a small set of the available repertoire, so it is
# straightforward to check that nothing else has slipped in by mistake. This
# script should be called in the doc directory.
$yield = 0;
while (scalar(@ARGV) > 0)
{
$line = 0;
$file = shift @ARGV;
open (IN, $file) || die "Failed to open $file\n";
while (<IN>)
{
$line++;
if (/^\s*$/)
{
printf "Empty line $line of $file\n";
$yield = 1;
}
elsif (/^\./)
{
if (!/^\.\s*$|
^\.B\s+\S|
^\.TH\s\S|
^\.SH\s\S|
^\.SS\s\S|
^\.TP(?:\s?\d+)?\s*$|
^\.SM\s*$|
^\.br\s*$|
^\.rs\s*$|
^\.sp\s*$|
^\.nf\s*$|
^\.fi\s*$|
^\.P\s*$|
^\.PP\s*$|
^\.\\"(?:\ HREF)?\s*$|
^\.\\"\sHTML\s<a\shref="[^"]+?">\s*$|
^\.\\"\sHTML\s<a\sname="[^"]+?"><\/a>\s*$|
^\.\\"\s<\/a>\s*$|
^\.\\"\sJOINSH\s*$|
^\.\\"\sJOIN\s*$/x
)
{
printf "Bad control line $line of $file\n";
$yield = 1;
}
}
else
{
if (/\\[^ef]|\\f[^IBP]/)
{
printf "Bad backslash in line $line of $file\n";
$yield = 1;
}
}
}
close(IN);
}
exit $yield;
# End

113
CleanTxt Executable file
View File

@ -0,0 +1,113 @@
#! /usr/bin/perl -w
# Script to take the output of nroff -man and remove all the backspacing and
# the page footers and the screen commands etc so that it is more usefully
# readable online. In fact, in the latest nroff, intermediate footers don't
# seem to be generated any more.
$blankcount = 0;
$lastwascut = 0;
$firstheader = 1;
# Input on STDIN; output to STDOUT.
while (<STDIN>)
{
s/\x1b\[\d+m//g; # Remove screen controls "ESC [ number m"
s/.\x8//g; # Remove "char, backspace"
# Handle header lines. Retain only the first one we encounter, but remove
# the blank line that follows. Any others (e.g. at end of document) and the
# following blank line are dropped.
if (/^PCRE(\w*)\(([13])\)\s+PCRE\1\(\2\)$/)
{
if ($firstheader)
{
$firstheader = 0;
print;
$lastprinted = $_;
$lastwascut = 0;
}
$_=<STDIN>; # Remove a blank that follows
next;
}
# Count runs of empty lines
if (/^\s*$/)
{
$blankcount++;
$lastwascut = 0;
next;
}
# If a chunk of lines has been cut out (page footer) and the next line
# has a different indentation, put back one blank line.
if ($lastwascut && $blankcount < 1 && defined($lastprinted))
{
($a) = $lastprinted =~ /^(\s*)/;
($b) = $_ =~ /^(\s*)/;
$blankcount++ if ($a ne $b);
}
# We get here only when we have a non-blank line in hand. If it was preceded
# by 3 or more blank lines, read the next 3 lines and see if they are blank.
# If so, remove all 7 lines, and remember that we have just done a cut.
if ($blankcount >= 3)
{
for ($i = 0; $i < 3; $i++)
{
$next[$i] = <STDIN>;
$next[$i] = "" if !defined $next[$i];
$next[$i] =~ s/\x1b\[\d+m//g; # Remove screen controls "ESC [ number m"
$next[$i] =~ s/.\x8//g; # Remove "char, backspace"
}
# Cut out chunks of the form <3 blanks><non-blank><3 blanks>
if ($next[0] =~ /^\s*$/ &&
$next[1] =~ /^\s*$/ &&
$next[2] =~ /^\s*$/)
{
$blankcount -= 3;
$lastwascut = 1;
}
# Otherwise output the saved blanks, the current, and the next three
# lines. Remember the last printed line.
else
{
for ($i = 0; $i < $blankcount; $i++) { print "\n"; }
print;
for ($i = 0; $i < 3; $i++)
{
$next[$i] =~ s/.\x8//g;
print $next[$i];
$lastprinted = $_;
}
$lastwascut = 0;
$blankcount = 0;
}
}
# This non-blank line is not preceded by 3 or more blank lines. Output
# any blanks there are, and the line. Remember it. Force two blank lines
# before headings.
else
{
$blankcount = 2 if /^\S/ && !/^Last updated/ && !/^Copyright/ &&
defined($lastprinted);
for ($i = 0; $i < $blankcount; $i++) { print "\n"; }
print;
$lastprinted = $_;
$lastwascut = 0;
$blankcount = 0;
}
}
# End

35
Detrail Executable file
View File

@ -0,0 +1,35 @@
#!/usr/bin/perl
# This is a script for removing trailing whitespace from lines in files that
# are listed on the command line.
# This subroutine does the work for one file.
sub detrail {
my($file) = $_[0];
my($changed) = 0;
open(IN, "$file") || die "Can't open $file for input";
@lines = <IN>;
close(IN);
foreach (@lines)
{
if (/\s+\n$/)
{
s/\s+\n$/\n/;
$changed = 1;
}
}
if ($changed)
{
open(OUT, ">$file") || die "Can't open $file for output";
print OUT @lines;
close(OUT);
}
}
# This is the main program
$, = ""; # Output field separator
for ($i = 0; $i < @ARGV; $i++) { &detrail($ARGV[$i]); }
# End

528
HACKING Normal file
View File

@ -0,0 +1,528 @@
Technical Notes about PCRE
--------------------------
These are very rough technical notes that record potentially useful information
about PCRE internals. For information about testing PCRE, see the pcretest
documentation and the comment at the head of the RunTest file.
Historical note 1
-----------------
Many years ago I implemented some regular expression functions to an algorithm
suggested by Martin Richards. These were not Unix-like in form, and were quite
restricted in what they could do by comparison with Perl. The interesting part
about the algorithm was that the amount of space required to hold the compiled
form of an expression was known in advance. The code to apply an expression did
not operate by backtracking, as the original Henry Spencer code and current
Perl code does, but instead checked all possibilities simultaneously by keeping
a list of current states and checking all of them as it advanced through the
subject string. In the terminology of Jeffrey Friedl's book, it was a "DFA
algorithm", though it was not a traditional Finite State Machine (FSM). When
the pattern was all used up, all remaining states were possible matches, and
the one matching the longest subset of the subject string was chosen. This did
not necessarily maximize the individual wild portions of the pattern, as is
expected in Unix and Perl-style regular expressions.
Historical note 2
-----------------
By contrast, the code originally written by Henry Spencer (which was
subsequently heavily modified for Perl) compiles the expression twice: once in
a dummy mode in order to find out how much store will be needed, and then for
real. (The Perl version probably doesn't do this any more; I'm talking about
the original library.) The execution function operates by backtracking and
maximizing (or, optionally, minimizing in Perl) the amount of the subject that
matches individual wild portions of the pattern. This is an "NFA algorithm" in
Friedl's terminology.
OK, here's the real stuff
-------------------------
For the set of functions that form the "basic" PCRE library (which are
unrelated to those mentioned above), I tried at first to invent an algorithm
that used an amount of store bounded by a multiple of the number of characters
in the pattern, to save on compiling time. However, because of the greater
complexity in Perl regular expressions, I couldn't do this. In any case, a
first pass through the pattern is helpful for other reasons.
Support for 16-bit and 32-bit data strings
-------------------------------------------
From release 8.30, PCRE supports 16-bit as well as 8-bit data strings; and from
release 8.32, PCRE supports 32-bit data strings. The library can be compiled
in any combination of 8-bit, 16-bit or 32-bit modes, creating up to three
different libraries. In the description that follows, the word "short" is used
for a 16-bit data quantity, and the word "unit" is used for a quantity that is
a byte in 8-bit mode, a short in 16-bit mode and a 32-bit word in 32-bit mode.
However, so as not to over-complicate the text, the names of PCRE functions are
given in 8-bit form only.
Computing the memory requirement: how it was
--------------------------------------------
Up to and including release 6.7, PCRE worked by running a very degenerate first
pass to calculate a maximum store size, and then a second pass to do the real
compile - which might use a bit less than the predicted amount of memory. The
idea was that this would turn out faster than the Henry Spencer code because
the first pass is degenerate and the second pass can just store stuff straight
into the vector, which it knows is big enough.
Computing the memory requirement: how it is
-------------------------------------------
By the time I was working on a potential 6.8 release, the degenerate first pass
had become very complicated and hard to maintain. Indeed one of the early
things I did for 6.8 was to fix Yet Another Bug in the memory computation. Then
I had a flash of inspiration as to how I could run the real compile function in
a "fake" mode that enables it to compute how much memory it would need, while
actually only ever using a few hundred bytes of working memory, and without too
many tests of the mode that might slow it down. So I refactored the compiling
functions to work this way. This got rid of about 600 lines of source. It
should make future maintenance and development easier. As this was such a major
change, I never released 6.8, instead upping the number to 7.0 (other quite
major changes were also present in the 7.0 release).
A side effect of this work was that the previous limit of 200 on the nesting
depth of parentheses was removed. However, there is a downside: pcre_compile()
runs more slowly than before (30% or more, depending on the pattern) because it
is doing a full analysis of the pattern. My hope was that this would not be a
big issue, and in the event, nobody has commented on it.
At release 8.34, a limit on the nesting depth of parentheses was re-introduced
(default 250, settable at build time) so as to put a limit on the amount of
system stack used by pcre_compile(). This is a safety feature for environments
with small stacks where the patterns are provided by users.
Traditional matching function
-----------------------------
The "traditional", and original, matching function is called pcre_exec(), and
it implements an NFA algorithm, similar to the original Henry Spencer algorithm
and the way that Perl works. This is not surprising, since it is intended to be
as compatible with Perl as possible. This is the function most users of PCRE
will use most of the time. From release 8.20, if PCRE is compiled with
just-in-time (JIT) support, and studying a compiled pattern with JIT is
successful, the JIT code is run instead of the normal pcre_exec() code, but the
result is the same.
Supplementary matching function
-------------------------------
From PCRE 6.0, there is also a supplementary matching function called
pcre_dfa_exec(). This implements a DFA matching algorithm that searches
simultaneously for all possible matches that start at one point in the subject
string. (Going back to my roots: see Historical Note 1 above.) This function
intreprets the same compiled pattern data as pcre_exec(); however, not all the
facilities are available, and those that are do not always work in quite the
same way. See the user documentation for details.
The algorithm that is used for pcre_dfa_exec() is not a traditional FSM,
because it may have a number of states active at one time. More work would be
needed at compile time to produce a traditional FSM where only one state is
ever active at once. I believe some other regex matchers work this way. JIT
support is not available for this kind of matching.
Changeable options
------------------
The /i, /m, or /s options (PCRE_CASELESS, PCRE_MULTILINE, PCRE_DOTALL, and some
others) may change in the middle of patterns. From PCRE 8.13, their processing
is handled entirely at compile time by generating different opcodes for the
different settings. The runtime functions do not need to keep track of an
options state any more.
Format of compiled patterns
---------------------------
The compiled form of a pattern is a vector of unsigned units (bytes in 8-bit
mode, shorts in 16-bit mode, 32-bit words in 32-bit mode), containing items of
variable length. The first unit in an item contains an opcode, and the length
of the item is either implicit in the opcode or contained in the data that
follows it.
In many cases listed below, LINK_SIZE data values are specified for offsets
within the compiled pattern. LINK_SIZE always specifies a number of bytes. The
default value for LINK_SIZE is 2, but PCRE can be compiled to use 3-byte or
4-byte values for these offsets, although this impairs the performance. (3-byte
LINK_SIZE values are available only in 8-bit mode.) Specifing a LINK_SIZE
larger than 2 is necessary only when patterns whose compiled length is greater
than 64K are going to be processed. In this description, we assume the "normal"
compilation options. Data values that are counts (e.g. quantifiers) are two
bytes long in 8-bit mode (most significant byte first), or one unit in 16-bit
and 32-bit modes.
Opcodes with no following data
------------------------------
These items are all just one unit long
OP_END end of pattern
OP_ANY match any one character other than newline
OP_ALLANY match any one character, including newline
OP_ANYBYTE match any single unit, even in UTF-8/16 mode
OP_SOD match start of data: \A
OP_SOM, start of match (subject + offset): \G
OP_SET_SOM, set start of match (\K)
OP_CIRC ^ (start of data)
OP_CIRCM ^ multiline mode (start of data or after newline)
OP_NOT_WORD_BOUNDARY \W
OP_WORD_BOUNDARY \w
OP_NOT_DIGIT \D
OP_DIGIT \d
OP_NOT_HSPACE \H
OP_HSPACE \h
OP_NOT_WHITESPACE \S
OP_WHITESPACE \s
OP_NOT_VSPACE \V
OP_VSPACE \v
OP_NOT_WORDCHAR \W
OP_WORDCHAR \w
OP_EODN match end of data or newline at end: \Z
OP_EOD match end of data: \z
OP_DOLL $ (end of data, or before final newline)
OP_DOLLM $ multiline mode (end of data or before newline)
OP_EXTUNI match an extended Unicode grapheme cluster
OP_ANYNL match any Unicode newline sequence
OP_ASSERT_ACCEPT )
OP_ACCEPT ) These are Perl 5.10's "backtracking control
OP_COMMIT ) verbs". If OP_ACCEPT is inside capturing
OP_FAIL ) parentheses, it may be preceded by one or more
OP_PRUNE ) OP_CLOSE, each followed by a count that
OP_SKIP ) indicates which parentheses must be closed.
OP_THEN )
OP_ASSERT_ACCEPT is used when (*ACCEPT) is encountered within an assertion.
This ends the assertion, not the entire pattern match.
Backtracking control verbs with optional data
---------------------------------------------
(*THEN) without an argument generates the opcode OP_THEN and no following data.
OP_MARK is followed by the mark name, preceded by a one-unit length, and
followed by a binary zero. For (*PRUNE), (*SKIP), and (*THEN) with arguments,
the opcodes OP_PRUNE_ARG, OP_SKIP_ARG, and OP_THEN_ARG are used, with the name
following in the same format as OP_MARK.
Matching literal characters
---------------------------
The OP_CHAR opcode is followed by a single character that is to be matched
casefully. For caseless matching, OP_CHARI is used. In UTF-8 or UTF-16 modes,
the character may be more than one unit long. In UTF-32 mode, characters
are always exactly one unit long.
If there is only one character in a character class, OP_CHAR or OP_CHARI is
used for a positive class, and OP_NOT or OP_NOTI for a negative one (that is,
for something like [^a]).
Repeating single characters
---------------------------
The common repeats (*, +, ?), when applied to a single character, use the
following opcodes, which come in caseful and caseless versions:
Caseful Caseless
OP_STAR OP_STARI
OP_MINSTAR OP_MINSTARI
OP_POSSTAR OP_POSSTARI
OP_PLUS OP_PLUSI
OP_MINPLUS OP_MINPLUSI
OP_POSPLUS OP_POSPLUSI
OP_QUERY OP_QUERYI
OP_MINQUERY OP_MINQUERYI
OP_POSQUERY OP_POSQUERYI
Each opcode is followed by the character that is to be repeated. In ASCII mode,
these are two-unit items; in UTF-8 or UTF-16 modes, the length is variable; in
UTF-32 mode these are one-unit items. Those with "MIN" in their names are the
minimizing versions. Those with "POS" in their names are possessive versions.
Other repeats make use of these opcodes:
Caseful Caseless
OP_UPTO OP_UPTOI
OP_MINUPTO OP_MINUPTOI
OP_POSUPTO OP_POSUPTOI
OP_EXACT OP_EXACTI
Each of these is followed by a count and then the repeated character. OP_UPTO
matches from 0 to the given number. A repeat with a non-zero minimum and a
fixed maximum is coded as an OP_EXACT followed by an OP_UPTO (or OP_MINUPTO or
OPT_POSUPTO).
Another set of matching repeating opcodes (called OP_NOTSTAR, OP_NOTSTARI,
etc.) are used for repeated, negated, single-character classes such as [^a]*.
The normal single-character opcodes (OP_STAR, etc.) are used for repeated
positive single-character classes.
Repeating character types
-------------------------
Repeats of things like \d are done exactly as for single characters, except
that instead of a character, the opcode for the type is stored in the data
unit. The opcodes are:
OP_TYPESTAR
OP_TYPEMINSTAR
OP_TYPEPOSSTAR
OP_TYPEPLUS
OP_TYPEMINPLUS
OP_TYPEPOSPLUS
OP_TYPEQUERY
OP_TYPEMINQUERY
OP_TYPEPOSQUERY
OP_TYPEUPTO
OP_TYPEMINUPTO
OP_TYPEPOSUPTO
OP_TYPEEXACT
Match by Unicode property
-------------------------
OP_PROP and OP_NOTPROP are used for positive and negative matches of a
character by testing its Unicode property (the \p and \P escape sequences).
Each is followed by two units that encode the desired property as a type and a
value. The types are a set of #defines of the form PT_xxx, and the values are
enumerations of the form ucp_xx, defined in the ucp.h source file. The value is
relevant only for PT_GC (General Category), PT_PC (Particular Category), and
PT_SC (Script).
Repeats of these items use the OP_TYPESTAR etc. set of opcodes, followed by
three units: OP_PROP or OP_NOTPROP, and then the desired property type and
value.
Character classes
-----------------
If there is only one character in a class, OP_CHAR or OP_CHARI is used for a
positive class, and OP_NOT or OP_NOTI for a negative one (that is, for
something like [^a]).
A set of repeating opcodes (called OP_NOTSTAR etc.) are used for repeated,
negated, single-character classes. The normal single-character opcodes
(OP_STAR, etc.) are used for repeated positive single-character classes.
When there is more than one character in a class, and all the code points are
less than 256, OP_CLASS is used for a positive class, and OP_NCLASS for a
negative one. In either case, the opcode is followed by a 32-byte (16-short,
8-word) bit map containing a 1 bit for every character that is acceptable. The
bits are counted from the least significant end of each unit. In caseless mode,
bits for both cases are set.
The reason for having both OP_CLASS and OP_NCLASS is so that, in UTF-8/16/32
mode, subject characters with values greater than 255 can be handled correctly.
For OP_CLASS they do not match, whereas for OP_NCLASS they do.
For classes containing characters with values greater than 255 or that contain
\p or \P, OP_XCLASS is used. It optionally uses a bit map if any code points
are less than 256, followed by a list of pairs (for a range) and single
characters. In caseless mode, both cases are explicitly listed.
OP_XCLASS is followed by a unit containing flag bits: XCL_NOT indicates that
this is a negative class, and XCL_MAP indicates that a bit map is present.
There follows the bit map, if XCL_MAP is set, and then a sequence of items
coded as follows:
XCL_END marks the end of the list
XCL_SINGLE one character follows
XCL_RANGE two characters follow
XCL_PROP a Unicode property (type, value) follows
XCL_NOTPROP a Unicode property (type, value) follows
If a range starts with a code point less than 256 and ends with one greater
than 256, an XCL_RANGE item is used, without setting any bits in the bit map.
This means that if no other items in the class set bits in the map, a map is
not needed.
Back references
---------------
OP_REF (caseful) or OP_REFI (caseless) is followed by a count containing the
reference number if the reference is to a unique capturing group (either by
number or by name). When named groups are used, there may be more than one
group with the same name. In this case, a reference by name generates OP_DNREF
or OP_DNREFI. These are followed by two counts: the index (not the byte offset)
in the group name table of the first entry for the requred name, followed by
the number of groups with the same name.
Repeating character classes and back references
-----------------------------------------------
Single-character classes are handled specially (see above). This section
applies to other classes and also to back references. In both cases, the repeat
information follows the base item. The matching code looks at the following
opcode to see if it is one of
OP_CRSTAR
OP_CRMINSTAR
OP_CRPOSSTAR
OP_CRPLUS
OP_CRMINPLUS
OP_CRPOSPLUS
OP_CRQUERY
OP_CRMINQUERY
OP_CRPOSQUERY
OP_CRRANGE
OP_CRMINRANGE
OP_CRPOSRANGE
All but the last three are single-unit items, with no data. The others are
followed by the minimum and maximum repeat counts.
Brackets and alternation
------------------------
A pair of non-capturing round brackets is wrapped round each expression at
compile time, so alternation always happens in the context of brackets.
[Note for North Americans: "bracket" to some English speakers, including
myself, can be round, square, curly, or pointy. Hence this usage rather than
"parentheses".]
Non-capturing brackets use the opcode OP_BRA. Originally PCRE was limited to 99
capturing brackets and it used a different opcode for each one. From release
3.5, the limit was removed by putting the bracket number into the data for
higher-numbered brackets. From release 7.0 all capturing brackets are handled
this way, using the single opcode OP_CBRA.
A bracket opcode is followed by LINK_SIZE bytes which give the offset to the
next alternative OP_ALT or, if there aren't any branches, to the matching
OP_KET opcode. Each OP_ALT is followed by LINK_SIZE bytes giving the offset to
the next one, or to the OP_KET opcode. For capturing brackets, the bracket
number is a count that immediately follows the offset.
OP_KET is used for subpatterns that do not repeat indefinitely, and OP_KETRMIN
and OP_KETRMAX are used for indefinite repetitions, minimally or maximally
respectively (see below for possessive repetitions). All three are followed by
LINK_SIZE bytes giving (as a positive number) the offset back to the matching
bracket opcode.
If a subpattern is quantified such that it is permitted to match zero times, it
is preceded by one of OP_BRAZERO, OP_BRAMINZERO, or OP_SKIPZERO. These are
single-unit opcodes that tell the matcher that skipping the following
subpattern entirely is a valid branch. In the case of the first two, not
skipping the pattern is also valid (greedy and non-greedy). The third is used
when a pattern has the quantifier {0,0}. It cannot be entirely discarded,
because it may be called as a subroutine from elsewhere in the regex.
A subpattern with an indefinite maximum repetition is replicated in the
compiled data its minimum number of times (or once with OP_BRAZERO if the
minimum is zero), with the final copy terminating with OP_KETRMIN or OP_KETRMAX
as appropriate.
A subpattern with a bounded maximum repetition is replicated in a nested
fashion up to the maximum number of times, with OP_BRAZERO or OP_BRAMINZERO
before each replication after the minimum, so that, for example, (abc){2,5} is
compiled as (abc)(abc)((abc)((abc)(abc)?)?)?, except that each bracketed group
has the same number.
When a repeated subpattern has an unbounded upper limit, it is checked to see
whether it could match an empty string. If this is the case, the opcode in the
final replication is changed to OP_SBRA or OP_SCBRA. This tells the matcher
that it needs to check for matching an empty string when it hits OP_KETRMIN or
OP_KETRMAX, and if so, to break the loop.
Possessive brackets
-------------------
When a repeated group (capturing or non-capturing) is marked as possessive by
the "+" notation, e.g. (abc)++, different opcodes are used. Their names all
have POS on the end, e.g. OP_BRAPOS instead of OP_BRA and OP_SCPBRPOS instead
of OP_SCBRA. The end of such a group is marked by OP_KETRPOS. If the minimum
repetition is zero, the group is preceded by OP_BRAPOSZERO.
Once-only (atomic) groups
-------------------------
These are just like other subpatterns, but they start with the opcode
OP_ONCE or OP_ONCE_NC. The former is used when there are no capturing brackets
within the atomic group; the latter when there are. The distinction is needed
for when there is a backtrack to before the group - any captures within the
group must be reset, so it is necessary to retain backtracking points inside
the group even after it is complete in order to do this. When there are no
captures in an atomic group, all the backtracking can be discarded when it is
complete. This is more efficient, and also uses less stack.
The check for matching an empty string in an unbounded repeat is handled
entirely at runtime, so there are just these two opcodes for atomic groups.
Assertions
----------
Forward assertions are also just like other subpatterns, but starting with one
of the opcodes OP_ASSERT or OP_ASSERT_NOT. Backward assertions use the opcodes
OP_ASSERTBACK and OP_ASSERTBACK_NOT, and the first opcode inside the assertion
is OP_REVERSE, followed by a count of the number of characters to move back the
pointer in the subject string. In ASCII mode, the count is a number of units,
but in UTF-8/16 mode each character may occupy more than one unit; in UTF-32
mode each character occupies exactly one unit. A separate count is present in
each alternative of a lookbehind assertion, allowing them to have different
fixed lengths.
Conditional subpatterns
-----------------------
These are like other subpatterns, but they start with the opcode OP_COND, or
OP_SCOND for one that might match an empty string in an unbounded repeat. If
the condition is a back reference, this is stored at the start of the
subpattern using the opcode OP_CREF followed by a count containing the
reference number, provided that the reference is to a unique capturing group.
If the reference was by name and there is more than one group with that name,
OP_DNCREF is used instead. It is followed by two counts: the index in the group
names table, and the number of groups with the same name.
If the condition is "in recursion" (coded as "(?(R)"), or "in recursion of
group x" (coded as "(?(Rx)"), the group number is stored at the start of the
subpattern using the opcode OP_RREF (with a value of zero for "the whole
pattern") or OP_DNRREF (with data as for OP_DNCREF). For a DEFINE condition,
just the single unit OP_DEF is used (it has no associated data). Otherwise, a
conditional subpattern always starts with one of the assertions.
Recursion
---------
Recursion either matches the current regex, or some subexpression. The opcode
OP_RECURSE is followed by aLINK_SIZE value that is the offset to the starting
bracket from the start of the whole pattern. From release 6.5, OP_RECURSE is
automatically wrapped inside OP_ONCE brackets, because otherwise some patterns
broke it. OP_RECURSE is also used for "subroutine" calls, even though they are
not strictly a recursion.
Callout
-------
OP_CALLOUT is followed by one unit of data that holds a callout number in the
range 0 to 254 for manual callouts, or 255 for an automatic callout. In both
cases there follows a count giving the offset in the pattern string to the
start of the following item, and another count giving the length of this item.
These values make is possible for pcretest to output useful tracing information
using automatic callouts.
Philip Hazel
November 2013

368
INSTALL Normal file
View File

@ -0,0 +1,368 @@
Installation Instructions
*************************
Copyright (C) 1994-1996, 1999-2002, 2004-2016 Free Software
Foundation, Inc.
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without warranty of any kind.
Basic Installation
==================
Briefly, the shell command './configure && make && make install'
should configure, build, and install this package. The following
more-detailed instructions are generic; see the 'README' file for
instructions specific to this package. Some packages provide this
'INSTALL' file but do not implement all of the features documented
below. The lack of an optional feature in a given package is not
necessarily a bug. More recommendations for GNU packages can be found
in *note Makefile Conventions: (standards)Makefile Conventions.
The 'configure' shell script attempts to guess correct values for
various system-dependent variables used during compilation. It uses
those values to create a 'Makefile' in each directory of the package.
It may also create one or more '.h' files containing system-dependent
definitions. Finally, it creates a shell script 'config.status' that
you can run in the future to recreate the current configuration, and a
file 'config.log' containing compiler output (useful mainly for
debugging 'configure').
It can also use an optional file (typically called 'config.cache' and
enabled with '--cache-file=config.cache' or simply '-C') that saves the
results of its tests to speed up reconfiguring. Caching is disabled by
default to prevent problems with accidental use of stale cache files.
If you need to do unusual things to compile the package, please try
to figure out how 'configure' could check whether to do them, and mail
diffs or instructions to the address given in the 'README' so they can
be considered for the next release. If you are using the cache, and at
some point 'config.cache' contains results you don't want to keep, you
may remove or edit it.
The file 'configure.ac' (or 'configure.in') is used to create
'configure' by a program called 'autoconf'. You need 'configure.ac' if
you want to change it or regenerate 'configure' using a newer version of
'autoconf'.
The simplest way to compile this package is:
1. 'cd' to the directory containing the package's source code and type
'./configure' to configure the package for your system.
Running 'configure' might take a while. While running, it prints
some messages telling which features it is checking for.
2. Type 'make' to compile the package.
3. Optionally, type 'make check' to run any self-tests that come with
the package, generally using the just-built uninstalled binaries.
4. Type 'make install' to install the programs and any data files and
documentation. When installing into a prefix owned by root, it is
recommended that the package be configured and built as a regular
user, and only the 'make install' phase executed with root
privileges.
5. Optionally, type 'make installcheck' to repeat any self-tests, but
this time using the binaries in their final installed location.
This target does not install anything. Running this target as a
regular user, particularly if the prior 'make install' required
root privileges, verifies that the installation completed
correctly.
6. You can remove the program binaries and object files from the
source code directory by typing 'make clean'. To also remove the
files that 'configure' created (so you can compile the package for
a different kind of computer), type 'make distclean'. There is
also a 'make maintainer-clean' target, but that is intended mainly
for the package's developers. If you use it, you may have to get
all sorts of other programs in order to regenerate files that came
with the distribution.
7. Often, you can also type 'make uninstall' to remove the installed
files again. In practice, not all packages have tested that
uninstallation works correctly, even though it is required by the
GNU Coding Standards.
8. Some packages, particularly those that use Automake, provide 'make
distcheck', which can by used by developers to test that all other
targets like 'make install' and 'make uninstall' work correctly.
This target is generally not run by end users.
Compilers and Options
=====================
Some systems require unusual options for compilation or linking that
the 'configure' script does not know about. Run './configure --help'
for details on some of the pertinent environment variables.
You can give 'configure' initial values for configuration parameters
by setting variables in the command line or in the environment. Here is
an example:
./configure CC=c99 CFLAGS=-g LIBS=-lposix
*Note Defining Variables::, for more details.
Compiling For Multiple Architectures
====================================
You can compile the package for more than one kind of computer at the
same time, by placing the object files for each architecture in their
own directory. To do this, you can use GNU 'make'. 'cd' to the
directory where you want the object files and executables to go and run
the 'configure' script. 'configure' automatically checks for the source
code in the directory that 'configure' is in and in '..'. This is known
as a "VPATH" build.
With a non-GNU 'make', it is safer to compile the package for one
architecture at a time in the source code directory. After you have
installed the package for one architecture, use 'make distclean' before
reconfiguring for another architecture.
On MacOS X 10.5 and later systems, you can create libraries and
executables that work on multiple system types--known as "fat" or
"universal" binaries--by specifying multiple '-arch' options to the
compiler but only a single '-arch' option to the preprocessor. Like
this:
./configure CC="gcc -arch i386 -arch x86_64 -arch ppc -arch ppc64" \
CXX="g++ -arch i386 -arch x86_64 -arch ppc -arch ppc64" \
CPP="gcc -E" CXXCPP="g++ -E"
This is not guaranteed to produce working output in all cases, you
may have to build one architecture at a time and combine the results
using the 'lipo' tool if you have problems.
Installation Names
==================
By default, 'make install' installs the package's commands under
'/usr/local/bin', include files under '/usr/local/include', etc. You
can specify an installation prefix other than '/usr/local' by giving
'configure' the option '--prefix=PREFIX', where PREFIX must be an
absolute file name.
You can specify separate installation prefixes for
architecture-specific files and architecture-independent files. If you
pass the option '--exec-prefix=PREFIX' to 'configure', the package uses
PREFIX as the prefix for installing programs and libraries.
Documentation and other data files still use the regular prefix.
In addition, if you use an unusual directory layout you can give
options like '--bindir=DIR' to specify different values for particular
kinds of files. Run 'configure --help' for a list of the directories
you can set and what kinds of files go in them. In general, the default
for these options is expressed in terms of '${prefix}', so that
specifying just '--prefix' will affect all of the other directory
specifications that were not explicitly provided.
The most portable way to affect installation locations is to pass the
correct locations to 'configure'; however, many packages provide one or
both of the following shortcuts of passing variable assignments to the
'make install' command line to change installation locations without
having to reconfigure or recompile.
The first method involves providing an override variable for each
affected directory. For example, 'make install
prefix=/alternate/directory' will choose an alternate location for all
directory configuration variables that were expressed in terms of
'${prefix}'. Any directories that were specified during 'configure',
but not in terms of '${prefix}', must each be overridden at install time
for the entire installation to be relocated. The approach of makefile
variable overrides for each directory variable is required by the GNU
Coding Standards, and ideally causes no recompilation. However, some
platforms have known limitations with the semantics of shared libraries
that end up requiring recompilation when using this method, particularly
noticeable in packages that use GNU Libtool.
The second method involves providing the 'DESTDIR' variable. For
example, 'make install DESTDIR=/alternate/directory' will prepend
'/alternate/directory' before all installation names. The approach of
'DESTDIR' overrides is not required by the GNU Coding Standards, and
does not work on platforms that have drive letters. On the other hand,
it does better at avoiding recompilation issues, and works well even
when some directory options were not specified in terms of '${prefix}'
at 'configure' time.
Optional Features
=================
If the package supports it, you can cause programs to be installed
with an extra prefix or suffix on their names by giving 'configure' the
option '--program-prefix=PREFIX' or '--program-suffix=SUFFIX'.
Some packages pay attention to '--enable-FEATURE' options to
'configure', where FEATURE indicates an optional part of the package.
They may also pay attention to '--with-PACKAGE' options, where PACKAGE
is something like 'gnu-as' or 'x' (for the X Window System). The
'README' should mention any '--enable-' and '--with-' options that the
package recognizes.
For packages that use the X Window System, 'configure' can usually
find the X include and library files automatically, but if it doesn't,
you can use the 'configure' options '--x-includes=DIR' and
'--x-libraries=DIR' to specify their locations.
Some packages offer the ability to configure how verbose the
execution of 'make' will be. For these packages, running './configure
--enable-silent-rules' sets the default to minimal output, which can be
overridden with 'make V=1'; while running './configure
--disable-silent-rules' sets the default to verbose, which can be
overridden with 'make V=0'.
Particular systems
==================
On HP-UX, the default C compiler is not ANSI C compatible. If GNU CC
is not installed, it is recommended to use the following options in
order to use an ANSI C compiler:
./configure CC="cc -Ae -D_XOPEN_SOURCE=500"
and if that doesn't work, install pre-built binaries of GCC for HP-UX.
HP-UX 'make' updates targets which have the same time stamps as their
prerequisites, which makes it generally unusable when shipped generated
files such as 'configure' are involved. Use GNU 'make' instead.
On OSF/1 a.k.a. Tru64, some versions of the default C compiler cannot
parse its '<wchar.h>' header file. The option '-nodtk' can be used as a
workaround. If GNU CC is not installed, it is therefore recommended to
try
./configure CC="cc"
and if that doesn't work, try
./configure CC="cc -nodtk"
On Solaris, don't put '/usr/ucb' early in your 'PATH'. This
directory contains several dysfunctional programs; working variants of
these programs are available in '/usr/bin'. So, if you need '/usr/ucb'
in your 'PATH', put it _after_ '/usr/bin'.
On Haiku, software installed for all users goes in '/boot/common',
not '/usr/local'. It is recommended to use the following options:
./configure --prefix=/boot/common
Specifying the System Type
==========================
There may be some features 'configure' cannot figure out
automatically, but needs to determine by the type of machine the package
will run on. Usually, assuming the package is built to be run on the
_same_ architectures, 'configure' can figure that out, but if it prints
a message saying it cannot guess the machine type, give it the
'--build=TYPE' option. TYPE can either be a short name for the system
type, such as 'sun4', or a canonical name which has the form:
CPU-COMPANY-SYSTEM
where SYSTEM can have one of these forms:
OS
KERNEL-OS
See the file 'config.sub' for the possible values of each field. If
'config.sub' isn't included in this package, then this package doesn't
need to know the machine type.
If you are _building_ compiler tools for cross-compiling, you should
use the option '--target=TYPE' to select the type of system they will
produce code for.
If you want to _use_ a cross compiler, that generates code for a
platform different from the build platform, you should specify the
"host" platform (i.e., that on which the generated programs will
eventually be run) with '--host=TYPE'.
Sharing Defaults
================
If you want to set default values for 'configure' scripts to share,
you can create a site shell script called 'config.site' that gives
default values for variables like 'CC', 'cache_file', and 'prefix'.
'configure' looks for 'PREFIX/share/config.site' if it exists, then
'PREFIX/etc/config.site' if it exists. Or, you can set the
'CONFIG_SITE' environment variable to the location of the site script.
A warning: not all 'configure' scripts look for a site script.
Defining Variables
==================
Variables not defined in a site shell script can be set in the
environment passed to 'configure'. However, some packages may run
configure again during the build, and the customized values of these
variables may be lost. In order to avoid this problem, you should set
them in the 'configure' command line, using 'VAR=value'. For example:
./configure CC=/usr/local2/bin/gcc
causes the specified 'gcc' to be used as the C compiler (unless it is
overridden in the site shell script).
Unfortunately, this technique does not work for 'CONFIG_SHELL' due to an
Autoconf limitation. Until the limitation is lifted, you can use this
workaround:
CONFIG_SHELL=/bin/bash ./configure CONFIG_SHELL=/bin/bash
'configure' Invocation
======================
'configure' recognizes the following options to control how it
operates.
'--help'
'-h'
Print a summary of all of the options to 'configure', and exit.
'--help=short'
'--help=recursive'
Print a summary of the options unique to this package's
'configure', and exit. The 'short' variant lists options used only
in the top level, while the 'recursive' variant lists options also
present in any nested packages.
'--version'
'-V'
Print the version of Autoconf used to generate the 'configure'
script, and exit.
'--cache-file=FILE'
Enable the cache: use and save the results of the tests in FILE,
traditionally 'config.cache'. FILE defaults to '/dev/null' to
disable caching.
'--config-cache'
'-C'
Alias for '--cache-file=config.cache'.
'--quiet'
'--silent'
'-q'
Do not print messages saying which checks are being made. To
suppress all normal output, redirect it to '/dev/null' (any error
messages will still be shown).
'--srcdir=DIR'
Look for the package's source code in directory DIR. Usually
'configure' can determine that directory automatically.
'--prefix=DIR'
Use DIR as the installation prefix. *note Installation Names:: for
more details, including other options available for fine-tuning the
installation locations.
'--no-create'
'-n'
Run the configure checks, but stop before creating any output
files.
'configure' also accepts some other, not widely useful, options. Run
'configure --help' for more details.

93
LICENCE Normal file
View File

@ -0,0 +1,93 @@
PCRE LICENCE
------------
PCRE is a library of functions to support regular expressions whose syntax
and semantics are as close as possible to those of the Perl 5 language.
Release 8 of PCRE is distributed under the terms of the "BSD" licence, as
specified below. The documentation for PCRE, supplied in the "doc"
directory, is distributed under the same terms as the software itself. The data
in the testdata directory is not copyrighted and is in the public domain.
The basic library functions are written in C and are freestanding. Also
included in the distribution is a set of C++ wrapper functions, and a
just-in-time compiler that can be used to optimize pattern matching. These
are both optional features that can be omitted when the library is built.
THE BASIC LIBRARY FUNCTIONS
---------------------------
Written by: Philip Hazel
Email local part: Philip.Hazel
Email domain: gmail.com
University of Cambridge Computing Service,
Cambridge, England.
Copyright (c) 1997-2021 University of Cambridge
All rights reserved.
PCRE JUST-IN-TIME COMPILATION SUPPORT
-------------------------------------
Written by: Zoltan Herczeg
Email local part: hzmester
Email domain: freemail.hu
Copyright(c) 2010-2021 Zoltan Herczeg
All rights reserved.
STACK-LESS JUST-IN-TIME COMPILER
--------------------------------
Written by: Zoltan Herczeg
Email local part: hzmester
Email domain: freemail.hu
Copyright(c) 2009-2021 Zoltan Herczeg
All rights reserved.
THE C++ WRAPPER FUNCTIONS
-------------------------
Contributed by: Google Inc.
Copyright (c) 2007-2012, Google Inc.
All rights reserved.
THE "BSD" LICENCE
-----------------
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the University of Cambridge nor the name of Google
Inc. nor the names of their contributors may be used to endorse or
promote products derived from this software without specific prior
written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
End

895
Makefile.am Normal file
View File

@ -0,0 +1,895 @@
## Process this file with automake to produce Makefile.in.
ACLOCAL_AMFLAGS = -I m4
dist_doc_DATA = \
doc/pcre.txt \
doc/pcre-config.txt \
doc/pcregrep.txt \
doc/pcretest.txt \
AUTHORS \
COPYING \
ChangeLog \
LICENCE \
NEWS \
README
# Note that pcrecpp.html is not in this list; it is listed separately below.
dist_html_DATA = \
doc/html/NON-AUTOTOOLS-BUILD.txt \
doc/html/README.txt \
doc/html/index.html \
doc/html/pcre-config.html \
doc/html/pcre.html \
doc/html/pcre16.html \
doc/html/pcre32.html \
doc/html/pcre_assign_jit_stack.html \
doc/html/pcre_compile.html \
doc/html/pcre_compile2.html \
doc/html/pcre_config.html \
doc/html/pcre_copy_named_substring.html \
doc/html/pcre_copy_substring.html \
doc/html/pcre_dfa_exec.html \
doc/html/pcre_exec.html \
doc/html/pcre_free_study.html \
doc/html/pcre_free_substring.html \
doc/html/pcre_free_substring_list.html \
doc/html/pcre_fullinfo.html \
doc/html/pcre_get_named_substring.html \
doc/html/pcre_get_stringnumber.html \
doc/html/pcre_get_stringtable_entries.html \
doc/html/pcre_get_substring.html \
doc/html/pcre_get_substring_list.html \
doc/html/pcre_jit_exec.html \
doc/html/pcre_jit_stack_alloc.html \
doc/html/pcre_jit_stack_free.html \
doc/html/pcre_maketables.html \
doc/html/pcre_pattern_to_host_byte_order.html \
doc/html/pcre_refcount.html \
doc/html/pcre_study.html \
doc/html/pcre_utf16_to_host_byte_order.html \
doc/html/pcre_utf32_to_host_byte_order.html \
doc/html/pcre_version.html \
doc/html/pcreapi.html \
doc/html/pcrebuild.html \
doc/html/pcrecallout.html \
doc/html/pcrecompat.html \
doc/html/pcredemo.html \
doc/html/pcregrep.html \
doc/html/pcrejit.html \
doc/html/pcrelimits.html \
doc/html/pcrematching.html \
doc/html/pcrepartial.html \
doc/html/pcrepattern.html \
doc/html/pcreperform.html \
doc/html/pcreposix.html \
doc/html/pcreprecompile.html \
doc/html/pcresample.html \
doc/html/pcrestack.html \
doc/html/pcresyntax.html \
doc/html/pcretest.html \
doc/html/pcreunicode.html
pcrecpp_html = doc/html/pcrecpp.html
dist_noinst_DATA = $(pcrecpp_html)
if WITH_PCRE_CPP
html_DATA = $(pcrecpp_html)
endif
# The Libtool libraries to install. We'll add to this later.
lib_LTLIBRARIES =
# Unit tests you want to run when people type 'make check'.
# TESTS is for binary unit tests, check_SCRIPTS for script-based tests
TESTS =
check_SCRIPTS =
dist_noinst_SCRIPTS =
# Some of the binaries we make are to be installed, and others are
# (non-user-visible) helper programs needed to build libpcre, libpcre16
# or libpcre32.
bin_PROGRAMS =
noinst_PROGRAMS =
# Additional files to delete on 'make clean' and 'make maintainer-clean'.
CLEANFILES =
MAINTAINERCLEANFILES =
# Additional files to bundle with the distribution, over and above what
# the Autotools include by default.
EXTRA_DIST =
# These files contain additional m4 macros that are used by autoconf.
EXTRA_DIST += \
m4/ax_pthread.m4 m4/pcre_visibility.m4
# These files contain maintenance information
EXTRA_DIST += \
doc/perltest.txt \
NON-UNIX-USE \
NON-AUTOTOOLS-BUILD \
HACKING
# These files are used in the preparation of a release
EXTRA_DIST += \
PrepareRelease \
CheckMan \
CleanTxt \
Detrail \
132html \
doc/index.html.src
# These files are to do with building for Virtual Pascal
EXTRA_DIST += \
makevp.bat \
makevp_c.txt \
makevp_l.txt \
pcregexp.pas
# These files are usable versions of pcre.h and config.h that are distributed
# for the benefit of people who are building PCRE manually, without the
# Autotools support.
EXTRA_DIST += \
pcre.h.generic \
config.h.generic
# The only difference between pcre.h.in and pcre.h is the setting of the PCRE
# version number. Therefore, we can create the generic version just by copying.
pcre.h.generic: pcre.h.in configure.ac
rm -f $@
cp -p pcre.h $@
# It is more complicated for config.h.generic. We need the version that results
# from a default configuration so as to get all the default values for PCRE
# configuration macros such as MATCH_LIMIT and NEWLINE. We can get this by
# doing a configure in a temporary directory. However, some trickery is needed,
# because the source directory may already be configured. If you just try
# running configure in a new directory, it complains. For this reason, we move
# config.status out of the way while doing the default configuration. The
# resulting config.h is munged by perl to put #ifdefs round any #defines for
# macros with values, and to #undef all boolean macros such as HAVE_xxx and
# SUPPORT_xxx. We also get rid of any gcc-specific visibility settings. Make
# sure that PCRE_EXP_DEFN is unset (in case it has visibility settings).
config.h.generic: configure.ac
rm -rf $@ _generic
mkdir _generic
cs=$(srcdir)/config.status; test ! -f $$cs || mv -f $$cs $$cs.aside
cd _generic && $(abs_top_srcdir)/configure || :
cs=$(srcdir)/config.status; test ! -f $$cs.aside || mv -f $$cs.aside $$cs
test -f _generic/config.h
perl -n \
-e 'BEGIN{$$blank=0;}' \
-e 'if(/PCRE_EXP_DEFN/){print"/* #undef PCRE_EXP_DEFN */\n";$$blank=0;next;}' \
-e 'if(/to make a symbol visible/){next;}' \
-e 'if(/__attribute__ \(\(visibility/){next;}' \
-e 'if(/LT_OBJDIR/){print"/* This is ignored unless you are using libtool. */\n";}' \
-e 'if(/^#define\s((?:HAVE|SUPPORT|STDC)_\w+)/){print"/* #undef $$1 */\n";$$blank=0;next;}' \
-e 'if(/^#define\s(?!PACKAGE|VERSION)(\w+)/){print"#ifndef $$1\n$$_#endif\n";$$blank=0;next;}' \
-e 'if(/^\s*$$/){print unless $$blank; $$blank=1;} else{print;$$blank=0;}' \
_generic/config.h >$@
rm -rf _generic
MAINTAINERCLEANFILES += pcre.h.generic config.h.generic
# These are the header files we'll install. We do not distribute pcre.h because
# it is generated from pcre.h.in.
nodist_include_HEADERS = \
pcre.h
include_HEADERS = \
pcreposix.h
# These additional headers will be be installed if C++ support is enabled. We
# do not distribute pcrecpparg.h or pcre_stringpiece.h, as these are generated
# from corresponding .h.in files (which we do distribute).
if WITH_PCRE_CPP
nodist_include_HEADERS += \
pcrecpparg.h \
pcre_stringpiece.h
include_HEADERS += \
pcrecpp.h \
pcre_scanner.h
endif # WITH_PCRE_CPP
bin_SCRIPTS = pcre-config
## ---------------------------------------------------------------
## The dftables program is used to rebuild character tables before compiling
## PCRE, if --enable-rebuild-chartables is specified. It is not a user-visible
## program. The default (when --enable-rebuild-chartables is not specified) is
## to copy a distributed set of tables that are defined for ASCII code. In this
## case, dftables is not needed.
if WITH_REBUILD_CHARTABLES
noinst_PROGRAMS += dftables
dftables_SOURCES = dftables.c
pcre_chartables.c: dftables$(EXEEXT)
./dftables$(EXEEXT) $@
else
pcre_chartables.c: $(srcdir)/pcre_chartables.c.dist
rm -f $@
$(LN_S) $(srcdir)/pcre_chartables.c.dist $@
endif # WITH_REBUILD_CHARTABLES
BUILT_SOURCES = pcre_chartables.c
## The main pcre library
# Build the 8 bit library if it is enabled.
if WITH_PCRE8
lib_LTLIBRARIES += libpcre.la
libpcre_la_SOURCES = \
pcre_byte_order.c \
pcre_compile.c \
pcre_config.c \
pcre_dfa_exec.c \
pcre_exec.c \
pcre_fullinfo.c \
pcre_get.c \
pcre_globals.c \
pcre_internal.h \
pcre_jit_compile.c \
pcre_maketables.c \
pcre_newline.c \
pcre_ord2utf8.c \
pcre_refcount.c \
pcre_string_utils.c \
pcre_study.c \
pcre_tables.c \
pcre_ucd.c \
pcre_valid_utf8.c \
pcre_version.c \
pcre_xclass.c \
ucp.h
libpcre_la_CFLAGS = \
$(VISIBILITY_CFLAGS) \
$(AM_CFLAGS)
libpcre_la_LIBADD =
## This file is generated as part of the building process, so don't distribute.
nodist_libpcre_la_SOURCES = \
pcre_chartables.c
endif # WITH_PCRE8
# Build the 16 bit library if it is enabled.
if WITH_PCRE16
lib_LTLIBRARIES += libpcre16.la
libpcre16_la_SOURCES = \
pcre16_byte_order.c \
pcre16_chartables.c \
pcre16_compile.c \
pcre16_config.c \
pcre16_dfa_exec.c \
pcre16_exec.c \
pcre16_fullinfo.c \
pcre16_get.c \
pcre16_globals.c \
pcre16_jit_compile.c \
pcre16_maketables.c \
pcre16_newline.c \
pcre16_ord2utf16.c \
pcre16_refcount.c \
pcre16_string_utils.c \
pcre16_study.c \
pcre16_tables.c \
pcre16_ucd.c \
pcre16_utf16_utils.c \
pcre16_valid_utf16.c \
pcre16_version.c \
pcre16_xclass.c
libpcre16_la_CFLAGS = \
$(VISIBILITY_CFLAGS) \
$(AM_CFLAGS)
libpcre16_la_LIBADD =
## This file is generated as part of the building process, so don't distribute.
nodist_libpcre16_la_SOURCES = \
pcre_chartables.c
endif # WITH_PCRE16
# Build the 32 bit library if it is enabled.
if WITH_PCRE32
lib_LTLIBRARIES += libpcre32.la
libpcre32_la_SOURCES = \
pcre32_byte_order.c \
pcre32_chartables.c \
pcre32_compile.c \
pcre32_config.c \
pcre32_dfa_exec.c \
pcre32_exec.c \
pcre32_fullinfo.c \
pcre32_get.c \
pcre32_globals.c \
pcre32_jit_compile.c \
pcre32_maketables.c \
pcre32_newline.c \
pcre32_ord2utf32.c \
pcre32_refcount.c \
pcre32_string_utils.c \
pcre32_study.c \
pcre32_tables.c \
pcre32_ucd.c \
pcre32_utf32_utils.c \
pcre32_valid_utf32.c \
pcre32_version.c \
pcre32_xclass.c
libpcre32_la_CFLAGS = \
$(VISIBILITY_CFLAGS) \
$(AM_CFLAGS)
libpcre32_la_LIBADD =
## This file is generated as part of the building process, so don't distribute.
nodist_libpcre32_la_SOURCES = \
pcre_chartables.c
endif # WITH_PCRE32
# The pcre_chartables.c.dist file is the default version of pcre_chartables.c,
# used unless --enable-rebuild-chartables is specified.
EXTRA_DIST += pcre_chartables.c.dist
# The JIT compiler lives in a separate directory, but its files are #included
# when pcre_jit_compile.c is processed, so they must be distributed.
EXTRA_DIST += \
sljit/sljitConfig.h \
sljit/sljitConfigInternal.h \
sljit/sljitExecAllocator.c \
sljit/sljitLir.c \
sljit/sljitLir.h \
sljit/sljitNativeARM_32.c \
sljit/sljitNativeARM_64.c \
sljit/sljitNativeARM_T2_32.c \
sljit/sljitNativeMIPS_32.c \
sljit/sljitNativeMIPS_64.c \
sljit/sljitNativeMIPS_common.c \
sljit/sljitNativePPC_32.c \
sljit/sljitNativePPC_64.c \
sljit/sljitNativePPC_common.c \
sljit/sljitNativeSPARC_32.c \
sljit/sljitNativeSPARC_common.c \
sljit/sljitNativeTILEGX_64.c \
sljit/sljitNativeTILEGX-encoder.c \
sljit/sljitNativeX86_32.c \
sljit/sljitNativeX86_64.c \
sljit/sljitNativeX86_common.c \
sljit/sljitUtils.c
if WITH_PCRE8
libpcre_la_LDFLAGS = $(EXTRA_LIBPCRE_LDFLAGS)
endif # WITH_PCRE8
if WITH_PCRE16
libpcre16_la_LDFLAGS = $(EXTRA_LIBPCRE16_LDFLAGS)
endif # WITH_PCRE16
if WITH_PCRE32
libpcre32_la_LDFLAGS = $(EXTRA_LIBPCRE32_LDFLAGS)
endif # WITH_PCRE32
if WITH_VALGRIND
if WITH_PCRE8
libpcre_la_CFLAGS += $(VALGRIND_CFLAGS)
endif # WITH_PCRE8
if WITH_PCRE16
libpcre16_la_CFLAGS += $(VALGRIND_CFLAGS)
endif # WITH_PCRE16
if WITH_PCRE32
libpcre32_la_CFLAGS += $(VALGRIND_CFLAGS)
endif # WITH_PCRE32
endif # WITH_VALGRIND
if WITH_GCOV
if WITH_PCRE8
libpcre_la_CFLAGS += $(GCOV_CFLAGS)
endif # WITH_PCRE8
if WITH_PCRE16
libpcre16_la_CFLAGS += $(GCOV_CFLAGS)
endif # WITH_PCRE16
if WITH_PCRE32
libpcre32_la_CFLAGS += $(GCOV_CFLAGS)
endif # WITH_PCRE32
endif # WITH_GCOV
CLEANFILES += pcre_chartables.c
## If JIT support is enabled, arrange for the JIT test program to run.
if WITH_JIT
TESTS += pcre_jit_test
noinst_PROGRAMS += pcre_jit_test
pcre_jit_test_SOURCES = pcre_jit_test.c
pcre_jit_test_CFLAGS = $(AM_CFLAGS)
pcre_jit_test_LDADD =
if WITH_PCRE8
pcre_jit_test_LDADD += libpcre.la
endif # WITH_PCRE8
if WITH_PCRE16
pcre_jit_test_LDADD += libpcre16.la
endif # WITH_PCRE16
if WITH_PCRE32
pcre_jit_test_LDADD += libpcre32.la
endif # WITH_PCRE32
if WITH_GCOV
pcre_jit_test_CFLAGS += $(GCOV_CFLAGS)
pcre_jit_test_LDADD += $(GCOV_LIBS)
endif # WITH_GCOV
endif # WITH_JIT
## A version of the main pcre library that has a posix re API.
if WITH_PCRE8
lib_LTLIBRARIES += libpcreposix.la
libpcreposix_la_SOURCES = \
pcreposix.c
libpcreposix_la_CFLAGS = $(VISIBILITY_CFLAGS) $(AM_CFLAGS)
libpcreposix_la_LDFLAGS = $(EXTRA_LIBPCREPOSIX_LDFLAGS)
libpcreposix_la_LIBADD = libpcre.la
if WITH_GCOV
libpcreposix_la_CFLAGS += $(GCOV_CFLAGS)
endif # WITH_GCOV
endif # WITH_PCRE8
## There's a C++ library as well.
if WITH_PCRE_CPP
lib_LTLIBRARIES += libpcrecpp.la
libpcrecpp_la_SOURCES = \
pcrecpp_internal.h \
pcrecpp.cc \
pcre_scanner.cc \
pcre_stringpiece.cc
libpcrecpp_la_CXXFLAGS = $(VISIBILITY_CXXFLAGS) $(AM_CXXFLAGS)
libpcrecpp_la_LDFLAGS = $(EXTRA_LIBPCRECPP_LDFLAGS)
libpcrecpp_la_LIBADD = libpcre.la
TESTS += pcrecpp_unittest
noinst_PROGRAMS += pcrecpp_unittest
pcrecpp_unittest_SOURCES = pcrecpp_unittest.cc
pcrecpp_unittest_CXXFLAGS = $(AM_CXXFLAGS)
pcrecpp_unittest_LDADD = libpcrecpp.la
TESTS += pcre_scanner_unittest
noinst_PROGRAMS += pcre_scanner_unittest
pcre_scanner_unittest_SOURCES = pcre_scanner_unittest.cc
pcre_scanner_unittest_CXXFLAGS = $(AM_CXXFLAGS)
pcre_scanner_unittest_LDADD = libpcrecpp.la
TESTS += pcre_stringpiece_unittest
noinst_PROGRAMS += pcre_stringpiece_unittest
pcre_stringpiece_unittest_SOURCES = pcre_stringpiece_unittest.cc
pcre_stringpiece_unittest_CXXFLAGS = $(AM_CXXFLAGS)
pcre_stringpiece_unittest_LDADD = libpcrecpp.la
if WITH_GCOV
libpcrecpp_la_CXXFLAGS += $(GCOV_CXXFLAGS)
pcrecpp_unittest_LDADD += $(GCOV_LIBS)
pcre_scanner_unittest_LDADD += $(GCOV_LIBS)
pcre_stringpiece_unittest_LDADD += $(GCOV_LIBS)
endif # WITH_GCOV
endif # WITH_PCRE_CPP
## The main unit tests
# Each unit test is a binary plus a script that runs that binary in various
# ways. We install these test binaries in case folks find it helpful.
TESTS += RunTest
dist_noinst_SCRIPTS += RunTest
EXTRA_DIST += RunTest.bat
bin_PROGRAMS += pcretest
pcretest_SOURCES = pcretest.c
pcretest_CFLAGS = $(AM_CFLAGS)
pcretest_LDADD = $(LIBREADLINE)
if WITH_PCRE8
pcretest_SOURCES += pcre_printint.c
pcretest_LDADD += libpcre.la libpcreposix.la
endif # WITH_PCRE8
if WITH_PCRE16
pcretest_SOURCES += pcre16_printint.c
pcretest_LDADD += libpcre16.la
endif # WITH_PCRE16
if WITH_PCRE32
pcretest_SOURCES += pcre32_printint.c
pcretest_LDADD += libpcre32.la
endif # WITH_PCRE32
if WITH_VALGRIND
pcretest_CFLAGS += $(VALGRIND_CFLAGS)
endif # WITH_VALGRIND
if WITH_GCOV
pcretest_CFLAGS += $(GCOV_CFLAGS)
pcretest_LDADD += $(GCOV_LIBS)
endif # WITH_GCOV
if WITH_PCRE8
TESTS += RunGrepTest
dist_noinst_SCRIPTS += RunGrepTest
bin_PROGRAMS += pcregrep
pcregrep_SOURCES = pcregrep.c
pcregrep_CFLAGS = $(AM_CFLAGS)
pcregrep_LDADD = $(LIBZ) $(LIBBZ2)
pcregrep_LDADD += libpcre.la libpcreposix.la
if WITH_GCOV
pcregrep_CFLAGS += $(GCOV_CFLAGS)
pcregrep_LDADD += $(GCOV_LIBS)
endif # WITH_GCOV
endif # WITH_PCRE8
EXTRA_DIST += \
testdata/grepbinary \
testdata/grepfilelist \
testdata/grepinput \
testdata/grepinput3 \
testdata/grepinput8 \
testdata/grepinputv \
testdata/grepinputx \
testdata/greplist \
testdata/grepoutput \
testdata/grepoutput8 \
testdata/grepoutputN \
testdata/greppatN4 \
testdata/saved16 \
testdata/saved16BE-1 \
testdata/saved16BE-2 \
testdata/saved16LE-1 \
testdata/saved16LE-2 \
testdata/saved32 \
testdata/saved32BE-1 \
testdata/saved32BE-2 \
testdata/saved32LE-1 \
testdata/saved32LE-2 \
testdata/saved8 \
testdata/testinput1 \
testdata/testinput2 \
testdata/testinput3 \
testdata/testinput4 \
testdata/testinput5 \
testdata/testinput6 \
testdata/testinput7 \
testdata/testinput8 \
testdata/testinput9 \
testdata/testinput10 \
testdata/testinput11 \
testdata/testinput12 \
testdata/testinput13 \
testdata/testinput14 \
testdata/testinput15 \
testdata/testinput16 \
testdata/testinput17 \
testdata/testinput18 \
testdata/testinput19 \
testdata/testinput20 \
testdata/testinput21 \
testdata/testinput22 \
testdata/testinput23 \
testdata/testinput24 \
testdata/testinput25 \
testdata/testinput26 \
testdata/testinputEBC \
testdata/testoutput1 \
testdata/testoutput2 \
testdata/testoutput3 \
testdata/testoutput3A \
testdata/testoutput3B \
testdata/testoutput4 \
testdata/testoutput5 \
testdata/testoutput6 \
testdata/testoutput7 \
testdata/testoutput8 \
testdata/testoutput9 \
testdata/testoutput10 \
testdata/testoutput11-8 \
testdata/testoutput11-16 \
testdata/testoutput11-32 \
testdata/testoutput12 \
testdata/testoutput13 \
testdata/testoutput14 \
testdata/testoutput15 \
testdata/testoutput16 \
testdata/testoutput17 \
testdata/testoutput18-16 \
testdata/testoutput18-32 \
testdata/testoutput19 \
testdata/testoutput20 \
testdata/testoutput21-16 \
testdata/testoutput21-32 \
testdata/testoutput22-16 \
testdata/testoutput22-32 \
testdata/testoutput23 \
testdata/testoutput24 \
testdata/testoutput25 \
testdata/testoutput26 \
testdata/testoutputEBC \
testdata/valgrind-jit.supp \
testdata/wintestinput3 \
testdata/wintestoutput3 \
perltest.pl
CLEANFILES += \
testsavedregex \
teststderr \
testtemp* \
testtry \
testNinput \
testtrygrep \
teststderrgrep \
testNinputgrep
# PCRE demonstration program. No longer built automatcally. The point is that
# the users should build it themselves. So just distribute the source.
# noinst_PROGRAMS += pcredemo
# pcredemo_SOURCES = pcredemo.c
# pcredemo_LDADD = libpcre.la
EXTRA_DIST += pcredemo.c
## Utility rules, documentation, etc.
# A compatibility line, the old build system worked with 'make test'
test: check ;
# A PCRE user submitted the following addition, saying that it "will allow
# anyone using the 'mingw32' compiler to simply type 'make pcre.dll' and get a
# nice DLL for Windows use". (It is used by the pcre.dll target.)
DLL_OBJS= pcre_byte_order.o pcre_compile.o pcre_config.o \
pcre_dfa_exec.o pcre_exec.o pcre_fullinfo.o pcre_get.o \
pcre_globals.o pcre_jit_compile.o pcre_maketables.o \
pcre_newline.o pcre_ord2utf8.o pcre_refcount.o \
pcre_study.o pcre_tables.o pcre_ucd.o \
pcre_valid_utf8.o pcre_version.o pcre_chartables.o \
pcre_xclass.o
# A PCRE user submitted the following addition, saying that it "will allow
# anyone using the 'mingw32' compiler to simply type 'make pcre.dll' and get a
# nice DLL for Windows use".
pcre.dll: $(DLL_OBJS)
$(CC) -shared -o pcre.dll -Wl,"--strip-all" -Wl,"--export-all-symbols" $(DLL_OBJS)
# We have .pc files for pkg-config users.
pkgconfigdir = $(libdir)/pkgconfig
pkgconfig_DATA = libpcre.pc libpcreposix.pc
if WITH_PCRE16
pkgconfig_DATA += libpcre16.pc
endif
if WITH_PCRE32
pkgconfig_DATA += libpcre32.pc
endif
if WITH_PCRE_CPP
pkgconfig_DATA += libpcrecpp.pc
endif
# Note that pcrecpp.3 is not in this list, but is included separately below.
dist_man_MANS = \
doc/pcre-config.1 \
doc/pcre.3 \
doc/pcre16.3 \
doc/pcre32.3 \
doc/pcre_assign_jit_stack.3 \
doc/pcre_compile.3 \
doc/pcre_compile2.3 \
doc/pcre_config.3 \
doc/pcre_copy_named_substring.3 \
doc/pcre_copy_substring.3 \
doc/pcre_dfa_exec.3 \
doc/pcre_exec.3 \
doc/pcre_free_study.3 \
doc/pcre_free_substring.3 \
doc/pcre_free_substring_list.3 \
doc/pcre_fullinfo.3 \
doc/pcre_get_named_substring.3 \
doc/pcre_get_stringnumber.3 \
doc/pcre_get_stringtable_entries.3 \
doc/pcre_get_substring.3 \
doc/pcre_get_substring_list.3 \
doc/pcre_jit_exec.3 \
doc/pcre_jit_stack_alloc.3 \
doc/pcre_jit_stack_free.3 \
doc/pcre_maketables.3 \
doc/pcre_pattern_to_host_byte_order.3 \
doc/pcre_refcount.3 \
doc/pcre_study.3 \
doc/pcre_utf16_to_host_byte_order.3 \
doc/pcre_utf32_to_host_byte_order.3 \
doc/pcre_version.3 \
doc/pcreapi.3 \
doc/pcrebuild.3 \
doc/pcrecallout.3 \
doc/pcrecompat.3 \
doc/pcredemo.3 \
doc/pcregrep.1 \
doc/pcrejit.3 \
doc/pcrelimits.3 \
doc/pcrematching.3 \
doc/pcrepartial.3 \
doc/pcrepattern.3 \
doc/pcreperform.3 \
doc/pcreposix.3 \
doc/pcreprecompile.3 \
doc/pcresample.3 \
doc/pcrestack.3 \
doc/pcresyntax.3 \
doc/pcretest.1 \
doc/pcreunicode.3
# Arrange for the per-function man pages to have 16- and 32-bit names as well.
install-data-hook:
ln -sf pcre_assign_jit_stack.3 $(DESTDIR)$(man3dir)/pcre16_assign_jit_stack.3
ln -sf pcre_compile.3 $(DESTDIR)$(man3dir)/pcre16_compile.3
ln -sf pcre_compile2.3 $(DESTDIR)$(man3dir)/pcre16_compile2.3
ln -sf pcre_config.3 $(DESTDIR)$(man3dir)/pcre16_config.3
ln -sf pcre_copy_named_substring.3 $(DESTDIR)$(man3dir)/pcre16_copy_named_substring.3
ln -sf pcre_copy_substring.3 $(DESTDIR)$(man3dir)/pcre16_copy_substring.3
ln -sf pcre_dfa_exec.3 $(DESTDIR)$(man3dir)/pcre16_dfa_exec.3
ln -sf pcre_exec.3 $(DESTDIR)$(man3dir)/pcre16_exec.3
ln -sf pcre_free_study.3 $(DESTDIR)$(man3dir)/pcre16_free_study.3
ln -sf pcre_free_substring.3 $(DESTDIR)$(man3dir)/pcre16_free_substring.3
ln -sf pcre_free_substring_list.3 $(DESTDIR)$(man3dir)/pcre16_free_substring_list.3
ln -sf pcre_fullinfo.3 $(DESTDIR)$(man3dir)/pcre16_fullinfo.3
ln -sf pcre_get_named_substring.3 $(DESTDIR)$(man3dir)/pcre16_get_named_substring.3
ln -sf pcre_get_stringnumber.3 $(DESTDIR)$(man3dir)/pcre16_get_stringnumber.3
ln -sf pcre_get_stringtable_entries.3 $(DESTDIR)$(man3dir)/pcre16_get_stringtable_entries.3
ln -sf pcre_get_substring.3 $(DESTDIR)$(man3dir)/pcre16_get_substring.3
ln -sf pcre_get_substring_list.3 $(DESTDIR)$(man3dir)/pcre16_get_substring_list.3
ln -sf pcre_jit_exec.3 $(DESTDIR)$(man3dir)/pcre16_jit_exec.3
ln -sf pcre_jit_stack_alloc.3 $(DESTDIR)$(man3dir)/pcre16_jit_stack_alloc.3
ln -sf pcre_jit_stack_free.3 $(DESTDIR)$(man3dir)/pcre16_jit_stack_free.3
ln -sf pcre_maketables.3 $(DESTDIR)$(man3dir)/pcre16_maketables.3
ln -sf pcre_pattern_to_host_byte_order.3 $(DESTDIR)$(man3dir)/pcre16_pattern_to_host_byte_order.3
ln -sf pcre_refcount.3 $(DESTDIR)$(man3dir)/pcre16_refcount.3
ln -sf pcre_study.3 $(DESTDIR)$(man3dir)/pcre16_study.3
ln -sf pcre_utf16_to_host_byte_order.3 $(DESTDIR)$(man3dir)/pcre16_utf16_to_host_byte_order.3
ln -sf pcre_version.3 $(DESTDIR)$(man3dir)/pcre16_version.3
ln -sf pcre_assign_jit_stack.3 $(DESTDIR)$(man3dir)/pcre32_assign_jit_stack.3
ln -sf pcre_compile.3 $(DESTDIR)$(man3dir)/pcre32_compile.3
ln -sf pcre_compile2.3 $(DESTDIR)$(man3dir)/pcre32_compile2.3
ln -sf pcre_config.3 $(DESTDIR)$(man3dir)/pcre32_config.3
ln -sf pcre_copy_named_substring.3 $(DESTDIR)$(man3dir)/pcre32_copy_named_substring.3
ln -sf pcre_copy_substring.3 $(DESTDIR)$(man3dir)/pcre32_copy_substring.3
ln -sf pcre_dfa_exec.3 $(DESTDIR)$(man3dir)/pcre32_dfa_exec.3
ln -sf pcre_exec.3 $(DESTDIR)$(man3dir)/pcre32_exec.3
ln -sf pcre_free_study.3 $(DESTDIR)$(man3dir)/pcre32_free_study.3
ln -sf pcre_free_substring.3 $(DESTDIR)$(man3dir)/pcre32_free_substring.3
ln -sf pcre_free_substring_list.3 $(DESTDIR)$(man3dir)/pcre32_free_substring_list.3
ln -sf pcre_fullinfo.3 $(DESTDIR)$(man3dir)/pcre32_fullinfo.3
ln -sf pcre_get_named_substring.3 $(DESTDIR)$(man3dir)/pcre32_get_named_substring.3
ln -sf pcre_get_stringnumber.3 $(DESTDIR)$(man3dir)/pcre32_get_stringnumber.3
ln -sf pcre_get_stringtable_entries.3 $(DESTDIR)$(man3dir)/pcre32_get_stringtable_entries.3
ln -sf pcre_get_substring.3 $(DESTDIR)$(man3dir)/pcre32_get_substring.3
ln -sf pcre_get_substring_list.3 $(DESTDIR)$(man3dir)/pcre32_get_substring_list.3
ln -sf pcre_jit_exec.3 $(DESTDIR)$(man3dir)/pcre32_jit_exec.3
ln -sf pcre_jit_stack_alloc.3 $(DESTDIR)$(man3dir)/pcre32_jit_stack_alloc.3
ln -sf pcre_jit_stack_free.3 $(DESTDIR)$(man3dir)/pcre32_jit_stack_free.3
ln -sf pcre_maketables.3 $(DESTDIR)$(man3dir)/pcre32_maketables.3
ln -sf pcre_pattern_to_host_byte_order.3 $(DESTDIR)$(man3dir)/pcre32_pattern_to_host_byte_order.3
ln -sf pcre_refcount.3 $(DESTDIR)$(man3dir)/pcre32_refcount.3
ln -sf pcre_study.3 $(DESTDIR)$(man3dir)/pcre32_study.3
ln -sf pcre_utf32_to_host_byte_order.3 $(DESTDIR)$(man3dir)/pcre32_utf32_to_host_byte_order.3
ln -sf pcre_version.3 $(DESTDIR)$(man3dir)/pcre32_version.3
pcrecpp_man = doc/pcrecpp.3
EXTRA_DIST += $(pcrecpp_man)
if WITH_PCRE_CPP
man_MANS = $(pcrecpp_man)
endif
# gcov/lcov code coverage reporting
if WITH_GCOV
# Coverage reporting targets:
#
# coverage: Create a coverage report from 'make check'
# coverage-baseline: Capture baseline coverage information
# coverage-reset: This zeros the coverage counters only
# coverage-report: This creates the coverage report only
# coverage-clean-report: This removes the generated coverage report
# without cleaning the coverage data itself
# coverage-clean-data: This removes the captured coverage data without
# removing the coverage files created at compile time (*.gcno)
# coverage-clean: This cleans all coverage data including the generated
# coverage report.
COVERAGE_TEST_NAME = $(PACKAGE)
COVERAGE_NAME = $(PACKAGE)-$(VERSION)
COVERAGE_OUTPUT_FILE = $(COVERAGE_NAME)-coverage.info
COVERAGE_OUTPUT_DIR = $(COVERAGE_NAME)-coverage
COVERAGE_LCOV_EXTRA_FLAGS =
COVERAGE_GENHTML_EXTRA_FLAGS =
coverage_quiet = $(coverage_quiet_$(V))
coverage_quiet_ = $(coverage_quiet_$(AM_DEFAULT_VERBOSITY))
coverage_quiet_0 = --quiet
coverage-check: all
-$(MAKE) $(AM_MAKEFLAGS) -k check
coverage-baseline:
$(LCOV) $(coverage_quiet) \
--directory $(top_builddir) \
--output-file "$(COVERAGE_OUTPUT_FILE)" \
--capture \
--initial
coverage-report:
$(LCOV) $(coverage_quiet) \
--directory $(top_builddir) \
--capture \
--output-file "$(COVERAGE_OUTPUT_FILE).tmp" \
--test-name "$(COVERAGE_TEST_NAME)" \
--no-checksum \
--compat-libtool \
$(COVERAGE_LCOV_EXTRA_FLAGS)
$(LCOV) $(coverage_quiet) \
--directory $(top_builddir) \
--output-file "$(COVERAGE_OUTPUT_FILE)" \
--remove "$(COVERAGE_OUTPUT_FILE).tmp" \
"/tmp/*" \
"/usr/include/*" \
"$(includedir)/*"
-@rm -f "$(COVERAGE_OUTPUT_FILE).tmp"
LANG=C $(GENHTML) $(coverage_quiet) \
--prefix $(top_builddir) \
--output-directory "$(COVERAGE_OUTPUT_DIR)" \
--title "$(PACKAGE) $(VERSION) Code Coverage Report" \
--show-details "$(COVERAGE_OUTPUT_FILE)" \
--legend \
$(COVERAGE_GENHTML_EXTRA_FLAGS)
@echo "Code coverage report written to file://$(abs_builddir)/$(COVERAGE_OUTPUT_DIR)/index.html"
coverage-reset:
-$(LCOV) $(coverage_quiet) --zerocounters --directory $(top_builddir)
coverage-clean-report:
-rm -f "$(COVERAGE_OUTPUT_FILE)" "$(COVERAGE_OUTPUT_FILE).tmp"
-rm -rf "$(COVERAGE_OUTPUT_DIR)"
coverage-clean-data:
-find $(top_builddir) -name "*.gcda" -delete
coverage-clean: coverage-reset coverage-clean-report coverage-clean-data
-find $(top_builddir) -name "*.gcno" -delete
coverage-distclean: coverage-clean
coverage: coverage-reset coverage-baseline coverage-check coverage-report
clean-local: coverage-clean
distclean-local: coverage-distclean
.PHONY: coverage coverage-baseline coverage-check coverage-report coverage-reset coverage-clean-report coverage-clean-data coverage-clean coverage-distclean
else
coverage:
@echo "Configuring with --enable-coverage required to generate code coverage report."
endif # WITH_GCOV
## CMake support
EXTRA_DIST += \
cmake/COPYING-CMAKE-SCRIPTS \
cmake/FindPackageHandleStandardArgs.cmake \
cmake/FindReadline.cmake \
cmake/FindEditline.cmake \
CMakeLists.txt \
config-cmake.h.in
## end Makefile.am

3556
Makefile.in Normal file

File diff suppressed because it is too large Load Diff

765
NEWS Normal file
View File

@ -0,0 +1,765 @@
News about PCRE releases
------------------------
Note that this library (now called PCRE1) is no longer being maintained. New
projects are advised to use the PCRE2 libraries.
Release 8.45 15-June-2021
-----------------------------
This is the final PCRE1 release. A very few small issues have been fixed.
Release 8.44 12-February-2020
-----------------------------
This is a bug-fix release.
Release 8.43 23-February-2019
-----------------------------
This is a bug-fix release.
Release 8.42 20-March-2018
--------------------------
This is a bug-fix release.
Release 8.41 13-June-2017
-------------------------
This is a bug-fix release.
Release 8.40 11-January-2017
----------------------------
This is a bug-fix release.
Release 8.39 14-June-2016
-------------------------
Some appropriate PCRE2 JIT improvements have been retro-fitted to PCRE1. Apart
from that, this is another bug-fix release. Note that this library (now called
PCRE1) is now being maintained for bug fixes only. New projects are advised to
use the new PCRE2 libraries.
Release 8.38 23-November-2015
-----------------------------
This is bug-fix release. Note that this library (now called PCRE1) is now being
maintained for bug fixes only. New projects are advised to use the new PCRE2
libraries.
Release 8.37 28-April-2015
--------------------------
This is bug-fix release. Note that this library (now called PCRE1) is now being
maintained for bug fixes only. New projects are advised to use the new PCRE2
libraries.
Release 8.36 26-September-2014
------------------------------
This is primarily a bug-fix release. However, in addition, the Unicode data
tables have been updated to Unicode 7.0.0.
Release 8.35 04-April-2014
--------------------------
There have been performance improvements for classes containing non-ASCII
characters and the "auto-possessification" feature has been extended. Other
minor improvements have been implemented and bugs fixed. There is a new callout
feature to enable applications to do detailed stack checks at compile time, to
avoid running out of stack for deeply nested parentheses. The JIT compiler has
been extended with experimental support for ARM-64, MIPS-64, and PPC-LE.
Release 8.34 15-December-2013
-----------------------------
As well as fixing the inevitable bugs, performance has been improved by
refactoring and extending the amount of "auto-possessification" that PCRE does.
Other notable changes:
. Implemented PCRE_INFO_MATCH_EMPTY, which yields 1 if the pattern can match
an empty string. If it can, pcretest shows this in its information output.
. A back reference to a named subpattern when there is more than one of the
same name now checks them in the order in which they appear in the pattern.
The first one that is set is used for the reference. Previously only the
first one was inspected. This change makes PCRE more compatible with Perl.
. Unicode character properties were updated from Unicode 6.3.0.
. The character VT has been added to the set of characters that match \s and
are generally treated as white space, following this same change in Perl
5.18. There is now no difference between "Perl space" and "POSIX space".
. Perl has changed its handling of \8 and \9. If there is no previously
encountered capturing group of those numbers, they are treated as the
literal characters 8 and 9 instead of a binary zero followed by the
literals. PCRE now does the same.
. Following Perl, added \o{} to specify codepoints in octal, making it
possible to specify values greater than 0777 and also making them
unambiguous.
. In UCP mode, \s was not matching two of the characters that Perl matches,
namely NEL (U+0085) and MONGOLIAN VOWEL SEPARATOR (U+180E), though they
were matched by \h.
. Add JIT support for the 64 bit TileGX architecture.
. Upgraded the handling of the POSIX classes [:graph:], [:print:], and
[:punct:] when PCRE_UCP is set so as to include the same characters as Perl
does in Unicode mode.
. Perl no longer allows group names to start with digits, so I have made this
change also in PCRE.
. Added support for [[:<:]] and [[:>:]] as used in the BSD POSIX library to
mean "start of word" and "end of word", respectively, as a transition aid.
Release 8.33 28-May-2013
--------------------------
A number of bugs are fixed, and some performance improvements have been made.
There are also some new features, of which these are the most important:
. The behaviour of the backtracking verbs has been rationalized and
documented in more detail.
. JIT now supports callouts and all of the backtracking verbs.
. Unicode validation has been updated in the light of Unicode Corrigendum #9,
which points out that "non characters" are not "characters that may not
appear in Unicode strings" but rather "characters that are reserved for
internal use and have only local meaning".
. (*LIMIT_MATCH=d) and (*LIMIT_RECURSION=d) have been added so that the
creator of a pattern can specify lower (but not higher) limits for the
matching process.
. The PCRE_NEVER_UTF option is available to prevent pattern-writers from using
the (*UTF) feature, as this could be a security issue.
Release 8.32 30-November-2012
-----------------------------
This release fixes a number of bugs, but also has some new features. These are
the highlights:
. There is now support for 32-bit character strings and UTF-32. Like the
16-bit support, this is done by compiling a separate 32-bit library.
. \X now matches a Unicode extended grapheme cluster.
. Case-independent matching of Unicode characters that have more than one
"other case" now makes all three (or more) characters equivalent. This
applies, for example, to Greek Sigma, which has two lowercase versions.
. Unicode character properties are updated to Unicode 6.2.0.
. The EBCDIC support, which had decayed, has had a spring clean.
. A number of JIT optimizations have been added, which give faster JIT
execution speed. In addition, a new direct interface to JIT execution is
available. This bypasses some of the sanity checks of pcre_exec() to give a
noticeable speed-up.
. A number of issues in pcregrep have been fixed, making it more compatible
with GNU grep. In particular, --exclude and --include (and variants) apply
to all files now, not just those obtained from scanning a directory
recursively. In Windows environments, the default action for directories is
now "skip" instead of "read" (which provokes an error).
. If the --only-matching (-o) option in pcregrep is specified multiple
times, each one causes appropriate output. For example, -o1 -o2 outputs the
substrings matched by the 1st and 2nd capturing parentheses. A separating
string can be specified by --om-separator (default empty).
. When PCRE is built via Autotools using a version of gcc that has the
"visibility" feature, it is used to hide internal library functions that are
not part of the public API.
Release 8.31 06-July-2012
-------------------------
This is mainly a bug-fixing release, with a small number of developments:
. The JIT compiler now supports partial matching and the (*MARK) and
(*COMMIT) verbs.
. PCRE_INFO_MAXLOOKBEHIND can be used to find the longest lookbehind in a
pattern.
. There should be a performance improvement when using the heap instead of the
stack for recursion.
. pcregrep can now be linked with libedit as an alternative to libreadline.
. pcregrep now has a --file-list option where the list of files to scan is
given as a file.
. pcregrep now recognizes binary files and there are related options.
. The Unicode tables have been updated to 6.1.0.
As always, the full list of changes is in the ChangeLog file.
Release 8.30 04-February-2012
-----------------------------
Release 8.30 introduces a major new feature: support for 16-bit character
strings, compiled as a separate library. There are a few changes to the
8-bit library, in addition to some bug fixes.
. The pcre_info() function, which has been obsolete for over 10 years, has
been removed.
. When a compiled pattern was saved to a file and later reloaded on a host
with different endianness, PCRE used automatically to swap the bytes in some
of the data fields. With the advent of the 16-bit library, where more of this
swapping is needed, it is no longer done automatically. Instead, the bad
endianness is detected and a specific error is given. The user can then call
a new function called pcre_pattern_to_host_byte_order() (or an equivalent
16-bit function) to do the swap.
. In UTF-8 mode, the values 0xd800 to 0xdfff are not legal Unicode
code points and are now faulted. (They are the so-called "surrogates"
that are reserved for coding high values in UTF-16.)
Release 8.21 12-Dec-2011
------------------------
This is almost entirely a bug-fix release. The only new feature is the ability
to obtain the size of the memory used by the JIT compiler.
Release 8.20 21-Oct-2011
------------------------
The main change in this release is the inclusion of Zoltan Herczeg's
just-in-time compiler support, which can be accessed by building PCRE with
--enable-jit. Large performance benefits can be had in many situations. 8.20
also fixes an unfortunate bug that was introduced in 8.13 as well as tidying up
a number of infelicities and differences from Perl.
Release 8.13 16-Aug-2011
------------------------
This is mainly a bug-fix release. There has been a lot of internal refactoring.
The Unicode tables have been updated. The only new feature in the library is
the passing of *MARK information to callouts. Some additions have been made to
pcretest to make testing easier and more comprehensive. There is a new option
for pcregrep to adjust its internal buffer size.
Release 8.12 15-Jan-2011
------------------------
This release fixes some bugs in pcregrep, one of which caused the tests to fail
on 64-bit big-endian systems. There are no changes to the code of the library.
Release 8.11 10-Dec-2010
------------------------
A number of bugs in the library and in pcregrep have been fixed. As always, see
ChangeLog for details. The following are the non-bug-fix changes:
. Added --match-limit and --recursion-limit to pcregrep.
. Added an optional parentheses number to the -o and --only-matching options
of pcregrep.
. Changed the way PCRE_PARTIAL_HARD affects the matching of $, \z, \Z, \b, and
\B.
. Added PCRE_ERROR_SHORTUTF8 to make it possible to distinguish between a
bad UTF-8 sequence and one that is incomplete when using PCRE_PARTIAL_HARD.
. Recognize (*NO_START_OPT) at the start of a pattern to set the PCRE_NO_
START_OPTIMIZE option, which is now allowed at compile time
Release 8.10 25-Jun-2010
------------------------
There are two major additions: support for (*MARK) and friends, and the option
PCRE_UCP, which changes the behaviour of \b, \d, \s, and \w (and their
opposites) so that they make use of Unicode properties. There are also a number
of lesser new features, and several bugs have been fixed. A new option,
--line-buffered, has been added to pcregrep, for use when it is connected to
pipes.
Release 8.02 19-Mar-2010
------------------------
Another bug-fix release.
Release 8.01 19-Jan-2010
------------------------
This is a bug-fix release. Several bugs in the code itself and some bugs and
infelicities in the build system have been fixed.
Release 8.00 19-Oct-09
----------------------
Bugs have been fixed in the library and in pcregrep. There are also some
enhancements. Restrictions on patterns used for partial matching have been
removed, extra information is given for partial matches, the partial matching
process has been improved, and an option to make a partial match override a
full match is available. The "study" process has been enhanced by finding a
lower bound matching length. Groups with duplicate numbers may now have
duplicated names without the use of PCRE_DUPNAMES. However, they may not have
different names. The documentation has been revised to reflect these changes.
The version number has been expanded to 3 digits as it is clear that the rate
of change is not slowing down.
Release 7.9 11-Apr-09
---------------------
Mostly bugfixes and tidies with just a couple of minor functional additions.
Release 7.8 05-Sep-08
---------------------
More bug fixes, plus a performance improvement in Unicode character property
lookup.
Release 7.7 07-May-08
---------------------
This is once again mainly a bug-fix release, but there are a couple of new
features.
Release 7.6 28-Jan-08
---------------------
The main reason for having this release so soon after 7.5 is because it fixes a
potential buffer overflow problem in pcre_compile() when run in UTF-8 mode. In
addition, the CMake configuration files have been brought up to date.
Release 7.5 10-Jan-08
---------------------
This is mainly a bug-fix release. However the ability to link pcregrep with
libz or libbz2 and the ability to link pcretest with libreadline have been
added. Also the --line-offsets and --file-offsets options were added to
pcregrep.
Release 7.4 21-Sep-07
---------------------
The only change of specification is the addition of options to control whether
\R matches any Unicode line ending (the default) or just CR, LF, and CRLF.
Otherwise, the changes are bug fixes and a refactoring to reduce the number of
relocations needed in a shared library. There have also been some documentation
updates, in particular, some more information about using CMake to build PCRE
has been added to the NON-UNIX-USE file.
Release 7.3 28-Aug-07
---------------------
Most changes are bug fixes. Some that are not:
1. There is some support for Perl 5.10's experimental "backtracking control
verbs" such as (*PRUNE).
2. UTF-8 checking is now as per RFC 3629 instead of RFC 2279; this is more
restrictive in the strings it accepts.
3. Checking for potential integer overflow has been made more dynamic, and as a
consequence there is no longer a hard limit on the size of a subpattern that
has a limited repeat count.
4. When CRLF is a valid line-ending sequence, pcre_exec() and pcre_dfa_exec()
no longer advance by two characters instead of one when an unanchored match
fails at CRLF if there are explicit CR or LF matches within the pattern.
This gets rid of some anomalous effects that previously occurred.
5. Some PCRE-specific settings for varying the newline options at the start of
a pattern have been added.
Release 7.2 19-Jun-07
---------------------
WARNING: saved patterns that were compiled by earlier versions of PCRE must be
recompiled for use with 7.2 (necessitated by the addition of \K, \h, \H, \v,
and \V).
Correction to the notes for 7.1: the note about shared libraries for Windows is
wrong. Previously, three libraries were built, but each could function
independently. For example, the pcreposix library also included all the
functions from the basic pcre library. The change is that the three libraries
are no longer independent. They are like the Unix libraries. To use the
pcreposix functions, for example, you need to link with both the pcreposix and
the basic pcre library.
Some more features from Perl 5.10 have been added:
(?-n) and (?+n) relative references for recursion and subroutines.
(?(-n) and (?(+n) relative references as conditions.
\k{name} and \g{name} are synonyms for \k<name>.
\K to reset the start of the matched string; for example, (foo)\Kbar
matches bar preceded by foo, but only sets bar as the matched string.
(?| introduces a group where the capturing parentheses in each alternative
start from the same number; for example, (?|(abc)|(xyz)) sets capturing
parentheses number 1 in both cases.
\h, \H, \v, \V match horizontal and vertical whitespace, respectively.
Release 7.1 24-Apr-07
---------------------
There is only one new feature in this release: a linebreak setting of
PCRE_NEWLINE_ANYCRLF. It is a cut-down version of PCRE_NEWLINE_ANY, which
recognizes only CRLF, CR, and LF as linebreaks.
A few bugs are fixed (see ChangeLog for details), but the major change is a
complete re-implementation of the build system. This now has full Autotools
support and so is now "standard" in some sense. It should help with compiling
PCRE in a wide variety of environments.
NOTE: when building shared libraries for Windows, three dlls are now built,
called libpcre, libpcreposix, and libpcrecpp. Previously, everything was
included in a single dll.
Another important change is that the dftables auxiliary program is no longer
compiled and run at "make" time by default. Instead, a default set of character
tables (assuming ASCII coding) is used. If you want to use dftables to generate
the character tables as previously, add --enable-rebuild-chartables to the
"configure" command. You must do this if you are compiling PCRE to run on a
system that uses EBCDIC code.
There is a discussion about character tables in the README file. The default is
not to use dftables so that that there is no problem when cross-compiling.
Release 7.0 19-Dec-06
---------------------
This release has a new major number because there have been some internal
upheavals to facilitate the addition of new optimizations and other facilities,
and to make subsequent maintenance and extension easier. Compilation is likely
to be a bit slower, but there should be no major effect on runtime performance.
Previously compiled patterns are NOT upwards compatible with this release. If
you have saved compiled patterns from a previous release, you will have to
re-compile them. Important changes that are visible to users are:
1. The Unicode property tables have been updated to Unicode 5.0.0, which adds
some more scripts.
2. The option PCRE_NEWLINE_ANY causes PCRE to recognize any Unicode newline
sequence as a newline.
3. The \R escape matches a single Unicode newline sequence as a single unit.
4. New features that will appear in Perl 5.10 are now in PCRE. These include
alternative Perl syntax for named parentheses, and Perl syntax for
recursion.
5. The C++ wrapper interface has been extended by the addition of a
QuoteMeta function and the ability to allow copy construction and
assignment.
For a complete list of changes, see the ChangeLog file.
Release 6.7 04-Jul-06
---------------------
The main additions to this release are the ability to use the same name for
multiple sets of parentheses, and support for CRLF line endings in both the
library and pcregrep (and in pcretest for testing).
Thanks to Ian Taylor, the stack usage for many kinds of pattern has been
significantly reduced for certain subject strings.
Release 6.5 01-Feb-06
---------------------
Important changes in this release:
1. A number of new features have been added to pcregrep.
2. The Unicode property tables have been updated to Unicode 4.1.0, and the
supported properties have been extended with script names such as "Arabic",
and the derived properties "Any" and "L&". This has necessitated a change to
the interal format of compiled patterns. Any saved compiled patterns that
use \p or \P must be recompiled.
3. The specification of recursion in patterns has been changed so that all
recursive subpatterns are automatically treated as atomic groups. Thus, for
example, (?R) is treated as if it were (?>(?R)). This is necessary because
otherwise there are situations where recursion does not work.
See the ChangeLog for a complete list of changes, which include a number of bug
fixes and tidies.
Release 6.0 07-Jun-05
---------------------
The release number has been increased to 6.0 because of the addition of several
major new pieces of functionality.
A new function, pcre_dfa_exec(), which implements pattern matching using a DFA
algorithm, has been added. This has a number of advantages for certain cases,
though it does run more slowly, and lacks the ability to capture substrings. On
the other hand, it does find all matches, not just the first, and it works
better for partial matching. The pcrematching man page discusses the
differences.
The pcretest program has been enhanced so that it can make use of the new
pcre_dfa_exec() matching function and the extra features it provides.
The distribution now includes a C++ wrapper library. This is built
automatically if a C++ compiler is found. The pcrecpp man page discusses this
interface.
The code itself has been re-organized into many more files, one for each
function, so it no longer requires everything to be linked in when static
linkage is used. As a consequence, some internal functions have had to have
their names exposed. These functions all have names starting with _pcre_. They
are undocumented, and are not intended for use by outside callers.
The pcregrep program has been enhanced with new functionality such as
multiline-matching and options for output more matching context. See the
ChangeLog for a complete list of changes to the library and the utility
programs.
Release 5.0 13-Sep-04
---------------------
The licence under which PCRE is released has been changed to the more
conventional "BSD" licence.
In the code, some bugs have been fixed, and there are also some major changes
in this release (which is why I've increased the number to 5.0). Some changes
are internal rearrangements, and some provide a number of new facilities. The
new features are:
1. There's an "automatic callout" feature that inserts callouts before every
item in the regex, and there's a new callout field that gives the position
in the pattern - useful for debugging and tracing.
2. The extra_data structure can now be used to pass in a set of character
tables at exec time. This is useful if compiled regex are saved and re-used
at a later time when the tables may not be at the same address. If the
default internal tables are used, the pointer saved with the compiled
pattern is now set to NULL, which means that you don't need to do anything
special unless you are using custom tables.
3. It is possible, with some restrictions on the content of the regex, to
request "partial" matching. A special return code is given if all of the
subject string matched part of the regex. This could be useful for testing
an input field as it is being typed.
4. There is now some optional support for Unicode character properties, which
means that the patterns items such as \p{Lu} and \X can now be used. Only
the general category properties are supported. If PCRE is compiled with this
support, an additional 90K data structure is include, which increases the
size of the library dramatically.
5. There is support for saving compiled patterns and re-using them later.
6. There is support for running regular expressions that were compiled on a
different host with the opposite endianness.
7. The pcretest program has been extended to accommodate the new features.
The main internal rearrangement is that sequences of literal characters are no
longer handled as strings. Instead, each character is handled on its own. This
makes some UTF-8 handling easier, and makes the support of partial matching
possible. Compiled patterns containing long literal strings will be larger as a
result of this change; I hope that performance will not be much affected.
Release 4.5 01-Dec-03
---------------------
Again mainly a bug-fix and tidying release, with only a couple of new features:
1. It's possible now to compile PCRE so that it does not use recursive
function calls when matching. Instead it gets memory from the heap. This slows
things down, but may be necessary on systems with limited stacks.
2. UTF-8 string checking has been tightened to reject overlong sequences and to
check that a starting offset points to the start of a character. Failure of the
latter returns a new error code: PCRE_ERROR_BADUTF8_OFFSET.
3. PCRE can now be compiled for systems that use EBCDIC code.
Release 4.4 21-Aug-03
---------------------
This is mainly a bug-fix and tidying release. The only new feature is that PCRE
checks UTF-8 strings for validity by default. There is an option to suppress
this, just in case anybody wants that teeny extra bit of performance.
Releases 4.1 - 4.3
------------------
Sorry, I forgot about updating the NEWS file for these releases. Please take a
look at ChangeLog.
Release 4.0 17-Feb-03
---------------------
There have been a lot of changes for the 4.0 release, adding additional
functionality and mending bugs. Below is a list of the highlights of the new
functionality. For full details of these features, please consult the
documentation. For a complete list of changes, see the ChangeLog file.
1. Support for Perl's \Q...\E escapes.
2. "Possessive quantifiers" ?+, *+, ++, and {,}+ which come from Sun's Java
package. They provide some syntactic sugar for simple cases of "atomic
grouping".
3. Support for the \G assertion. It is true when the current matching position
is at the start point of the match.
4. A new feature that provides some of the functionality that Perl provides
with (?{...}). The facility is termed a "callout". The way it is done in PCRE
is for the caller to provide an optional function, by setting pcre_callout to
its entry point. To get the function called, the regex must include (?C) at
appropriate points.
5. Support for recursive calls to individual subpatterns. This makes it really
easy to get totally confused.
6. Support for named subpatterns. The Python syntax (?P<name>...) is used to
name a group.
7. Several extensions to UTF-8 support; it is now fairly complete. There is an
option for pcregrep to make it operate in UTF-8 mode.
8. The single man page has been split into a number of separate man pages.
These also give rise to individual HTML pages which are put in a separate
directory. There is an index.html page that lists them all. Some hyperlinking
between the pages has been installed.
Release 3.5 15-Aug-01
---------------------
1. The configuring system has been upgraded to use later versions of autoconf
and libtool. By default it builds both a shared and a static library if the OS
supports it. You can use --disable-shared or --disable-static on the configure
command if you want only one of them.
2. The pcretest utility is now installed along with pcregrep because it is
useful for users (to test regexs) and by doing this, it automatically gets
relinked by libtool. The documentation has been turned into a man page, so
there are now .1, .txt, and .html versions in /doc.
3. Upgrades to pcregrep:
(i) Added long-form option names like gnu grep.
(ii) Added --help to list all options with an explanatory phrase.
(iii) Added -r, --recursive to recurse into sub-directories.
(iv) Added -f, --file to read patterns from a file.
4. Added --enable-newline-is-cr and --enable-newline-is-lf to the configure
script, to force use of CR or LF instead of \n in the source. On non-Unix
systems, the value can be set in config.h.
5. The limit of 200 on non-capturing parentheses is a _nesting_ limit, not an
absolute limit. Changed the text of the error message to make this clear, and
likewise updated the man page.
6. The limit of 99 on the number of capturing subpatterns has been removed.
The new limit is 65535, which I hope will not be a "real" limit.
Release 3.3 01-Aug-00
---------------------
There is some support for UTF-8 character strings. This is incomplete and
experimental. The documentation describes what is and what is not implemented.
Otherwise, this is just a bug-fixing release.
Release 3.0 01-Feb-00
---------------------
1. A "configure" script is now used to configure PCRE for Unix systems. It
builds a Makefile, a config.h file, and the pcre-config script.
2. PCRE is built as a shared library by default.
3. There is support for POSIX classes such as [:alpha:].
5. There is an experimental recursion feature.
----------------------------------------------------------------------------
IMPORTANT FOR THOSE UPGRADING FROM VERSIONS BEFORE 2.00
Please note that there has been a change in the API such that a larger
ovector is required at matching time, to provide some additional workspace.
The new man page has details. This change was necessary in order to support
some of the new functionality in Perl 5.005.
IMPORTANT FOR THOSE UPGRADING FROM VERSION 2.00
Another (I hope this is the last!) change has been made to the API for the
pcre_compile() function. An additional argument has been added to make it
possible to pass over a pointer to character tables built in the current
locale by pcre_maketables(). To use the default tables, this new argument
should be passed as NULL.
IMPORTANT FOR THOSE UPGRADING FROM VERSION 2.05
Yet another (and again I hope this really is the last) change has been made
to the API for the pcre_exec() function. An additional argument has been
added to make it possible to start the match other than at the start of the
subject string. This is important if there are lookbehinds. The new man
page has the details, but you just want to convert existing programs, all
you need to do is to stick in a new fifth argument to pcre_exec(), with a
value of zero. For example, change
pcre_exec(pattern, extra, subject, length, options, ovec, ovecsize)
to
pcre_exec(pattern, extra, subject, length, 0, options, ovec, ovecsize)
****

773
NON-AUTOTOOLS-BUILD Normal file
View File

@ -0,0 +1,773 @@
Building PCRE without using autotools
-------------------------------------
NOTE: This document relates to PCRE releases that use the original API, with
library names libpcre, libpcre16, and libpcre32. January 2015 saw the first
release of a new API, known as PCRE2, with release numbers starting at 10.00
and library names libpcre2-8, libpcre2-16, and libpcre2-32. The old libraries
(now called PCRE1) are now at end of life, and 8.45 is the final release. New
projects are advised to use the new PCRE2 libraries.
This document contains the following sections:
General
Generic instructions for the PCRE C library
The C++ wrapper functions
Building for virtual Pascal
Stack size in Windows environments
Linking programs in Windows environments
Calling conventions in Windows environments
Comments about Win32 builds
Building PCRE on Windows with CMake
Use of relative paths with CMake on Windows
Testing with RunTest.bat
Building under Windows CE with Visual Studio 200x
Building under Windows with BCC5.5
Building using Borland C++ Builder 2007 (CB2007) and higher
Building PCRE on OpenVMS
Building PCRE on Stratus OpenVOS
Building PCRE on native z/OS and z/VM
GENERAL
I (Philip Hazel) have no experience of Windows or VMS sytems and how their
libraries work. The items in the PCRE distribution and Makefile that relate to
anything other than Linux systems are untested by me.
There are some other comments and files (including some documentation in CHM
format) in the Contrib directory on the FTP site:
ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/Contrib
The basic PCRE library consists entirely of code written in Standard C, and so
should compile successfully on any system that has a Standard C compiler and
library. The C++ wrapper functions are a separate issue (see below).
The PCRE distribution includes a "configure" file for use by the configure/make
(autotools) build system, as found in many Unix-like environments. The README
file contains information about the options for "configure".
There is also support for CMake, which some users prefer, especially in Windows
environments, though it can also be run in Unix-like environments. See the
section entitled "Building PCRE on Windows with CMake" below.
Versions of config.h and pcre.h are distributed in the PCRE tarballs under the
names config.h.generic and pcre.h.generic. These are provided for those who
build PCRE without using "configure" or CMake. If you use "configure" or CMake,
the .generic versions are not used.
GENERIC INSTRUCTIONS FOR THE PCRE C LIBRARY
The following are generic instructions for building the PCRE C library "by
hand". If you are going to use CMake, this section does not apply to you; you
can skip ahead to the CMake section.
(1) Copy or rename the file config.h.generic as config.h, and edit the macro
settings that it contains to whatever is appropriate for your environment.
In particular, you can alter the definition of the NEWLINE macro to
specify what character(s) you want to be interpreted as line terminators.
In an EBCDIC environment, you MUST change NEWLINE, because its default
value is 10, an ASCII LF. The usual EBCDIC newline character is 21 (0x15,
NL), though in some cases it may be 37 (0x25).
When you compile any of the PCRE modules, you must specify -DHAVE_CONFIG_H
to your compiler so that config.h is included in the sources.
An alternative approach is not to edit config.h, but to use -D on the
compiler command line to make any changes that you need to the
configuration options. In this case -DHAVE_CONFIG_H must not be set.
NOTE: There have been occasions when the way in which certain parameters
in config.h are used has changed between releases. (In the configure/make
world, this is handled automatically.) When upgrading to a new release,
you are strongly advised to review config.h.generic before re-using what
you had previously.
(2) Copy or rename the file pcre.h.generic as pcre.h.
(3) EITHER:
Copy or rename file pcre_chartables.c.dist as pcre_chartables.c.
OR:
Compile dftables.c as a stand-alone program (using -DHAVE_CONFIG_H if
you have set up config.h), and then run it with the single argument
"pcre_chartables.c". This generates a set of standard character tables
and writes them to that file. The tables are generated using the default
C locale for your system. If you want to use a locale that is specified
by LC_xxx environment variables, add the -L option to the dftables
command. You must use this method if you are building on a system that
uses EBCDIC code.
The tables in pcre_chartables.c are defaults. The caller of PCRE can
specify alternative tables at run time.
(4) Ensure that you have the following header files:
pcre_internal.h
ucp.h
(5) For an 8-bit library, compile the following source files, setting
-DHAVE_CONFIG_H as a compiler option if you have set up config.h with your
configuration, or else use other -D settings to change the configuration
as required.
pcre_byte_order.c
pcre_chartables.c
pcre_compile.c
pcre_config.c
pcre_dfa_exec.c
pcre_exec.c
pcre_fullinfo.c
pcre_get.c
pcre_globals.c
pcre_jit_compile.c
pcre_maketables.c
pcre_newline.c
pcre_ord2utf8.c
pcre_refcount.c
pcre_string_utils.c
pcre_study.c
pcre_tables.c
pcre_ucd.c
pcre_valid_utf8.c
pcre_version.c
pcre_xclass.c
Make sure that you include -I. in the compiler command (or equivalent for
an unusual compiler) so that all included PCRE header files are first
sought in the current directory. Otherwise you run the risk of picking up
a previously-installed file from somewhere else.
Note that you must still compile pcre_jit_compile.c, even if you have not
defined SUPPORT_JIT in config.h, because when JIT support is not
configured, dummy functions are compiled. When JIT support IS configured,
pcre_jit_compile.c #includes sources from the sljit subdirectory, where
there should be 16 files, all of whose names begin with "sljit".
(6) Now link all the compiled code into an object library in whichever form
your system keeps such libraries. This is the basic PCRE C 8-bit library.
If your system has static and shared libraries, you may have to do this
once for each type.
(7) If you want to build a 16-bit library (as well as, or instead of the 8-bit
or 32-bit libraries) repeat steps 5-6 with the following files:
pcre16_byte_order.c
pcre16_chartables.c
pcre16_compile.c
pcre16_config.c
pcre16_dfa_exec.c
pcre16_exec.c
pcre16_fullinfo.c
pcre16_get.c
pcre16_globals.c
pcre16_jit_compile.c
pcre16_maketables.c
pcre16_newline.c
pcre16_ord2utf16.c
pcre16_refcount.c
pcre16_string_utils.c
pcre16_study.c
pcre16_tables.c
pcre16_ucd.c
pcre16_utf16_utils.c
pcre16_valid_utf16.c
pcre16_version.c
pcre16_xclass.c
(8) If you want to build a 32-bit library (as well as, or instead of the 8-bit
or 16-bit libraries) repeat steps 5-6 with the following files:
pcre32_byte_order.c
pcre32_chartables.c
pcre32_compile.c
pcre32_config.c
pcre32_dfa_exec.c
pcre32_exec.c
pcre32_fullinfo.c
pcre32_get.c
pcre32_globals.c
pcre32_jit_compile.c
pcre32_maketables.c
pcre32_newline.c
pcre32_ord2utf32.c
pcre32_refcount.c
pcre32_string_utils.c
pcre32_study.c
pcre32_tables.c
pcre32_ucd.c
pcre32_utf32_utils.c
pcre32_valid_utf32.c
pcre32_version.c
pcre32_xclass.c
(9) If you want to build the POSIX wrapper functions (which apply only to the
8-bit library), ensure that you have the pcreposix.h file and then compile
pcreposix.c (remembering -DHAVE_CONFIG_H if necessary). Link the result
(on its own) as the pcreposix library.
(10) The pcretest program can be linked with any combination of the 8-bit,
16-bit and 32-bit libraries (depending on what you selected in config.h).
Compile pcretest.c and pcre_printint.c (again, don't forget
-DHAVE_CONFIG_H) and link them together with the appropriate library/ies.
If you compiled an 8-bit library, pcretest also needs the pcreposix
wrapper library unless you compiled it with -DNOPOSIX.
(11) Run pcretest on the testinput files in the testdata directory, and check
that the output matches the corresponding testoutput files. There are
comments about what each test does in the section entitled "Testing PCRE"
in the README file. If you compiled more than one of the 8-bit, 16-bit and
32-bit libraries, you need to run pcretest with the -16 option to do
16-bit tests and with the -32 option to do 32-bit tests.
Some tests are relevant only when certain build-time options are selected.
For example, test 4 is for UTF-8/UTF-16/UTF-32 support, and will not run
if you have built PCRE without it. See the comments at the start of each
testinput file. If you have a suitable Unix-like shell, the RunTest script
will run the appropriate tests for you. The command "RunTest list" will
output a list of all the tests.
Note that the supplied files are in Unix format, with just LF characters
as line terminators. You may need to edit them to change this if your
system uses a different convention. If you are using Windows, you probably
should use the wintestinput3 file instead of testinput3 (and the
corresponding output file). This is a locale test; wintestinput3 sets the
locale to "french" rather than "fr_FR", and there some minor output
differences.
(12) If you have built PCRE with SUPPORT_JIT, the JIT features will be tested
by the testdata files. However, you might also like to build and run
the freestanding JIT test program, pcre_jit_test.c.
(13) If you want to use the pcregrep command, compile and link pcregrep.c; it
uses only the basic 8-bit PCRE library (it does not need the pcreposix
library).
THE C++ WRAPPER FUNCTIONS
The PCRE distribution also contains some C++ wrapper functions and tests,
applicable to the 8-bit library, which were contributed by Google Inc. On a
system that can use "configure" and "make", the functions are automatically
built into a library called pcrecpp. It should be straightforward to compile
the .cc files manually on other systems. The files called xxx_unittest.cc are
test programs for each of the corresponding xxx.cc files.
BUILDING FOR VIRTUAL PASCAL
A script for building PCRE using Borland's C++ compiler for use with VPASCAL
was contributed by Alexander Tokarev. Stefan Weber updated the script and added
additional files. The following files in the distribution are for building PCRE
for use with VP/Borland: makevp_c.txt, makevp_l.txt, makevp.bat, pcregexp.pas.
STACK SIZE IN WINDOWS ENVIRONMENTS
The default processor stack size of 1Mb in some Windows environments is too
small for matching patterns that need much recursion. In particular, test 2 may
fail because of this. Normally, running out of stack causes a crash, but there
have been cases where the test program has just died silently. See your linker
documentation for how to increase stack size if you experience problems. The
Linux default of 8Mb is a reasonable choice for the stack, though even that can
be too small for some pattern/subject combinations.
PCRE has a compile configuration option to disable the use of stack for
recursion so that heap is used instead. However, pattern matching is
significantly slower when this is done. There is more about stack usage in the
"pcrestack" documentation.
LINKING PROGRAMS IN WINDOWS ENVIRONMENTS
If you want to statically link a program against a PCRE library in the form of
a non-dll .a file, you must define PCRE_STATIC before including pcre.h or
pcrecpp.h, otherwise the pcre_malloc() and pcre_free() exported functions will
be declared __declspec(dllimport), with unwanted results.
CALLING CONVENTIONS IN WINDOWS ENVIRONMENTS
It is possible to compile programs to use different calling conventions using
MSVC. Search the web for "calling conventions" for more information. To make it
easier to change the calling convention for the exported functions in the
PCRE library, the macro PCRE_CALL_CONVENTION is present in all the external
definitions. It can be set externally when compiling (e.g. in CFLAGS). If it is
not set, it defaults to empty; the default calling convention is then used
(which is what is wanted most of the time).
COMMENTS ABOUT WIN32 BUILDS (see also "BUILDING PCRE ON WINDOWS WITH CMAKE")
There are two ways of building PCRE using the "configure, make, make install"
paradigm on Windows systems: using MinGW or using Cygwin. These are not at all
the same thing; they are completely different from each other. There is also
support for building using CMake, which some users find a more straightforward
way of building PCRE under Windows.
The MinGW home page (http://www.mingw.org/) says this:
MinGW: A collection of freely available and freely distributable Windows
specific header files and import libraries combined with GNU toolsets that
allow one to produce native Windows programs that do not rely on any
3rd-party C runtime DLLs.
The Cygwin home page (http://www.cygwin.com/) says this:
Cygwin is a Linux-like environment for Windows. It consists of two parts:
. A DLL (cygwin1.dll) which acts as a Linux API emulation layer providing
substantial Linux API functionality
. A collection of tools which provide Linux look and feel.
The Cygwin DLL currently works with all recent, commercially released x86 32
bit and 64 bit versions of Windows, with the exception of Windows CE.
On both MinGW and Cygwin, PCRE should build correctly using:
./configure && make && make install
This should create two libraries called libpcre and libpcreposix, and, if you
have enabled building the C++ wrapper, a third one called libpcrecpp. These are
independent libraries: when you link with libpcreposix or libpcrecpp you must
also link with libpcre, which contains the basic functions. (Some earlier
releases of PCRE included the basic libpcre functions in libpcreposix. This no
longer happens.)
A user submitted a special-purpose patch that makes it easy to create
"pcre.dll" under mingw32 using the "msys" environment. It provides "pcre.dll"
as a special target. If you use this target, no other files are built, and in
particular, the pcretest and pcregrep programs are not built. An example of how
this might be used is:
./configure --enable-utf --disable-cpp CFLAGS="-03 -s"; make pcre.dll
Using Cygwin's compiler generates libraries and executables that depend on
cygwin1.dll. If a library that is generated this way is distributed,
cygwin1.dll has to be distributed as well. Since cygwin1.dll is under the GPL
licence, this forces not only PCRE to be under the GPL, but also the entire
application. A distributor who wants to keep their own code proprietary must
purchase an appropriate Cygwin licence.
MinGW has no such restrictions. The MinGW compiler generates a library or
executable that can run standalone on Windows without any third party dll or
licensing issues.
But there is more complication:
If a Cygwin user uses the -mno-cygwin Cygwin gcc flag, what that really does is
to tell Cygwin's gcc to use the MinGW gcc. Cygwin's gcc is only acting as a
front end to MinGW's gcc (if you install Cygwin's gcc, you get both Cygwin's
gcc and MinGW's gcc). So, a user can:
. Build native binaries by using MinGW or by getting Cygwin and using
-mno-cygwin.
. Build binaries that depend on cygwin1.dll by using Cygwin with the normal
compiler flags.
The test files that are supplied with PCRE are in UNIX format, with LF
characters as line terminators. Unless your PCRE library uses a default newline
option that includes LF as a valid newline, it may be necessary to change the
line terminators in the test files to get some of the tests to work.
BUILDING PCRE ON WINDOWS WITH CMAKE
CMake is an alternative configuration facility that can be used instead of
"configure". CMake creates project files (make files, solution files, etc.)
tailored to numerous development environments, including Visual Studio,
Borland, Msys, MinGW, NMake, and Unix. If possible, use short paths with no
spaces in the names for your CMake installation and your PCRE source and build
directories.
The following instructions were contributed by a PCRE user. If they are not
followed exactly, errors may occur. In the event that errors do occur, it is
recommended that you delete the CMake cache before attempting to repeat the
CMake build process. In the CMake GUI, the cache can be deleted by selecting
"File > Delete Cache".
1. Install the latest CMake version available from http://www.cmake.org/, and
ensure that cmake\bin is on your path.
2. Unzip (retaining folder structure) the PCRE source tree into a source
directory such as C:\pcre. You should ensure your local date and time
is not earlier than the file dates in your source dir if the release is
very new.
3. Create a new, empty build directory, preferably a subdirectory of the
source dir. For example, C:\pcre\pcre-xx\build.
4. Run cmake-gui from the Shell envirornment of your build tool, for example,
Msys for Msys/MinGW or Visual Studio Command Prompt for VC/VC++. Do not try
to start Cmake from the Windows Start menu, as this can lead to errors.
5. Enter C:\pcre\pcre-xx and C:\pcre\pcre-xx\build for the source and build
directories, respectively.
6. Hit the "Configure" button.
7. Select the particular IDE / build tool that you are using (Visual
Studio, MSYS makefiles, MinGW makefiles, etc.)
8. The GUI will then list several configuration options. This is where
you can enable UTF-8 support or other PCRE optional features.
9. Hit "Configure" again. The adjacent "Generate" button should now be
active.
10. Hit "Generate".
11. The build directory should now contain a usable build system, be it a
solution file for Visual Studio, makefiles for MinGW, etc. Exit from
cmake-gui and use the generated build system with your compiler or IDE.
E.g., for MinGW you can run "make", or for Visual Studio, open the PCRE
solution, select the desired configuration (Debug, or Release, etc.) and
build the ALL_BUILD project.
12. If during configuration with cmake-gui you've elected to build the test
programs, you can execute them by building the test project. E.g., for
MinGW: "make test"; for Visual Studio build the RUN_TESTS project. The
most recent build configuration is targeted by the tests. A summary of
test results is presented. Complete test output is subsequently
available for review in Testing\Temporary under your build dir.
USE OF RELATIVE PATHS WITH CMAKE ON WINDOWS
A PCRE user comments as follows: I thought that others may want to know the
current state of CMAKE_USE_RELATIVE_PATHS support on Windows. Here it is:
-- AdditionalIncludeDirectories is only partially modified (only the
first path - see below)
-- Only some of the contained file paths are modified - shown below for
pcre.vcproj
-- It properly modifies
I am sure CMake people can fix that if they want to. Until then one will
need to replace existing absolute paths in project files with relative
paths manually (e.g. from VS) - relative to project file location. I did
just that before being told to try CMAKE_USE_RELATIVE_PATHS. Not a big
deal.
AdditionalIncludeDirectories="E:\builds\pcre\build;E:\builds\pcre\pcre-7.5;"
AdditionalIncludeDirectories=".;E:\builds\pcre\pcre-7.5;"
RelativePath="pcre.h"
RelativePath="pcre_chartables.c"
RelativePath="pcre_chartables.c.rule"
TESTING WITH RUNTEST.BAT
If configured with CMake, building the test project ("make test" or building
ALL_TESTS in Visual Studio) creates (and runs) pcre_test.bat (and depending
on your configuration options, possibly other test programs) in the build
directory. Pcre_test.bat runs RunTest.Bat with correct source and exe paths.
For manual testing with RunTest.bat, provided the build dir is a subdirectory
of the source directory: Open command shell window. Chdir to the location
of your pcretest.exe and pcregrep.exe programs. Call RunTest.bat with
"..\RunTest.Bat" or "..\..\RunTest.bat" as appropriate.
To run only a particular test with RunTest.Bat provide a test number argument.
Otherwise:
1. Copy RunTest.bat into the directory where pcretest.exe and pcregrep.exe
have been created.
2. Edit RunTest.bat to indentify the full or relative location of
the pcre source (wherein which the testdata folder resides), e.g.:
set srcdir=C:\pcre\pcre-8.20
3. In a Windows command environment, chdir to the location of your bat and
exe programs.
4. Run RunTest.bat. Test outputs will automatically be compared to expected
results, and discrepancies will be identified in the console output.
To independently test the just-in-time compiler, run pcre_jit_test.exe.
To test pcrecpp, run pcrecpp_unittest.exe, pcre_stringpiece_unittest.exe and
pcre_scanner_unittest.exe.
BUILDING UNDER WINDOWS CE WITH VISUAL STUDIO 200x
Vincent Richomme sent a zip archive of files to help with this process. They
can be found in the file "pcre-vsbuild.zip" in the Contrib directory of the FTP
site.
BUILDING UNDER WINDOWS WITH BCC5.5
Michael Roy sent these comments about building PCRE under Windows with BCC5.5:
Some of the core BCC libraries have a version of PCRE from 1998 built in, which
can lead to pcre_exec() giving an erroneous PCRE_ERROR_NULL from a version
mismatch. I'm including an easy workaround below, if you'd like to include it
in the non-unix instructions:
When linking a project with BCC5.5, pcre.lib must be included before any of the
libraries cw32.lib, cw32i.lib, cw32mt.lib, and cw32mti.lib on the command line.
BUILDING USING BORLAND C++ BUILDER 2007 (CB2007) AND HIGHER
A PCRE user sent these comments about this environment (see also the comment
from another user that follows them):
The XE versions of C++ Builder come with a RegularExpressionsCore class which
contain a version of TPerlRegEx. However, direct use of the C PCRE library may
be desirable.
The default makevp.bat, however, supplied with PCRE builds a version of PCRE
that is not usable with any version of C++ Builder because the compiler ships
with an embedded version of PCRE, version 2.01 from 1998! [See also the note
about BCC5.5 above.] If you want to use PCRE you'll need to rename the
functions (pcre_compile to pcre_compile_bcc, etc) or do as I have done and just
use the 16 bit versions. I'm using std::wstring everywhere anyway. Since the
embedded version of PCRE does not have the 16 bit function names, there is no
conflict.
Building PCRE using a C++ Builder static library project file (recommended):
1. Rename or remove pcre.h, pcreposi.h, and pcreposix.h from your C++ Builder
original include path.
2. Download PCRE from pcre.org and extract to a directory.
3. Rename pcre_chartables.c.dist to pcre_chartables.c, pcre.h.generic to
pcre.h, and config.h.generic to config.h.
4. Edit pcre.h and pcre_config.c so that they include config.h.
5. Edit config.h like so:
Comment out the following lines:
#define PACKAGE "pcre"
#define PACKAGE_BUGREPORT ""
#define PACKAGE_NAME "PCRE"
#define PACKAGE_STRING "PCRE 8.32"
#define PACKAGE_TARNAME "pcre"
#define PACKAGE_URL ""
#define PACKAGE_VERSION "8.32"
Add the following lines:
#ifndef SUPPORT_UTF
#define SUPPORT_UTF 100 // any value is fine
#endif
#ifndef SUPPORT_UCP
#define SUPPORT_UCP 101 // any value is fine
#endif
#ifndef SUPPORT_UCP
#define SUPPORT_PCRE16 102 // any value is fine
#endif
#ifndef SUPPORT_UTF8
#define SUPPORT_UTF8 103 // any value is fine
#endif
6. Build a C++ Builder project using the IDE. Go to File / New / Other and
choose Static Library. You can name it pcre.cbproj or whatever. Now set your
paths by going to Project / Options. Set the Include path. Do this from the
"Base" option to apply to both Release and Debug builds. Now add the following
files to the project:
pcre.h
pcre16_byte_order.c
pcre16_chartables.c
pcre16_compile.c
pcre16_config.c
pcre16_dfa_exec.c
pcre16_exec.c
pcre16_fullinfo.c
pcre16_get.c
pcre16_globals.c
pcre16_maketables.c
pcre16_newline.c
pcre16_ord2utf16.c
pcre16_printint.c
pcre16_refcount.c
pcre16_string_utils.c
pcre16_study.c
pcre16_tables.c
pcre16_ucd.c
pcre16_utf16_utils.c
pcre16_valid_utf16.c
pcre16_version.c
pcre16_xclass.c
//Optional
pcre_version.c
7. After compiling the .lib file, copy the .lib and header files to a project
you want to use PCRE with. Enjoy.
Optional ... Building PCRE using the makevp.bat file:
1. Edit makevp_c.txt and makevp_l.txt and change all the names to the 16 bit
versions.
2. Edit makevp.bat and set the path to C++ Builder. Run makevp.bat.
Another PCRE user added this comment:
Another approach I successfully used for some years with BCB 5 and 6 was to
make sure that include and library paths of PCRE are configured before the
default paths of the IDE in the dialogs where one can manage those paths.
Afterwards one can open the project files using a text editor and manually add
the self created library for pcre itself, pcrecpp doesn't ship with the IDE, in
the library nodes where the IDE manages its own libraries to link against in
front of the IDE-own libraries. This way one can use the default PCRE function
names without getting access violations on runtime.
<ALLLIB value="libpcre.lib $(LIBFILES) $(LIBRARIES) import32.lib cp32mt.lib"/>
BUILDING PCRE ON OPENVMS
Stephen Hoffman sent the following, in December 2012:
"Here <http://labs.hoffmanlabs.com/node/1847> is a very short write-up on the
OpenVMS port and here
<http://labs.hoffmanlabs.com/labsnotes/pcre-vms-8_32.zip>
is a zip with the OpenVMS files, and with one modified testing-related PCRE
file." This is a port of PCRE 8.32.
Earlier, Dan Mooney sent the following comments about building PCRE on OpenVMS.
They relate to an older version of PCRE that used fewer source files, so the
exact commands will need changing. See the current list of source files above.
"It was quite easy to compile and link the library. I don't have a formal
make file but the attached file [reproduced below] contains the OpenVMS DCL
commands I used to build the library. I had to add #define
POSIX_MALLOC_THRESHOLD 10 to pcre.h since it was not defined anywhere.
The library was built on:
O/S: HP OpenVMS v7.3-1
Compiler: Compaq C v6.5-001-48BCD
Linker: vA13-01
The test results did not match 100% due to the issues you mention in your
documentation regarding isprint(), iscntrl(), isgraph() and ispunct(). I
modified some of the character tables temporarily and was able to get the
results to match. Tests using the fr locale did not match since I don't have
that locale loaded. The study size was always reported to be 3 less than the
value in the standard test output files."
=========================
$! This DCL procedure builds PCRE on OpenVMS
$!
$! I followed the instructions in the non-unix-use file in the distribution.
$!
$ COMPILE == "CC/LIST/NOMEMBER_ALIGNMENT/PREFIX_LIBRARY_ENTRIES=ALL_ENTRIES
$ COMPILE DFTABLES.C
$ LINK/EXE=DFTABLES.EXE DFTABLES.OBJ
$ RUN DFTABLES.EXE/OUTPUT=CHARTABLES.C
$ COMPILE MAKETABLES.C
$ COMPILE GET.C
$ COMPILE STUDY.C
$! I had to set POSIX_MALLOC_THRESHOLD to 10 in PCRE.H since the symbol
$! did not seem to be defined anywhere.
$! I edited pcre.h and added #DEFINE SUPPORT_UTF8 to enable UTF8 support.
$ COMPILE PCRE.C
$ LIB/CREATE PCRE MAKETABLES.OBJ, GET.OBJ, STUDY.OBJ, PCRE.OBJ
$! I had to set POSIX_MALLOC_THRESHOLD to 10 in PCRE.H since the symbol
$! did not seem to be defined anywhere.
$ COMPILE PCREPOSIX.C
$ LIB/CREATE PCREPOSIX PCREPOSIX.OBJ
$ COMPILE PCRETEST.C
$ LINK/EXE=PCRETEST.EXE PCRETEST.OBJ, PCRE/LIB, PCREPOSIX/LIB
$! C programs that want access to command line arguments must be
$! defined as a symbol
$ PCRETEST :== "$ SYS$ROADSUSERS:[DMOONEY.REGEXP]PCRETEST.EXE"
$! Arguments must be enclosed in quotes.
$ PCRETEST "-C"
$! Test results:
$!
$! The test results did not match 100%. The functions isprint(), iscntrl(),
$! isgraph() and ispunct() on OpenVMS must not produce the same results
$! as the system that built the test output files provided with the
$! distribution.
$!
$! The study size did not match and was always 3 less on OpenVMS.
$!
$! Locale could not be set to fr
$!
=========================
BUILDING PCRE ON STRATUS OPENVOS
These notes on the port of PCRE to VOS (lightly edited) were supplied by
Ashutosh Warikoo, whose email address has the local part awarikoo and the
domain nse.co.in. The port was for version 7.9 in August 2009.
1. Building PCRE
I built pcre on OpenVOS Release 17.0.1at using GNU Tools 3.4a without any
problems. I used the following packages to build PCRE:
ftp://ftp.stratus.com/pub/vos/posix/ga/posix.save.evf.gz
Please read and follow the instructions that come with these packages. To start
the build of pcre, from the root of the package type:
./build.sh
2. Installing PCRE
Once you have successfully built PCRE, login to the SysAdmin group, switch to
the root user, and type
[ !create_dir (master_disk)>usr --if needed ]
[ !create_dir (master_disk)>usr>local --if needed ]
!gmake install
This installs PCRE and its man pages into /usr/local. You can add
(master_disk)>usr>local>bin to your command search paths, or if you are in
BASH, add /usr/local/bin to the PATH environment variable.
4. Restrictions
This port requires readline library optionally. However during the build I
faced some yet unexplored errors while linking with readline. As it was an
optional component I chose to disable it.
5. Known Problems
I ran the test suite, but you will have to be your own judge of whether this
command, and this port, suits your purposes. If you find any problems that
appear to be related to the port itself, please let me know. Please see the
build.log file in the root of the package also.
BUILDING PCRE ON NATIVE Z/OS AND Z/VM
z/OS and z/VM are operating systems for mainframe computers, produced by IBM.
The character code used is EBCDIC, not ASCII or Unicode. In z/OS, UNIX APIs and
applications can be supported through UNIX System Services, and in such an
environment PCRE can be built in the same way as in other systems. However, in
native z/OS (without UNIX System Services) and in z/VM, special ports are
required. PCRE1 version 8.39 is available in file 882 on this site:
http://www.cbttape.org
Everything, source and executable, is in EBCDIC and native z/OS file formats.
However, this software is not maintained and will not be upgraded. If you are
new to PCRE you should be looking at PCRE2 (version 10.30 or later).
==========================
Last Updated: 15 June 2021
==========================

7
NON-UNIX-USE Normal file
View File

@ -0,0 +1,7 @@
Compiling PCRE on non-Unix systems
----------------------------------
This has been renamed to better reflect its contents. Please see the file
NON-AUTOTOOLS-BUILD for details of how to build PCRE without using autotools.
####

258
PrepareRelease Executable file
View File

@ -0,0 +1,258 @@
#/bin/sh
# Script to prepare the files for building a PCRE release. It does some
# processing of the documentation, detrails files, and creates pcre.h.generic
# and config.h.generic (for use by builders who can't run ./configure).
# You must run this script before runnning "make dist". If its first argument
# is "doc", it stops after preparing the documentation. There are no other
# arguments. The script makes use of the following files:
# 132html A Perl script that converts a .1 or .3 man page into HTML. It
# "knows" the relevant troff constructs that are used in the PCRE
# man pages.
# CheckMan A Perl script that checks man pages for typos in the mark up.
# CleanTxt A Perl script that cleans up the output of "nroff -man" by
# removing backspaces and other redundant text so as to produce
# a readable .txt file.
# Detrail A Perl script that removes trailing spaces from files.
# doc/index.html.src
# A file that is copied as index.html into the doc/html directory
# when the HTML documentation is built. It works like this so that
# doc/html can be deleted and re-created from scratch.
# README & NON-AUTOTOOLS-BUILD
# These files are copied into the doc/html directory, with .txt
# extensions so that they can by hyperlinked from the HTML
# documentation, because some people just go to the HTML without
# looking for text files.
# First, sort out the documentation. Remove pcredemo.3 first because it won't
# pass the markup check (it is created below, using markup that none of the
# other pages use).
cd doc
echo Processing documentation
/bin/rm -f pcredemo.3
# Check the remaining man pages
perl ../CheckMan *.1 *.3
if [ $? != 0 ] ; then exit 1; fi
# Make Text form of the documentation. It needs some mangling to make it
# tidy for online reading. Concatenate all the .3 stuff, but omit the
# individual function pages.
cat <<End >pcre.txt
-----------------------------------------------------------------------------
This file contains a concatenation of the PCRE man pages, converted to plain
text format for ease of searching with a text editor, or for use on systems
that do not have a man page processor. The small individual files that give
synopses of each function in the library have not been included. Neither has
the pcredemo program. There are separate text files for the pcregrep and
pcretest commands.
-----------------------------------------------------------------------------
End
echo "Making pcre.txt"
for file in pcre pcre16 pcre32 pcrebuild pcrematching pcreapi pcrecallout \
pcrecompat pcrepattern pcresyntax pcreunicode pcrejit pcrepartial \
pcreprecompile pcreperform pcreposix pcrecpp pcresample \
pcrelimits pcrestack ; do
echo " Processing $file.3"
nroff -c -man $file.3 >$file.rawtxt
perl ../CleanTxt <$file.rawtxt >>pcre.txt
/bin/rm $file.rawtxt
echo "------------------------------------------------------------------------------" >>pcre.txt
if [ "$file" != "pcresample" ] ; then
echo " " >>pcre.txt
echo " " >>pcre.txt
fi
done
# The three commands
for file in pcretest pcregrep pcre-config ; do
echo Making $file.txt
nroff -c -man $file.1 >$file.rawtxt
perl ../CleanTxt <$file.rawtxt >$file.txt
/bin/rm $file.rawtxt
done
# Make pcredemo.3 from the pcredemo.c source file
echo "Making pcredemo.3"
perl <<"END" >pcredemo.3
open(IN, "../pcredemo.c") || die "Failed to open pcredemo.c\n";
open(OUT, ">pcredemo.3") || die "Failed to open pcredemo.3\n";
print OUT ".\\\" Start example.\n" .
".de EX\n" .
". nr mE \\\\n(.f\n" .
". nf\n" .
". nh\n" .
". ft CW\n" .
"..\n" .
".\n" .
".\n" .
".\\\" End example.\n" .
".de EE\n" .
". ft \\\\n(mE\n" .
". fi\n" .
". hy \\\\n(HY\n" .
"..\n" .
".\n" .
".EX\n" ;
while (<IN>)
{
s/\\/\\e/g;
print OUT;
}
print OUT ".EE\n";
close(IN);
close(OUT);
END
if [ $? != 0 ] ; then exit 1; fi
# Make HTML form of the documentation.
echo "Making HTML documentation"
/bin/rm html/*
cp index.html.src html/index.html
cp ../README html/README.txt
cp ../NON-AUTOTOOLS-BUILD html/NON-AUTOTOOLS-BUILD.txt
for file in *.1 ; do
base=`basename $file .1`
echo " Making $base.html"
perl ../132html -toc $base <$file >html/$base.html
done
# Exclude table of contents for function summaries. It seems that expr
# forces an anchored regex. Also exclude them for small pages that have
# only one section.
for file in *.3 ; do
base=`basename $file .3`
toc=-toc
if [ `expr $base : '.*_'` -ne 0 ] ; then toc="" ; fi
if [ "$base" = "pcresample" ] || \
[ "$base" = "pcrestack" ] || \
[ "$base" = "pcrecompat" ] || \
[ "$base" = "pcrelimits" ] || \
[ "$base" = "pcreperform" ] || \
[ "$base" = "pcreunicode" ] ; then
toc=""
fi
echo " Making $base.html"
perl ../132html $toc $base <$file >html/$base.html
if [ $? != 0 ] ; then exit 1; fi
done
# End of documentation processing; stop if only documentation required.
cd ..
echo Documentation done
if [ "$1" = "doc" ] ; then exit; fi
# These files are detrailed; do not detrail the test data because there may be
# significant trailing spaces. Do not detrail RunTest.bat, because it has CRLF
# line endings and the detrail script removes all trailing white space. The
# configure files are also omitted from the detrailing. We don't bother with
# those pcre[16|32]_xx files that just define COMPILE_PCRE16 and then #include the
# common file, because they aren't going to change.
files="\
Makefile.am \
Makefile.in \
configure.ac \
README \
LICENCE \
COPYING \
AUTHORS \
NEWS \
NON-UNIX-USE \
NON-AUTOTOOLS-BUILD \
INSTALL \
132html \
CleanTxt \
Detrail \
ChangeLog \
CMakeLists.txt \
RunGrepTest \
RunTest \
pcre-config.in \
libpcre.pc.in \
libpcre16.pc.in \
libpcre32.pc.in \
libpcreposix.pc.in \
libpcrecpp.pc.in \
config.h.in \
pcre_chartables.c.dist \
pcredemo.c \
pcregrep.c \
pcretest.c \
dftables.c \
pcreposix.c \
pcreposix.h \
pcre.h.in \
pcre_internal.h \
pcre_byte_order.c \
pcre_compile.c \
pcre_config.c \
pcre_dfa_exec.c \
pcre_exec.c \
pcre_fullinfo.c \
pcre_get.c \
pcre_globals.c \
pcre_jit_compile.c \
pcre_jit_test.c \
pcre_maketables.c \
pcre_newline.c \
pcre_ord2utf8.c \
pcre16_ord2utf16.c \
pcre32_ord2utf32.c \
pcre_printint.c \
pcre_refcount.c \
pcre_string_utils.c \
pcre_study.c \
pcre_tables.c \
pcre_valid_utf8.c \
pcre_version.c \
pcre_xclass.c \
pcre16_utf16_utils.c \
pcre32_utf32_utils.c \
pcre16_valid_utf16.c \
pcre32_valid_utf32.c \
pcre_scanner.cc \
pcre_scanner.h \
pcre_scanner_unittest.cc \
pcrecpp.cc \
pcrecpp.h \
pcrecpparg.h.in \
pcrecpp_unittest.cc \
pcre_stringpiece.cc \
pcre_stringpiece.h.in \
pcre_stringpiece_unittest.cc \
perltest.pl \
ucp.h \
makevp.bat \
pcre.def \
libpcre.def \
libpcreposix.def"
echo Detrailing
perl ./Detrail $files doc/p* doc/html/*
echo Done
#End

1002
README Normal file

File diff suppressed because it is too large Load Diff

593
RunGrepTest Executable file
View File

@ -0,0 +1,593 @@
#! /bin/sh
# Run pcregrep tests. The assumption is that the PCRE tests check the library
# itself. What we are checking here is the file handling and options that are
# supported by pcregrep. This script must be run in the build directory.
# Set the C locale, so that sort(1) behaves predictably.
LC_ALL=C
export LC_ALL
# Remove any non-default colouring and aliases that the caller may have set.
unset PCREGREP_COLOUR PCREGREP_COLOR
unset cp ls mv rm
# Remember the current (build) directory, set the program to be tested, and
# valgrind settings when requested.
builddir=`pwd`
pcregrep=$builddir/pcregrep
valgrind=
while [ $# -gt 0 ] ; do
case $1 in
valgrind) valgrind="valgrind -q --leak-check=no --smc-check=all";;
*) echo "RunGrepTest: Unknown argument $1"; exit 1;;
esac
shift
done
echo " "
pcregrep_version=`$pcregrep -V`
if [ "$valgrind" = "" ] ; then
echo "Testing $pcregrep_version"
else
echo "Testing $pcregrep_version using valgrind"
fi
# Set up a suitable "diff" command for comparison. Some systems have a diff
# that lacks a -u option. Try to deal with this; better do the test for the -b
# option as well.
cf="diff"
diff -b /dev/null /dev/null 2>/dev/null && cf="diff -b"
diff -u /dev/null /dev/null 2>/dev/null && cf="diff -u"
diff -ub /dev/null /dev/null 2>/dev/null && cf="diff -ub"
# If this test is being run from "make check", $srcdir will be set. If not, set
# it to the current or parent directory, whichever one contains the test data.
# Subsequently, we run most of the pcregrep tests in the source directory so
# that the file names in the output are always the same.
if [ -z "$srcdir" -o ! -d "$srcdir/testdata" ] ; then
if [ -d "./testdata" ] ; then
srcdir=.
elif [ -d "../testdata" ] ; then
srcdir=..
else
echo "Cannot find the testdata directory"
exit 1
fi
fi
# Check for the availability of UTF-8 support
./pcretest -C utf >/dev/null
utf8=$?
# We need valgrind suppressions when JIT is in use. (This isn't perfect because
# some tests are run with -no-jit, but as PCRE1 is in maintenance only, I have
# not bothered about that.)
./pcretest -C jit >/dev/null
if [ $? -eq 1 -a "$valgrind" != "" ] ; then
valgrind="$valgrind --suppressions=./testdata/valgrind-jit.supp"
fi
echo "Testing pcregrep main features"
echo "---------------------------- Test 1 ------------------------------" >testtrygrep
(cd $srcdir; $valgrind $pcregrep PATTERN ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 2 ------------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep '^PATTERN' ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 3 ------------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -in PATTERN ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 4 ------------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -ic PATTERN ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 5 ------------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -in PATTERN ./testdata/grepinput ./testdata/grepinputx) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 6 ------------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -inh PATTERN ./testdata/grepinput ./testdata/grepinputx) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 7 ------------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -il PATTERN ./testdata/grepinput ./testdata/grepinputx) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 8 ------------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -l PATTERN ./testdata/grepinput ./testdata/grepinputx) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 9 ------------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -q PATTERN ./testdata/grepinput ./testdata/grepinputx) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 10 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -q NEVER-PATTERN ./testdata/grepinput ./testdata/grepinputx) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 11 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -vn pattern ./testdata/grepinputx) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 12 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -ix pattern ./testdata/grepinputx) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 13 -----------------------------" >>testtrygrep
echo seventeen >testtemp1grep
(cd $srcdir; $valgrind $pcregrep -f./testdata/greplist -f $builddir/testtemp1grep ./testdata/grepinputx) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 14 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -w pat ./testdata/grepinput ./testdata/grepinputx) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 15 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep 'abc^*' ./testdata/grepinput) 2>>testtrygrep >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 16 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep abc ./testdata/grepinput ./testdata/nonexistfile) 2>>testtrygrep >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 17 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -M 'the\noutput' ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 18 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -Mn '(the\noutput|dog\.\n--)' ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 19 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -Mix 'Pattern' ./testdata/grepinputx) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 20 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -Mixn 'complete pair\nof lines' ./testdata/grepinputx) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 21 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -nA3 'four' ./testdata/grepinputx) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 22 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -nB3 'four' ./testdata/grepinputx) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 23 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -C3 'four' ./testdata/grepinputx) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 24 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -A9 'four' ./testdata/grepinputx) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 25 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -nB9 'four' ./testdata/grepinputx) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 26 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -A9 -B9 'four' ./testdata/grepinputx) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 27 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -A10 'four' ./testdata/grepinputx) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 28 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -nB10 'four' ./testdata/grepinputx) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 29 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -C12 -B10 'four' ./testdata/grepinputx) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 30 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -inB3 'pattern' ./testdata/grepinput ./testdata/grepinputx) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 31 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -inA3 'pattern' ./testdata/grepinput ./testdata/grepinputx) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 32 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -L 'fox' ./testdata/grepinput ./testdata/grepinputx) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 33 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep 'fox' ./testdata/grepnonexist) >>testtrygrep 2>&1
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 34 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -s 'fox' ./testdata/grepnonexist) >>testtrygrep 2>&1
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 35 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -L -r --include=grepinputx --include grepinput8 --exclude-dir='^\.' 'fox' ./testdata | sort) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 36 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -L -r --include=grepinput --exclude 'grepinput$' --exclude=grepinput8 --exclude-dir='^\.' 'fox' ./testdata | sort) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 37 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep '^(a+)*\d' ./testdata/grepinput) >>testtrygrep 2>teststderrgrep
echo "RC=$?" >>testtrygrep
echo "======== STDERR ========" >>testtrygrep
cat teststderrgrep >>testtrygrep
echo "---------------------------- Test 38 ------------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep '>\x00<' ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 39 ------------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -A1 'before the binary zero' ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 40 ------------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -B1 'after the binary zero' ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 41 ------------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -B1 -o '\w+ the binary zero' ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 42 ------------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -B1 -onH '\w+ the binary zero' ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 43 ------------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -on 'before|zero|after' ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 44 ------------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -on -e before -ezero -e after ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 45 ------------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -on -f ./testdata/greplist -e binary ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 46 ------------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -eabc -e '(unclosed' ./testdata/grepinput) 2>>testtrygrep >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 47 ------------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -Fx "AB.VE
elephant" ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 48 ------------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -F "AB.VE
elephant" ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 49 ------------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -F -e DATA -e "AB.VE
elephant" ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 50 ------------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep "^(abc|def|ghi|jkl)" ./testdata/grepinputx) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 51 ------------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -Mv "brown\sfox" ./testdata/grepinputv) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 52 ------------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep --colour=always jumps ./testdata/grepinputv) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 53 ------------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep --file-offsets 'before|zero|after' ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 54 ------------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep --line-offsets 'before|zero|after' ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 55 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -f./testdata/greplist --color=always ./testdata/grepinputx) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 56 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -c lazy ./testdata/grepinput*) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 57 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -c -l lazy ./testdata/grepinput*) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 58 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep --regex=PATTERN ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 59 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep --regexp=PATTERN ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 60 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep --regex PATTERN ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 61 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep --regexp PATTERN ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 62 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep --match-limit=1000 --no-jit -M 'This is a file(.|\R)*file.' ./testdata/grepinput) >>testtrygrep 2>&1
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 63 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep --recursion-limit=1000 --no-jit -M 'This is a file(.|\R)*file.' ./testdata/grepinput) >>testtrygrep 2>&1
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 64 ------------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -o1 '(?<=PAT)TERN (ap(pear)s)' ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 65 ------------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -o2 '(?<=PAT)TERN (ap(pear)s)' ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 66 ------------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -o3 '(?<=PAT)TERN (ap(pear)s)' ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 67 ------------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -o12 '(?<=PAT)TERN (ap(pear)s)' ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 68 ------------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep --only-matching=2 '(?<=PAT)TERN (ap(pear)s)' ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 69 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -vn --colour=always pattern ./testdata/grepinputx) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 70 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep --color=always -M "triple:\t.*\n\n" ./testdata/grepinput3) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 71 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -o "^01|^02|^03" ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 72 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep --color=always "^01|^02|^03" ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 73 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -o --colour=always "^01|^02|^03" ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 74 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -o "^01|02|^03" ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 75 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep --color=always "^01|02|^03" ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 76 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -o --colour=always "^01|02|^03" ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 77 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -o "^01|^02|03" ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 78 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep --color=always "^01|^02|03" ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 79 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -o --colour=always "^01|^02|03" ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 80 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -o "\b01|\b02" ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 81 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep --color=always "\\b01|\\b02" ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 82 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -o --colour=always "\\b01|\\b02" ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 83 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep --buffer-size=100 "^a" ./testdata/grepinput3) >>testtrygrep 2>&1
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 84 -----------------------------" >>testtrygrep
echo testdata/grepinput3 >testtemp1grep
(cd $srcdir; $valgrind $pcregrep --file-list ./testdata/grepfilelist --file-list $builddir/testtemp1grep "fox|complete|t7") >>testtrygrep 2>&1
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 85 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep --file-list=./testdata/grepfilelist "dolor" ./testdata/grepinput3) >>testtrygrep 2>&1
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 86 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep "dog" ./testdata/grepbinary) >>testtrygrep 2>&1
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 87 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep "cat" ./testdata/grepbinary) >>testtrygrep 2>&1
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 88 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -v "cat" ./testdata/grepbinary) >>testtrygrep 2>&1
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 89 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -I "dog" ./testdata/grepbinary) >>testtrygrep 2>&1
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 90 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep --binary-files=without-match "dog" ./testdata/grepbinary) >>testtrygrep 2>&1
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 91 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -a "dog" ./testdata/grepbinary) >>testtrygrep 2>&1
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 92 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep --binary-files=text "dog" ./testdata/grepbinary) >>testtrygrep 2>&1
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 93 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep --text "dog" ./testdata/grepbinary) >>testtrygrep 2>&1
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 94 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -L -r --include=grepinputx --include grepinput8 'fox' ./testdata/grepinput* | sort) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 95 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep --file-list ./testdata/grepfilelist --exclude grepinputv "fox|complete") >>testtrygrep 2>&1
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 96 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -L -r --include-dir=testdata --exclude '^(?!grepinput)' 'fox' ./test* | sort) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 97 -----------------------------" >>testtrygrep
echo "grepinput$" >testtemp1grep
echo "grepinput8" >>testtemp1grep
(cd $srcdir; $valgrind $pcregrep -L -r --include=grepinput --exclude-from $builddir/testtemp1grep --exclude-dir='^\.' 'fox' ./testdata | sort) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 98 -----------------------------" >>testtrygrep
echo "grepinput$" >testtemp1grep
echo "grepinput8" >>testtemp1grep
(cd $srcdir; $valgrind $pcregrep -L -r --exclude=grepinput3 --include=grepinput --exclude-from $builddir/testtemp1grep --exclude-dir='^\.' 'fox' ./testdata | sort) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 99 -----------------------------" >>testtrygrep
echo "grepinput$" >testtemp1grep
echo "grepinput8" >testtemp2grep
(cd $srcdir; $valgrind $pcregrep -L -r --include grepinput --exclude-from $builddir/testtemp1grep --exclude-from=$builddir/testtemp2grep --exclude-dir='^\.' 'fox' ./testdata | sort) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 100 ------------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -Ho2 --only-matching=1 -o3 '(\w+) binary (\w+)(\.)?' ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 101 ------------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -o3 -Ho2 -o12 --only-matching=1 -o3 --colour=always --om-separator='|' '(\w+) binary (\w+)(\.)?' ./testdata/grepinput) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 102 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -n "^$" ./testdata/grepinput3) >>testtrygrep 2>&1
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 103 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep --only-matching "^$" ./testdata/grepinput3) >>testtrygrep 2>&1
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 104 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -n --only-matching "^$" ./testdata/grepinput3) >>testtrygrep 2>&1
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 105 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep --colour=always "ipsum|" ./testdata/grepinput3) >>testtrygrep 2>&1
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 106 -----------------------------" >>testtrygrep
(cd $srcdir; echo "a" | $valgrind $pcregrep -M "|a" ) >>testtrygrep 2>&1
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 107 -----------------------------" >>testtrygrep
echo "a" >testtemp1grep
echo "aaaaa" >>testtemp1grep
(cd $srcdir; $valgrind $pcregrep --line-offsets '(?<=\Ka)' $builddir/testtemp1grep) >>testtrygrep 2>&1
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 108 ------------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -lq PATTERN ./testdata/grepinput ./testdata/grepinputx) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test 109 -----------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -cq lazy ./testdata/grepinput*) >>testtrygrep
echo "RC=$?" >>testtrygrep
# Now compare the results.
$cf $srcdir/testdata/grepoutput testtrygrep
if [ $? != 0 ] ; then exit 1; fi
# These tests require UTF-8 support
if [ $utf8 -ne 0 ] ; then
echo "Testing pcregrep UTF-8 features"
echo "---------------------------- Test U1 ------------------------------" >testtrygrep
(cd $srcdir; $valgrind $pcregrep -n -u --newline=any "^X" ./testdata/grepinput8) >>testtrygrep
echo "RC=$?" >>testtrygrep
echo "---------------------------- Test U2 ------------------------------" >>testtrygrep
(cd $srcdir; $valgrind $pcregrep -n -u -C 3 --newline=any "Match" ./testdata/grepinput8) >>testtrygrep
echo "RC=$?" >>testtrygrep
$cf $srcdir/testdata/grepoutput8 testtrygrep
if [ $? != 0 ] ; then exit 1; fi
else
echo "Skipping pcregrep UTF-8 tests: no UTF-8 support in PCRE library"
fi
# We go to some contortions to try to ensure that the tests for the various
# newline settings will work in environments where the normal newline sequence
# is not \n. Do not use exported files, whose line endings might be changed.
# Instead, create an input file using printf so that its contents are exactly
# what we want. Note the messy fudge to get printf to write a string that
# starts with a hyphen. These tests are run in the build directory.
echo "Testing pcregrep newline settings"
printf "abc\rdef\r\nghi\njkl" >testNinputgrep
printf "%c--------------------------- Test N1 ------------------------------\r\n" - >testtrygrep
$valgrind $pcregrep -n -N CR "^(abc|def|ghi|jkl)" testNinputgrep >>testtrygrep
printf "%c--------------------------- Test N2 ------------------------------\r\n" - >>testtrygrep
$valgrind $pcregrep -n --newline=crlf "^(abc|def|ghi|jkl)" testNinputgrep >>testtrygrep
printf "%c--------------------------- Test N3 ------------------------------\r\n" - >>testtrygrep
pattern=`printf 'def\rjkl'`
$valgrind $pcregrep -n --newline=cr -F "$pattern" testNinputgrep >>testtrygrep
printf "%c--------------------------- Test N4 ------------------------------\r\n" - >>testtrygrep
$valgrind $pcregrep -n --newline=crlf -F -f $srcdir/testdata/greppatN4 testNinputgrep >>testtrygrep
printf "%c--------------------------- Test N5 ------------------------------\r\n" - >>testtrygrep
$valgrind $pcregrep -n --newline=any "^(abc|def|ghi|jkl)" testNinputgrep >>testtrygrep
printf "%c--------------------------- Test N6 ------------------------------\r\n" - >>testtrygrep
$valgrind $pcregrep -n --newline=anycrlf "^(abc|def|ghi|jkl)" testNinputgrep >>testtrygrep
$cf $srcdir/testdata/grepoutputN testtrygrep
if [ $? != 0 ] ; then exit 1; fi
exit 0
# End

1014
RunTest Executable file

File diff suppressed because it is too large Load Diff

616
RunTest.bat Normal file
View File

@ -0,0 +1,616 @@
@echo off
@rem This file must use CRLF linebreaks to function properly
@rem and requires both pcretest and pcregrep
@rem This file was originally contributed by Ralf Junker, and touched up by
@rem Daniel Richard G. Tests 10-12 added by Philip H.
@rem Philip H also changed test 3 to use "wintest" files.
@rem
@rem Updated by Tom Fortmann to support explicit test numbers on the command line.
@rem Added argument validation and added error reporting.
@rem
@rem MS Windows batch file to run pcretest on testfiles with the correct
@rem options.
@rem
@rem Sheri Pierce added logic to skip feature dependent tests
@rem tests 4 5 9 15 and 18 require utf support
@rem tests 6 7 10 16 and 19 require ucp support
@rem 11 requires ucp and link size 2
@rem 12 requires presence of jit support
@rem 13 requires absence of jit support
@rem Sheri P also added override tests for study and jit testing
@rem Zoltan Herczeg added libpcre16 support
@rem Zoltan Herczeg added libpcre32 support
setlocal enabledelayedexpansion
if [%srcdir%]==[] (
if exist testdata\ set srcdir=.)
if [%srcdir%]==[] (
if exist ..\testdata\ set srcdir=..)
if [%srcdir%]==[] (
if exist ..\..\testdata\ set srcdir=..\..)
if NOT exist %srcdir%\testdata\ (
Error: echo distribution testdata folder not found!
call :conferror
exit /b 1
goto :eof
)
if [%pcretest%]==[] set pcretest=.\pcretest.exe
echo source dir is %srcdir%
echo pcretest=%pcretest%
if NOT exist %pcretest% (
echo Error: %pcretest% not found!
echo.
call :conferror
exit /b 1
)
%pcretest% -C linksize >NUL
set link_size=%ERRORLEVEL%
%pcretest% -C pcre8 >NUL
set support8=%ERRORLEVEL%
%pcretest% -C pcre16 >NUL
set support16=%ERRORLEVEL%
%pcretest% -C pcre32 >NUL
set support32=%ERRORLEVEL%
%pcretest% -C utf >NUL
set utf=%ERRORLEVEL%
%pcretest% -C ucp >NUL
set ucp=%ERRORLEVEL%
%pcretest% -C jit >NUL
set jit=%ERRORLEVEL%
if %support8% EQU 1 (
if not exist testout8 md testout8
if not exist testoutstudy8 md testoutstudy8
if not exist testoutjit8 md testoutjit8
)
if %support16% EQU 1 (
if not exist testout16 md testout16
if not exist testoutstudy16 md testoutstudy16
if not exist testoutjit16 md testoutjit16
)
if %support16% EQU 1 (
if not exist testout32 md testout32
if not exist testoutstudy32 md testoutstudy32
if not exist testoutjit32 md testoutjit32
)
set do1=no
set do2=no
set do3=no
set do4=no
set do5=no
set do6=no
set do7=no
set do8=no
set do9=no
set do10=no
set do11=no
set do12=no
set do13=no
set do14=no
set do15=no
set do16=no
set do17=no
set do18=no
set do19=no
set do20=no
set do21=no
set do22=no
set do23=no
set do24=no
set do25=no
set do26=no
set all=yes
for %%a in (%*) do (
set valid=no
for %%v in (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26) do if %%v == %%a set valid=yes
if "!valid!" == "yes" (
set do%%a=yes
set all=no
) else (
echo Invalid test number - %%a!
echo Usage %0 [ test_number ] ...
echo Where test_number is one or more optional test numbers 1 through 26, default is all tests.
exit /b 1
)
)
set failed="no"
if "%all%" == "yes" (
set do1=yes
set do2=yes
set do3=yes
set do4=yes
set do5=yes
set do6=yes
set do7=yes
set do8=yes
set do9=yes
set do10=yes
set do11=yes
set do12=yes
set do13=yes
set do14=yes
set do15=yes
set do16=yes
set do17=yes
set do18=yes
set do19=yes
set do20=yes
set do21=yes
set do22=yes
set do23=yes
set do24=yes
set do25=yes
set do26=yes
)
@echo RunTest.bat's pcretest output is written to newly created subfolders named
@echo testout, testoutstudy and testoutjit.
@echo.
set mode=
set bits=8
:nextMode
if "%mode%" == "" (
if %support8% EQU 0 goto modeSkip
echo.
echo ---- Testing 8-bit library ----
echo.
)
if "%mode%" == "-16" (
if %support16% EQU 0 goto modeSkip
echo.
echo ---- Testing 16-bit library ----
echo.
)
if "%mode%" == "-32" (
if %support32% EQU 0 goto modeSkip
echo.
echo ---- Testing 32-bit library ----
echo.
)
if "%do1%" == "yes" call :do1
if "%do2%" == "yes" call :do2
if "%do3%" == "yes" call :do3
if "%do4%" == "yes" call :do4
if "%do5%" == "yes" call :do5
if "%do6%" == "yes" call :do6
if "%do7%" == "yes" call :do7
if "%do8%" == "yes" call :do8
if "%do9%" == "yes" call :do9
if "%do10%" == "yes" call :do10
if "%do11%" == "yes" call :do11
if "%do12%" == "yes" call :do12
if "%do13%" == "yes" call :do13
if "%do14%" == "yes" call :do14
if "%do15%" == "yes" call :do15
if "%do16%" == "yes" call :do16
if "%do17%" == "yes" call :do17
if "%do18%" == "yes" call :do18
if "%do19%" == "yes" call :do19
if "%do20%" == "yes" call :do20
if "%do21%" == "yes" call :do21
if "%do22%" == "yes" call :do22
if "%do23%" == "yes" call :do23
if "%do24%" == "yes" call :do24
if "%do25%" == "yes" call :do25
if "%do26%" == "yes" call :do26
:modeSkip
if "%mode%" == "" (
set mode=-16
set bits=16
goto nextMode
)
if "%mode%" == "-16" (
set mode=-32
set bits=32
goto nextMode
)
@rem If mode is -32, testing is finished
if %failed% == "yes" (
echo In above output, one or more of the various tests failed!
exit /b 1
)
echo All OK
goto :eof
:runsub
@rem Function to execute pcretest and compare the output
@rem Arguments are as follows:
@rem
@rem 1 = test number
@rem 2 = outputdir
@rem 3 = test name use double quotes
@rem 4 - 9 = pcretest options
if [%1] == [] (
echo Missing test number argument!
exit /b 1
)
if [%2] == [] (
echo Missing outputdir!
exit /b 1
)
if [%3] == [] (
echo Missing test name argument!
exit /b 1
)
set testinput=testinput%1
set testoutput=testoutput%1
if exist %srcdir%\testdata\win%testinput% (
set testinput=wintestinput%1
set testoutput=wintestoutput%1
)
echo Test %1: %3
%pcretest% %mode% %4 %5 %6 %7 %8 %9 %srcdir%\testdata\%testinput% >%2%bits%\%testoutput%
if errorlevel 1 (
echo. failed executing command-line:
echo. %pcretest% %mode% %4 %5 %6 %7 %8 %9 %srcdir%\testdata\%testinput% ^>%2%bits%\%testoutput%
set failed="yes"
goto :eof
)
set type=
if [%1]==[11] (
set type=-%bits%
)
if [%1]==[18] (
set type=-%bits%
)
if [%1]==[21] (
set type=-%bits%
)
if [%1]==[22] (
set type=-%bits%
)
fc /n %srcdir%\testdata\%testoutput%%type% %2%bits%\%testoutput% >NUL
if errorlevel 1 (
echo. failed comparison: fc /n %srcdir%\testdata\%testoutput% %2%bits%\%testoutput%
if [%1]==[2] (
echo.
echo ** Test 2 requires a lot of stack. PCRE can be configured to
echo ** use heap for recursion. Otherwise, to pass Test 2
echo ** you generally need to allocate 8 mb stack to PCRE.
echo ** See the 'pcrestack' page for a discussion of PCRE's
echo ** stack usage.
echo.
)
if [%1]==[3] (
echo.
echo ** Test 3 failure usually means french locale is not
echo ** available on the system, rather than a bug or problem with PCRE.
echo.
goto :eof
)
set failed="yes"
goto :eof
)
echo. Passed.
goto :eof
:do1
call :runsub 1 testout "Main functionality (Compatible with Perl >= 5.10)" -q
call :runsub 1 testoutstudy "Test with Study Override" -q -s
if %jit% EQU 1 call :runsub 1 testoutjit "Test with JIT Override" -q -s+
goto :eof
:do2
call :runsub 2 testout "API, errors, internals, and non-Perl stuff" -q
call :runsub 2 testoutstudy "Test with Study Override" -q -s
if %jit% EQU 1 call :runsub 2 testoutjit "Test with JIT Override" -q -s+
goto :eof
:do3
call :runsub 3 testout "Locale-specific features" -q
call :runsub 3 testoutstudy "Test with Study Override" -q -s
if %jit% EQU 1 call :runsub 3 testoutjit "Test with JIT Override" -q -s+
goto :eof
:do4
if %utf% EQU 0 (
echo Test 4 Skipped due to absence of UTF-%bits% support.
goto :eof
)
call :runsub 4 testout "UTF-%bits% support - (Compatible with Perl >= 5.10)" -q
call :runsub 4 testoutstudy "Test with Study Override" -q -s
if %jit% EQU 1 call :runsub 4 testoutjit "Test with JIT Override" -q -s+
goto :eof
:do5
if %utf% EQU 0 (
echo Test 5 Skipped due to absence of UTF-%bits% support.
goto :eof
)
call :runsub 5 testout "API, internals, and non-Perl stuff for UTF-%bits%" -q
call :runsub 5 testoutstudy "Test with Study Override" -q -s
if %jit% EQU 1 call :runsub 5 testoutjit "Test with JIT Override" -q -s+
goto :eof
:do6
if %ucp% EQU 0 (
echo Test 6 Skipped due to absence of Unicode property support.
goto :eof
)
call :runsub 6 testout "Unicode property support (Compatible with Perl >= 5.10)" -q
call :runsub 6 testoutstudy "Test with Study Override" -q -s
if %jit% EQU 1 call :runsub 6 testoutjit "Test with JIT Override" -q -s+
goto :eof
:do7
if %ucp% EQU 0 (
echo Test 7 Skipped due to absence of Unicode property support.
goto :eof
)
call :runsub 7 testout "API, internals, and non-Perl stuff for Unicode property support" -q
call :runsub 7 testoutstudy "Test with Study Override" -q -s
if %jit% EQU 1 call :runsub 7 testoutjit "Test with JIT Override" -q -s+
goto :eof
:do8
call :runsub 8 testout "DFA matching main functionality" -q -dfa
call :runsub 8 testoutstudy "Test with Study Override" -q -dfa -s
goto :eof
:do9
if %utf% EQU 0 (
echo Test 9 Skipped due to absence of UTF-%bits% support.
goto :eof
)
call :runsub 9 testout "DFA matching with UTF-%bits%" -q -dfa
call :runsub 9 testoutstudy "Test with Study Override" -q -dfa -s
goto :eof
:do10
if %ucp% EQU 0 (
echo Test 10 Skipped due to absence of Unicode property support.
goto :eof
)
call :runsub 10 testout "DFA matching with Unicode properties" -q -dfa
call :runsub 10 testoutstudy "Test with Study Override" -q -dfa -s
goto :eof
:do11
if NOT %link_size% EQU 2 (
echo Test 11 Skipped because link size is not 2.
goto :eof
)
if %ucp% EQU 0 (
echo Test 11 Skipped due to absence of Unicode property support.
goto :eof
)
call :runsub 11 testout "Internal offsets and code size tests" -q
call :runsub 11 testoutstudy "Test with Study Override" -q -s
goto :eof
:do12
if %jit% EQU 0 (
echo Test 12 Skipped due to absence of JIT support.
goto :eof
)
call :runsub 12 testout "JIT-specific features (JIT available)" -q
goto :eof
:do13
if %jit% EQU 1 (
echo Test 13 Skipped due to presence of JIT support.
goto :eof
)
call :runsub 13 testout "JIT-specific features (JIT not available)" -q
goto :eof
:do14
if NOT %bits% EQU 8 (
echo Test 14 Skipped when running 16/32-bit tests.
goto :eof
)
copy /Y %srcdir%\testdata\saved16 testsaved16
copy /Y %srcdir%\testdata\saved32 testsaved32
call :runsub 14 testout "Specials for the basic 8-bit library" -q
call :runsub 14 testoutstudy "Test with Study Override" -q -s
if %jit% EQU 1 call :runsub 14 testoutjit "Test with JIT Override" -q -s+
goto :eof
:do15
if NOT %bits% EQU 8 (
echo Test 15 Skipped when running 16/32-bit tests.
goto :eof
)
if %utf% EQU 0 (
echo Test 15 Skipped due to absence of UTF-%bits% support.
goto :eof
)
call :runsub 15 testout "Specials for the 8-bit library with UTF-%bits% support" -q
call :runsub 15 testoutstudy "Test with Study Override" -q -s
if %jit% EQU 1 call :runsub 15 testoutjit "Test with JIT Override" -q -s+
goto :eof
:do16
if NOT %bits% EQU 8 (
echo Test 16 Skipped when running 16/32-bit tests.
goto :eof
)
if %ucp% EQU 0 (
echo Test 16 Skipped due to absence of Unicode property support.
goto :eof
)
call :runsub 16 testout "Specials for the 8-bit library with Unicode propery support" -q
call :runsub 16 testoutstudy "Test with Study Override" -q -s
if %jit% EQU 1 call :runsub 16 testoutjit "Test with JIT Override" -q -s+
goto :eof
:do17
if %bits% EQU 8 (
echo Test 17 Skipped when running 8-bit tests.
goto :eof
)
call :runsub 17 testout "Specials for the basic 16/32-bit library" -q
call :runsub 17 testoutstudy "Test with Study Override" -q -s
if %jit% EQU 1 call :runsub 17 testoutjit "Test with JIT Override" -q -s+
goto :eof
:do18
if %bits% EQU 8 (
echo Test 18 Skipped when running 8-bit tests.
goto :eof
)
if %utf% EQU 0 (
echo Test 18 Skipped due to absence of UTF-%bits% support.
goto :eof
)
call :runsub 18 testout "Specials for the 16/32-bit library with UTF-%bits% support" -q
call :runsub 18 testoutstudy "Test with Study Override" -q -s
if %jit% EQU 1 call :runsub 18 testoutjit "Test with JIT Override" -q -s+
goto :eof
:do19
if %bits% EQU 8 (
echo Test 19 Skipped when running 8-bit tests.
goto :eof
)
if %ucp% EQU 0 (
echo Test 19 Skipped due to absence of Unicode property support.
goto :eof
)
call :runsub 19 testout "Specials for the 16/32-bit library with Unicode property support" -q
call :runsub 19 testoutstudy "Test with Study Override" -q -s
if %jit% EQU 1 call :runsub 19 testoutjit "Test with JIT Override" -q -s+
goto :eof
:do20
if %bits% EQU 8 (
echo Test 20 Skipped when running 8-bit tests.
goto :eof
)
call :runsub 20 testout "DFA specials for the basic 16/32-bit library" -q -dfa
call :runsub 20 testoutstudy "Test with Study Override" -q -dfa -s
goto :eof
:do21
if %bits% EQU 8 (
echo Test 21 Skipped when running 8-bit tests.
goto :eof
)
if NOT %link_size% EQU 2 (
echo Test 21 Skipped because link size is not 2.
goto :eof
)
copy /Y %srcdir%\testdata\saved8 testsaved8
copy /Y %srcdir%\testdata\saved16LE-1 testsaved16LE-1
copy /Y %srcdir%\testdata\saved16BE-1 testsaved16BE-1
copy /Y %srcdir%\testdata\saved32LE-1 testsaved32LE-1
copy /Y %srcdir%\testdata\saved32BE-1 testsaved32BE-1
call :runsub 21 testout "Reloads for the basic 16/32-bit library" -q
call :runsub 21 testoutstudy "Test with Study Override" -q -s
if %jit% EQU 1 call :runsub 21 testoutjit "Test with JIT Override" -q -s+
goto :eof
:do22
if %bits% EQU 8 (
echo Test 22 Skipped when running 8-bit tests.
goto :eof
)
if %utf% EQU 0 (
echo Test 22 Skipped due to absence of UTF-%bits% support.
goto :eof
)
if NOT %link_size% EQU 2 (
echo Test 22 Skipped because link size is not 2.
goto :eof
)
copy /Y %srcdir%\testdata\saved16LE-2 testsaved16LE-2
copy /Y %srcdir%\testdata\saved16BE-2 testsaved16BE-2
copy /Y %srcdir%\testdata\saved32LE-2 testsaved32LE-2
copy /Y %srcdir%\testdata\saved32BE-2 testsaved32BE-2
call :runsub 22 testout "Reloads for the 16/32-bit library with UTF-16/32 support" -q
call :runsub 22 testoutstudy "Test with Study Override" -q -s
if %jit% EQU 1 call :runsub 22 testoutjit "Test with JIT Override" -q -s+
goto :eof
:do23
if NOT %bits% EQU 16 (
echo Test 23 Skipped when running 8/32-bit tests.
goto :eof
)
call :runsub 23 testout "Specials for the 16-bit library" -q
call :runsub 23 testoutstudy "Test with Study Override" -q -s
if %jit% EQU 1 call :runsub 23 testoutjit "Test with JIT Override" -q -s+
goto :eof
:do24
if NOT %bits% EQU 16 (
echo Test 24 Skipped when running 8/32-bit tests.
goto :eof
)
if %utf% EQU 0 (
echo Test 24 Skipped due to absence of UTF-%bits% support.
goto :eof
)
call :runsub 24 testout "Specials for the 16-bit library with UTF-16 support" -q
call :runsub 24 testoutstudy "Test with Study Override" -q -s
if %jit% EQU 1 call :runsub 24 testoutjit "Test with JIT Override" -q -s+
goto :eof
:do25
if NOT %bits% EQU 32 (
echo Test 25 Skipped when running 8/16-bit tests.
goto :eof
)
call :runsub 25 testout "Specials for the 32-bit library" -q
call :runsub 25 testoutstudy "Test with Study Override" -q -s
if %jit% EQU 1 call :runsub 25 testoutjit "Test with JIT Override" -q -s+
goto :eof
:do26
if NOT %bits% EQU 32 (
echo Test 26 Skipped when running 8/16-bit tests.
goto :eof
)
if %utf% EQU 0 (
echo Test 26 Skipped due to absence of UTF-%bits% support.
goto :eof
)
call :runsub 26 testout "Specials for the 32-bit library with UTF-32 support" -q
call :runsub 26 testoutstudy "Test with Study Override" -q -s
if %jit% EQU 1 call :runsub 26 testoutjit "Test with JIT Override" -q -s+
goto :eof
:conferror
@echo.
@echo Either your build is incomplete or you have a configuration error.
@echo.
@echo If configured with cmake and executed via "make test" or the MSVC "RUN_TESTS"
@echo project, pcre_test.bat defines variables and automatically calls RunTest.bat.
@echo For manual testing of all available features, after configuring with cmake
@echo and building, you can run the built pcre_test.bat. For best results with
@echo cmake builds and tests avoid directories with full path names that include
@echo spaces for source or build.
@echo.
@echo Otherwise, if the build dir is in a subdir of the source dir, testdata needed
@echo for input and verification should be found automatically when (from the
@echo location of the the built exes) you call RunTest.bat. By default RunTest.bat
@echo runs all tests compatible with the linked pcre library but it can be given
@echo a test number as an argument.
@echo.
@echo If the build dir is not under the source dir you can either copy your exes
@echo to the source folder or copy RunTest.bat and the testdata folder to the
@echo location of your built exes and then run RunTest.bat.
@echo.
goto :eof

1543
aclocal.m4 vendored Normal file

File diff suppressed because it is too large Load Diff

271
ar-lib Executable file
View File

@ -0,0 +1,271 @@
#! /bin/sh
# Wrapper for Microsoft lib.exe
me=ar-lib
scriptversion=2019-07-04.01; # UTC
# Copyright (C) 2010-2020 Free Software Foundation, Inc.
# Written by Peter Rosin <peda@lysator.liu.se>.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
# As a special exception to the GNU General Public License, if you
# distribute this file as part of a program that contains a
# configuration script generated by Autoconf, you may include it under
# the same distribution terms that you use for the rest of that program.
# This file is maintained in Automake, please report
# bugs to <bug-automake@gnu.org> or send patches to
# <automake-patches@gnu.org>.
# func_error message
func_error ()
{
echo "$me: $1" 1>&2
exit 1
}
file_conv=
# func_file_conv build_file
# Convert a $build file to $host form and store it in $file
# Currently only supports Windows hosts.
func_file_conv ()
{
file=$1
case $file in
/ | /[!/]*) # absolute file, and not a UNC file
if test -z "$file_conv"; then
# lazily determine how to convert abs files
case `uname -s` in
MINGW*)
file_conv=mingw
;;
CYGWIN* | MSYS*)
file_conv=cygwin
;;
*)
file_conv=wine
;;
esac
fi
case $file_conv in
mingw)
file=`cmd //C echo "$file " | sed -e 's/"\(.*\) " *$/\1/'`
;;
cygwin | msys)
file=`cygpath -m "$file" || echo "$file"`
;;
wine)
file=`winepath -w "$file" || echo "$file"`
;;
esac
;;
esac
}
# func_at_file at_file operation archive
# Iterate over all members in AT_FILE performing OPERATION on ARCHIVE
# for each of them.
# When interpreting the content of the @FILE, do NOT use func_file_conv,
# since the user would need to supply preconverted file names to
# binutils ar, at least for MinGW.
func_at_file ()
{
operation=$2
archive=$3
at_file_contents=`cat "$1"`
eval set x "$at_file_contents"
shift
for member
do
$AR -NOLOGO $operation:"$member" "$archive" || exit $?
done
}
case $1 in
'')
func_error "no command. Try '$0 --help' for more information."
;;
-h | --h*)
cat <<EOF
Usage: $me [--help] [--version] PROGRAM ACTION ARCHIVE [MEMBER...]
Members may be specified in a file named with @FILE.
EOF
exit $?
;;
-v | --v*)
echo "$me, version $scriptversion"
exit $?
;;
esac
if test $# -lt 3; then
func_error "you must specify a program, an action and an archive"
fi
AR=$1
shift
while :
do
if test $# -lt 2; then
func_error "you must specify a program, an action and an archive"
fi
case $1 in
-lib | -LIB \
| -ltcg | -LTCG \
| -machine* | -MACHINE* \
| -subsystem* | -SUBSYSTEM* \
| -verbose | -VERBOSE \
| -wx* | -WX* )
AR="$AR $1"
shift
;;
*)
action=$1
shift
break
;;
esac
done
orig_archive=$1
shift
func_file_conv "$orig_archive"
archive=$file
# strip leading dash in $action
action=${action#-}
delete=
extract=
list=
quick=
replace=
index=
create=
while test -n "$action"
do
case $action in
d*) delete=yes ;;
x*) extract=yes ;;
t*) list=yes ;;
q*) quick=yes ;;
r*) replace=yes ;;
s*) index=yes ;;
S*) ;; # the index is always updated implicitly
c*) create=yes ;;
u*) ;; # TODO: don't ignore the update modifier
v*) ;; # TODO: don't ignore the verbose modifier
*)
func_error "unknown action specified"
;;
esac
action=${action#?}
done
case $delete$extract$list$quick$replace,$index in
yes,* | ,yes)
;;
yesyes*)
func_error "more than one action specified"
;;
*)
func_error "no action specified"
;;
esac
if test -n "$delete"; then
if test ! -f "$orig_archive"; then
func_error "archive not found"
fi
for member
do
case $1 in
@*)
func_at_file "${1#@}" -REMOVE "$archive"
;;
*)
func_file_conv "$1"
$AR -NOLOGO -REMOVE:"$file" "$archive" || exit $?
;;
esac
done
elif test -n "$extract"; then
if test ! -f "$orig_archive"; then
func_error "archive not found"
fi
if test $# -gt 0; then
for member
do
case $1 in
@*)
func_at_file "${1#@}" -EXTRACT "$archive"
;;
*)
func_file_conv "$1"
$AR -NOLOGO -EXTRACT:"$file" "$archive" || exit $?
;;
esac
done
else
$AR -NOLOGO -LIST "$archive" | tr -d '\r' | sed -e 's/\\/\\\\/g' \
| while read member
do
$AR -NOLOGO -EXTRACT:"$member" "$archive" || exit $?
done
fi
elif test -n "$quick$replace"; then
if test ! -f "$orig_archive"; then
if test -z "$create"; then
echo "$me: creating $orig_archive"
fi
orig_archive=
else
orig_archive=$archive
fi
for member
do
case $1 in
@*)
func_file_conv "${1#@}"
set x "$@" "@$file"
;;
*)
func_file_conv "$1"
set x "$@" "$file"
;;
esac
shift
shift
done
if test -n "$orig_archive"; then
$AR -NOLOGO -OUT:"$archive" "$orig_archive" "$@" || exit $?
else
$AR -NOLOGO -OUT:"$archive" "$@" || exit $?
fi
elif test -n "$list"; then
if test ! -f "$orig_archive"; then
func_error "archive not found"
fi
$AR -NOLOGO -LIST "$archive" || exit $?
fi

View File

@ -0,0 +1,22 @@
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

17
cmake/FindEditline.cmake Normal file
View File

@ -0,0 +1,17 @@
# Modified from FindReadline.cmake (PH Feb 2012)
if(EDITLINE_INCLUDE_DIR AND EDITLINE_LIBRARY AND NCURSES_LIBRARY)
set(EDITLINE_FOUND TRUE)
else(EDITLINE_INCLUDE_DIR AND EDITLINE_LIBRARY AND NCURSES_LIBRARY)
FIND_PATH(EDITLINE_INCLUDE_DIR readline.h
/usr/include/editline
/usr/include/edit/readline
/usr/include/readline
)
FIND_LIBRARY(EDITLINE_LIBRARY NAMES edit)
include(FindPackageHandleStandardArgs)
FIND_PACKAGE_HANDLE_STANDARD_ARGS(Editline DEFAULT_MSG EDITLINE_INCLUDE_DIR EDITLINE_LIBRARY )
MARK_AS_ADVANCED(EDITLINE_INCLUDE_DIR EDITLINE_LIBRARY)
endif(EDITLINE_INCLUDE_DIR AND EDITLINE_LIBRARY AND NCURSES_LIBRARY)

View File

@ -0,0 +1,58 @@
# FIND_PACKAGE_HANDLE_STANDARD_ARGS(NAME (DEFAULT_MSG|"Custom failure message") VAR1 ... )
# This macro is intended to be used in FindXXX.cmake modules files.
# It handles the REQUIRED and QUIET argument to FIND_PACKAGE() and
# it also sets the <UPPERCASED_NAME>_FOUND variable.
# The package is found if all variables listed are TRUE.
# Example:
#
# FIND_PACKAGE_HANDLE_STANDARD_ARGS(LibXml2 DEFAULT_MSG LIBXML2_LIBRARIES LIBXML2_INCLUDE_DIR)
#
# LibXml2 is considered to be found, if both LIBXML2_LIBRARIES and
# LIBXML2_INCLUDE_DIR are valid. Then also LIBXML2_FOUND is set to TRUE.
# If it is not found and REQUIRED was used, it fails with FATAL_ERROR,
# independent whether QUIET was used or not.
# If it is found, the location is reported using the VAR1 argument, so
# here a message "Found LibXml2: /usr/lib/libxml2.so" will be printed out.
# If the second argument is DEFAULT_MSG, the message in the failure case will
# be "Could NOT find LibXml2", if you don't like this message you can specify
# your own custom failure message there.
MACRO(FIND_PACKAGE_HANDLE_STANDARD_ARGS _NAME _FAIL_MSG _VAR1 )
IF("${_FAIL_MSG}" STREQUAL "DEFAULT_MSG")
IF (${_NAME}_FIND_REQUIRED)
SET(_FAIL_MESSAGE "Could not find REQUIRED package ${_NAME}")
ELSE (${_NAME}_FIND_REQUIRED)
SET(_FAIL_MESSAGE "Could not find OPTIONAL package ${_NAME}")
ENDIF (${_NAME}_FIND_REQUIRED)
ELSE("${_FAIL_MSG}" STREQUAL "DEFAULT_MSG")
SET(_FAIL_MESSAGE "${_FAIL_MSG}")
ENDIF("${_FAIL_MSG}" STREQUAL "DEFAULT_MSG")
STRING(TOUPPER ${_NAME} _NAME_UPPER)
SET(${_NAME_UPPER}_FOUND TRUE)
IF(NOT ${_VAR1})
SET(${_NAME_UPPER}_FOUND FALSE)
ENDIF(NOT ${_VAR1})
FOREACH(_CURRENT_VAR ${ARGN})
IF(NOT ${_CURRENT_VAR})
SET(${_NAME_UPPER}_FOUND FALSE)
ENDIF(NOT ${_CURRENT_VAR})
ENDFOREACH(_CURRENT_VAR)
IF (${_NAME_UPPER}_FOUND)
IF (NOT ${_NAME}_FIND_QUIETLY)
MESSAGE(STATUS "Found ${_NAME}: ${${_VAR1}}")
ENDIF (NOT ${_NAME}_FIND_QUIETLY)
ELSE (${_NAME_UPPER}_FOUND)
IF (${_NAME}_FIND_REQUIRED)
MESSAGE(FATAL_ERROR "${_FAIL_MESSAGE}")
ELSE (${_NAME}_FIND_REQUIRED)
IF (NOT ${_NAME}_FIND_QUIETLY)
MESSAGE(STATUS "${_FAIL_MESSAGE}")
ENDIF (NOT ${_NAME}_FIND_QUIETLY)
ENDIF (${_NAME}_FIND_REQUIRED)
ENDIF (${_NAME_UPPER}_FOUND)
ENDMACRO(FIND_PACKAGE_HANDLE_STANDARD_ARGS)

29
cmake/FindReadline.cmake Normal file
View File

@ -0,0 +1,29 @@
# from http://websvn.kde.org/trunk/KDE/kdeedu/cmake/modules/FindReadline.cmake
# http://websvn.kde.org/trunk/KDE/kdeedu/cmake/modules/COPYING-CMAKE-SCRIPTS
# --> BSD licensed
#
# GNU Readline library finder
if(READLINE_INCLUDE_DIR AND READLINE_LIBRARY AND NCURSES_LIBRARY)
set(READLINE_FOUND TRUE)
else(READLINE_INCLUDE_DIR AND READLINE_LIBRARY AND NCURSES_LIBRARY)
FIND_PATH(READLINE_INCLUDE_DIR readline/readline.h
/usr/include/readline
)
# 2008-04-22 The next clause used to read like this:
#
# FIND_LIBRARY(READLINE_LIBRARY NAMES readline)
# FIND_LIBRARY(NCURSES_LIBRARY NAMES ncurses )
# include(FindPackageHandleStandardArgs)
# FIND_PACKAGE_HANDLE_STANDARD_ARGS(Readline DEFAULT_MSG NCURSES_LIBRARY READLINE_INCLUDE_DIR READLINE_LIBRARY )
#
# I was advised to modify it such that it will find an ncurses library if
# required, but not if one was explicitly given, that is, it allows the
# default to be overridden. PH
FIND_LIBRARY(READLINE_LIBRARY NAMES readline)
include(FindPackageHandleStandardArgs)
FIND_PACKAGE_HANDLE_STANDARD_ARGS(Readline DEFAULT_MSG READLINE_INCLUDE_DIR READLINE_LIBRARY )
MARK_AS_ADVANCED(READLINE_INCLUDE_DIR READLINE_LIBRARY)
endif(READLINE_INCLUDE_DIR AND READLINE_LIBRARY AND NCURSES_LIBRARY)

348
compile Executable file
View File

@ -0,0 +1,348 @@
#! /bin/sh
# Wrapper for compilers which do not understand '-c -o'.
scriptversion=2018-03-07.03; # UTC
# Copyright (C) 1999-2020 Free Software Foundation, Inc.
# Written by Tom Tromey <tromey@cygnus.com>.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
# As a special exception to the GNU General Public License, if you
# distribute this file as part of a program that contains a
# configuration script generated by Autoconf, you may include it under
# the same distribution terms that you use for the rest of that program.
# This file is maintained in Automake, please report
# bugs to <bug-automake@gnu.org> or send patches to
# <automake-patches@gnu.org>.
nl='
'
# We need space, tab and new line, in precisely that order. Quoting is
# there to prevent tools from complaining about whitespace usage.
IFS=" "" $nl"
file_conv=
# func_file_conv build_file lazy
# Convert a $build file to $host form and store it in $file
# Currently only supports Windows hosts. If the determined conversion
# type is listed in (the comma separated) LAZY, no conversion will
# take place.
func_file_conv ()
{
file=$1
case $file in
/ | /[!/]*) # absolute file, and not a UNC file
if test -z "$file_conv"; then
# lazily determine how to convert abs files
case `uname -s` in
MINGW*)
file_conv=mingw
;;
CYGWIN* | MSYS*)
file_conv=cygwin
;;
*)
file_conv=wine
;;
esac
fi
case $file_conv/,$2, in
*,$file_conv,*)
;;
mingw/*)
file=`cmd //C echo "$file " | sed -e 's/"\(.*\) " *$/\1/'`
;;
cygwin/* | msys/*)
file=`cygpath -m "$file" || echo "$file"`
;;
wine/*)
file=`winepath -w "$file" || echo "$file"`
;;
esac
;;
esac
}
# func_cl_dashL linkdir
# Make cl look for libraries in LINKDIR
func_cl_dashL ()
{
func_file_conv "$1"
if test -z "$lib_path"; then
lib_path=$file
else
lib_path="$lib_path;$file"
fi
linker_opts="$linker_opts -LIBPATH:$file"
}
# func_cl_dashl library
# Do a library search-path lookup for cl
func_cl_dashl ()
{
lib=$1
found=no
save_IFS=$IFS
IFS=';'
for dir in $lib_path $LIB
do
IFS=$save_IFS
if $shared && test -f "$dir/$lib.dll.lib"; then
found=yes
lib=$dir/$lib.dll.lib
break
fi
if test -f "$dir/$lib.lib"; then
found=yes
lib=$dir/$lib.lib
break
fi
if test -f "$dir/lib$lib.a"; then
found=yes
lib=$dir/lib$lib.a
break
fi
done
IFS=$save_IFS
if test "$found" != yes; then
lib=$lib.lib
fi
}
# func_cl_wrapper cl arg...
# Adjust compile command to suit cl
func_cl_wrapper ()
{
# Assume a capable shell
lib_path=
shared=:
linker_opts=
for arg
do
if test -n "$eat"; then
eat=
else
case $1 in
-o)
# configure might choose to run compile as 'compile cc -o foo foo.c'.
eat=1
case $2 in
*.o | *.[oO][bB][jJ])
func_file_conv "$2"
set x "$@" -Fo"$file"
shift
;;
*)
func_file_conv "$2"
set x "$@" -Fe"$file"
shift
;;
esac
;;
-I)
eat=1
func_file_conv "$2" mingw
set x "$@" -I"$file"
shift
;;
-I*)
func_file_conv "${1#-I}" mingw
set x "$@" -I"$file"
shift
;;
-l)
eat=1
func_cl_dashl "$2"
set x "$@" "$lib"
shift
;;
-l*)
func_cl_dashl "${1#-l}"
set x "$@" "$lib"
shift
;;
-L)
eat=1
func_cl_dashL "$2"
;;
-L*)
func_cl_dashL "${1#-L}"
;;
-static)
shared=false
;;
-Wl,*)
arg=${1#-Wl,}
save_ifs="$IFS"; IFS=','
for flag in $arg; do
IFS="$save_ifs"
linker_opts="$linker_opts $flag"
done
IFS="$save_ifs"
;;
-Xlinker)
eat=1
linker_opts="$linker_opts $2"
;;
-*)
set x "$@" "$1"
shift
;;
*.cc | *.CC | *.cxx | *.CXX | *.[cC]++)
func_file_conv "$1"
set x "$@" -Tp"$file"
shift
;;
*.c | *.cpp | *.CPP | *.lib | *.LIB | *.Lib | *.OBJ | *.obj | *.[oO])
func_file_conv "$1" mingw
set x "$@" "$file"
shift
;;
*)
set x "$@" "$1"
shift
;;
esac
fi
shift
done
if test -n "$linker_opts"; then
linker_opts="-link$linker_opts"
fi
exec "$@" $linker_opts
exit 1
}
eat=
case $1 in
'')
echo "$0: No command. Try '$0 --help' for more information." 1>&2
exit 1;
;;
-h | --h*)
cat <<\EOF
Usage: compile [--help] [--version] PROGRAM [ARGS]
Wrapper for compilers which do not understand '-c -o'.
Remove '-o dest.o' from ARGS, run PROGRAM with the remaining
arguments, and rename the output as expected.
If you are trying to build a whole package this is not the
right script to run: please start by reading the file 'INSTALL'.
Report bugs to <bug-automake@gnu.org>.
EOF
exit $?
;;
-v | --v*)
echo "compile $scriptversion"
exit $?
;;
cl | *[/\\]cl | cl.exe | *[/\\]cl.exe | \
icl | *[/\\]icl | icl.exe | *[/\\]icl.exe )
func_cl_wrapper "$@" # Doesn't return...
;;
esac
ofile=
cfile=
for arg
do
if test -n "$eat"; then
eat=
else
case $1 in
-o)
# configure might choose to run compile as 'compile cc -o foo foo.c'.
# So we strip '-o arg' only if arg is an object.
eat=1
case $2 in
*.o | *.obj)
ofile=$2
;;
*)
set x "$@" -o "$2"
shift
;;
esac
;;
*.c)
cfile=$1
set x "$@" "$1"
shift
;;
*)
set x "$@" "$1"
shift
;;
esac
fi
shift
done
if test -z "$ofile" || test -z "$cfile"; then
# If no '-o' option was seen then we might have been invoked from a
# pattern rule where we don't need one. That is ok -- this is a
# normal compilation that the losing compiler can handle. If no
# '.c' file was seen then we are probably linking. That is also
# ok.
exec "$@"
fi
# Name of file we expect compiler to create.
cofile=`echo "$cfile" | sed 's|^.*[\\/]||; s|^[a-zA-Z]:||; s/\.c$/.o/'`
# Create the lock directory.
# Note: use '[/\\:.-]' here to ensure that we don't use the same name
# that we are using for the .o file. Also, base the name on the expected
# object file name, since that is what matters with a parallel build.
lockdir=`echo "$cofile" | sed -e 's|[/\\:.-]|_|g'`.d
while true; do
if mkdir "$lockdir" >/dev/null 2>&1; then
break
fi
sleep 1
done
# FIXME: race condition here if user kills between mkdir and trap.
trap "rmdir '$lockdir'; exit 1" 1 2 15
# Run the compile.
"$@"
ret=$?
if test -f "$cofile"; then
test "$cofile" = "$ofile" || mv "$cofile" "$ofile"
elif test -f "${cofile}bj"; then
test "${cofile}bj" = "$ofile" || mv "${cofile}bj" "$ofile"
fi
rmdir "$lockdir"
exit $ret
# Local Variables:
# mode: shell-script
# sh-indentation: 2
# eval: (add-hook 'before-save-hook 'time-stamp)
# time-stamp-start: "scriptversion="
# time-stamp-format: "%:y-%02m-%02d.%02H"
# time-stamp-time-zone: "UTC0"
# time-stamp-end: "; # UTC"
# End:

57
config-cmake.h.in Normal file
View File

@ -0,0 +1,57 @@
/* config.h for CMake builds */
#cmakedefine HAVE_DIRENT_H 1
#cmakedefine HAVE_SYS_STAT_H 1
#cmakedefine HAVE_SYS_TYPES_H 1
#cmakedefine HAVE_UNISTD_H 1
#cmakedefine HAVE_WINDOWS_H 1
#cmakedefine HAVE_STDINT_H 1
#cmakedefine HAVE_INTTYPES_H 1
#cmakedefine HAVE_TYPE_TRAITS_H 1
#cmakedefine HAVE_BITS_TYPE_TRAITS_H 1
#cmakedefine HAVE_BCOPY 1
#cmakedefine HAVE_MEMMOVE 1
#cmakedefine HAVE_STRERROR 1
#cmakedefine HAVE_STRTOLL 1
#cmakedefine HAVE_STRTOQ 1
#cmakedefine HAVE__STRTOI64 1
#cmakedefine PCRE_STATIC 1
#cmakedefine SUPPORT_PCRE8 1
#cmakedefine SUPPORT_PCRE16 1
#cmakedefine SUPPORT_PCRE32 1
#cmakedefine SUPPORT_JIT 1
#cmakedefine SUPPORT_PCREGREP_JIT 1
#cmakedefine SUPPORT_UTF 1
#cmakedefine SUPPORT_UCP 1
#cmakedefine EBCDIC 1
#cmakedefine EBCDIC_NL25 1
#cmakedefine BSR_ANYCRLF 1
#cmakedefine NO_RECURSE 1
#cmakedefine HAVE_LONG_LONG 1
#cmakedefine HAVE_UNSIGNED_LONG_LONG 1
#cmakedefine SUPPORT_LIBBZ2 1
#cmakedefine SUPPORT_LIBZ 1
#cmakedefine SUPPORT_LIBEDIT 1
#cmakedefine SUPPORT_LIBREADLINE 1
#cmakedefine SUPPORT_VALGRIND 1
#cmakedefine SUPPORT_GCOV 1
#define NEWLINE @NEWLINE@
#define POSIX_MALLOC_THRESHOLD @PCRE_POSIX_MALLOC_THRESHOLD@
#define LINK_SIZE @PCRE_LINK_SIZE@
#define PARENS_NEST_LIMIT @PCRE_PARENS_NEST_LIMIT@
#define MATCH_LIMIT @PCRE_MATCH_LIMIT@
#define MATCH_LIMIT_RECURSION @PCRE_MATCH_LIMIT_RECURSION@
#define PCREGREP_BUFSIZE @PCREGREP_BUFSIZE@
#define MAX_NAME_SIZE 32
#define MAX_NAME_COUNT 10000
/* end config.h for CMake builds */

1686
config.guess vendored Executable file

File diff suppressed because it is too large Load Diff

351
config.h.generic Normal file
View File

@ -0,0 +1,351 @@
/* config.h. Generated from config.h.in by configure. */
/* config.h.in. Generated from configure.ac by autoheader. */
/* PCRE is written in Standard C, but there are a few non-standard things it
can cope with, allowing it to run on SunOS4 and other "close to standard"
systems.
In environments that support the GNU autotools, config.h.in is converted into
config.h by the "configure" script. In environments that use CMake,
config-cmake.in is converted into config.h. If you are going to build PCRE "by
hand" without using "configure" or CMake, you should copy the distributed
config.h.generic to config.h, and edit the macro definitions to be the way you
need them. You must then add -DHAVE_CONFIG_H to all of your compile commands,
so that config.h is included at the start of every source.
Alternatively, you can avoid editing by using -D on the compiler command line
to set the macro values. In this case, you do not have to set -DHAVE_CONFIG_H,
but if you do, default values will be taken from config.h for non-boolean
macros that are not defined on the command line.
Boolean macros such as HAVE_STDLIB_H and SUPPORT_PCRE8 should either be defined
(conventionally to 1) for TRUE, and not defined at all for FALSE. All such
macros are listed as a commented #undef in config.h.generic. Macros such as
MATCH_LIMIT, whose actual value is relevant, have defaults defined, but are
surrounded by #ifndef/#endif lines so that the value can be overridden by -D.
PCRE uses memmove() if HAVE_MEMMOVE is defined; otherwise it uses bcopy() if
HAVE_BCOPY is defined. If your system has neither bcopy() nor memmove(), make
sure both macros are undefined; an emulation function will then be used. */
/* By default, the \R escape sequence matches any Unicode line ending
character or sequence of characters. If BSR_ANYCRLF is defined (to any
value), this is changed so that backslash-R matches only CR, LF, or CRLF.
The build-time default can be overridden by the user of PCRE at runtime. */
/* #undef BSR_ANYCRLF */
/* If you are compiling for a system that uses EBCDIC instead of ASCII
character codes, define this macro to any value. You must also edit the
NEWLINE macro below to set a suitable EBCDIC newline, commonly 21 (0x15).
On systems that can use "configure" or CMake to set EBCDIC, NEWLINE is
automatically adjusted. When EBCDIC is set, PCRE assumes that all input
strings are in EBCDIC. If you do not define this macro, PCRE will assume
input strings are ASCII or UTF-8/16/32 Unicode. It is not possible to build
a version of PCRE that supports both EBCDIC and UTF-8/16/32. */
/* #undef EBCDIC */
/* In an EBCDIC environment, define this macro to any value to arrange for the
NL character to be 0x25 instead of the default 0x15. NL plays the role that
LF does in an ASCII/Unicode environment. The value must also be set in the
NEWLINE macro below. On systems that can use "configure" or CMake to set
EBCDIC_NL25, the adjustment of NEWLINE is automatic. */
/* #undef EBCDIC_NL25 */
/* Define to 1 if you have the `bcopy' function. */
/* #undef HAVE_BCOPY */
/* Define to 1 if you have the <bits/type_traits.h> header file. */
/* #undef HAVE_BITS_TYPE_TRAITS_H */
/* Define to 1 if you have the <bzlib.h> header file. */
/* #undef HAVE_BZLIB_H */
/* Define to 1 if you have the <dirent.h> header file. */
/* #undef HAVE_DIRENT_H */
/* Define to 1 if you have the <dlfcn.h> header file. */
/* #undef HAVE_DLFCN_H */
/* Define to 1 if you have the <editline/readline.h> header file. */
/* #undef HAVE_EDITLINE_READLINE_H */
/* Define to 1 if you have the <edit/readline/readline.h> header file. */
/* #undef HAVE_EDIT_READLINE_READLINE_H */
/* Define to 1 if you have the <inttypes.h> header file. */
/* #undef HAVE_INTTYPES_H */
/* Define to 1 if you have the <limits.h> header file. */
/* #undef HAVE_LIMITS_H */
/* Define to 1 if the system has the type `long long'. */
/* #undef HAVE_LONG_LONG */
/* Define to 1 if you have the `memmove' function. */
/* #undef HAVE_MEMMOVE */
/* Define if you have POSIX threads libraries and header files. */
/* #undef HAVE_PTHREAD */
/* Have PTHREAD_PRIO_INHERIT. */
/* #undef HAVE_PTHREAD_PRIO_INHERIT */
/* Define to 1 if you have the <readline/history.h> header file. */
/* #undef HAVE_READLINE_HISTORY_H */
/* Define to 1 if you have the <readline/readline.h> header file. */
/* #undef HAVE_READLINE_READLINE_H */
/* Define to 1 if you have the <stdint.h> header file. */
/* #undef HAVE_STDINT_H */
/* Define to 1 if you have the <stdio.h> header file. */
/* #undef HAVE_STDIO_H */
/* Define to 1 if you have the <stdlib.h> header file. */
/* #undef HAVE_STDLIB_H */
/* Define to 1 if you have the `strerror' function. */
/* #undef HAVE_STRERROR */
/* Define to 1 if you have the <string> header file. */
/* #undef HAVE_STRING */
/* Define to 1 if you have the <strings.h> header file. */
/* #undef HAVE_STRINGS_H */
/* Define to 1 if you have the <string.h> header file. */
/* #undef HAVE_STRING_H */
/* Define to 1 if you have `strtoimax'. */
/* #undef HAVE_STRTOIMAX */
/* Define to 1 if you have `strtoll'. */
/* #undef HAVE_STRTOLL */
/* Define to 1 if you have `strtoq'. */
/* #undef HAVE_STRTOQ */
/* Define to 1 if you have the <sys/stat.h> header file. */
/* #undef HAVE_SYS_STAT_H */
/* Define to 1 if you have the <sys/types.h> header file. */
/* #undef HAVE_SYS_TYPES_H */
/* Define to 1 if you have the <type_traits.h> header file. */
/* #undef HAVE_TYPE_TRAITS_H */
/* Define to 1 if you have the <unistd.h> header file. */
/* #undef HAVE_UNISTD_H */
/* Define to 1 if the system has the type `unsigned long long'. */
/* #undef HAVE_UNSIGNED_LONG_LONG */
/* Define to 1 if the compiler supports simple visibility declarations. */
/* #undef HAVE_VISIBILITY */
/* Define to 1 if you have the <windows.h> header file. */
/* #undef HAVE_WINDOWS_H */
/* Define to 1 if you have the <zlib.h> header file. */
/* #undef HAVE_ZLIB_H */
/* Define to 1 if you have `_strtoi64'. */
/* #undef HAVE__STRTOI64 */
/* The value of LINK_SIZE determines the number of bytes used to store links
as offsets within the compiled regex. The default is 2, which allows for
compiled patterns up to 64K long. This covers the vast majority of cases.
However, PCRE can also be compiled to use 3 or 4 bytes instead. This allows
for longer patterns in extreme cases. */
#ifndef LINK_SIZE
#define LINK_SIZE 2
#endif
/* Define to the sub-directory where libtool stores uninstalled libraries. */
/* This is ignored unless you are using libtool. */
#ifndef LT_OBJDIR
#define LT_OBJDIR ".libs/"
#endif
/* The value of MATCH_LIMIT determines the default number of times the
internal match() function can be called during a single execution of
pcre_exec(). There is a runtime interface for setting a different limit.
The limit exists in order to catch runaway regular expressions that take
for ever to determine that they do not match. The default is set very large
so that it does not accidentally catch legitimate cases. */
#ifndef MATCH_LIMIT
#define MATCH_LIMIT 10000000
#endif
/* The above limit applies to all calls of match(), whether or not they
increase the recursion depth. In some environments it is desirable to limit
the depth of recursive calls of match() more strictly, in order to restrict
the maximum amount of stack (or heap, if NO_RECURSE is defined) that is
used. The value of MATCH_LIMIT_RECURSION applies only to recursive calls of
match(). To have any useful effect, it must be less than the value of
MATCH_LIMIT. The default is to use the same value as MATCH_LIMIT. There is
a runtime method for setting a different limit. */
#ifndef MATCH_LIMIT_RECURSION
#define MATCH_LIMIT_RECURSION MATCH_LIMIT
#endif
/* This limit is parameterized just in case anybody ever wants to change it.
Care must be taken if it is increased, because it guards against integer
overflow caused by enormously large patterns. */
#ifndef MAX_NAME_COUNT
#define MAX_NAME_COUNT 10000
#endif
/* This limit is parameterized just in case anybody ever wants to change it.
Care must be taken if it is increased, because it guards against integer
overflow caused by enormously large patterns. */
#ifndef MAX_NAME_SIZE
#define MAX_NAME_SIZE 32
#endif
/* The value of NEWLINE determines the default newline character sequence.
PCRE client programs can override this by selecting other values at run
time. In ASCII environments, the value can be 10 (LF), 13 (CR), or 3338
(CRLF); in EBCDIC environments the value can be 21 or 37 (LF), 13 (CR), or
3349 or 3365 (CRLF) because there are two alternative codepoints (0x15 and
0x25) that are used as the NL line terminator that is equivalent to ASCII
LF. In both ASCII and EBCDIC environments the value can also be -1 (ANY),
or -2 (ANYCRLF). */
#ifndef NEWLINE
#define NEWLINE 10
#endif
/* PCRE uses recursive function calls to handle backtracking while matching.
This can sometimes be a problem on systems that have stacks of limited
size. Define NO_RECURSE to any value to get a version that doesn't use
recursion in the match() function; instead it creates its own stack by
steam using pcre_recurse_malloc() to obtain memory from the heap. For more
detail, see the comments and other stuff just above the match() function.
*/
/* #undef NO_RECURSE */
/* Name of package */
#define PACKAGE "pcre"
/* Define to the address where bug reports for this package should be sent. */
#define PACKAGE_BUGREPORT ""
/* Define to the full name of this package. */
#define PACKAGE_NAME "PCRE"
/* Define to the full name and version of this package. */
#define PACKAGE_STRING "PCRE 8.45"
/* Define to the one symbol short name of this package. */
#define PACKAGE_TARNAME "pcre"
/* Define to the home page for this package. */
#define PACKAGE_URL ""
/* Define to the version of this package. */
#define PACKAGE_VERSION "8.45"
/* The value of PARENS_NEST_LIMIT specifies the maximum depth of nested
parentheses (of any kind) in a pattern. This limits the amount of system
stack that is used while compiling a pattern. */
#ifndef PARENS_NEST_LIMIT
#define PARENS_NEST_LIMIT 250
#endif
/* The value of PCREGREP_BUFSIZE determines the size of buffer used by
pcregrep to hold parts of the file it is searching. This is also the
minimum value. The actual amount of memory used by pcregrep is three times
this number, because it allows for the buffering of "before" and "after"
lines. */
#ifndef PCREGREP_BUFSIZE
#define PCREGREP_BUFSIZE 20480
#endif
/* If you are compiling for a system other than a Unix-like system or
Win32, and it needs some magic to be inserted before the definition
of a function that is exported by the library, define this macro to
contain the relevant magic. If you do not define this macro, a suitable
__declspec value is used for Windows systems; in other environments
"extern" is used for a C compiler and "extern C" for a C++ compiler.
This macro apears at the start of every exported function that is part
of the external API. It does not appear on functions that are "external"
in the C sense, but which are internal to the library. */
/* #undef PCRE_EXP_DEFN */
/* Define to any value if linking statically (TODO: make nice with Libtool) */
/* #undef PCRE_STATIC */
/* When calling PCRE via the POSIX interface, additional working storage is
required for holding the pointers to capturing substrings because PCRE
requires three integers per substring, whereas the POSIX interface provides
only two. If the number of expected substrings is small, the wrapper
function uses space on the stack, because this is faster than using
malloc() for each call. The threshold above which the stack is no longer
used is defined by POSIX_MALLOC_THRESHOLD. */
#ifndef POSIX_MALLOC_THRESHOLD
#define POSIX_MALLOC_THRESHOLD 10
#endif
/* Define to necessary symbol if this constant uses a non-standard name on
your system. */
/* #undef PTHREAD_CREATE_JOINABLE */
/* Define to 1 if all of the C90 standard headers exist (not just the ones
required in a freestanding environment). This macro is provided for
backward compatibility; new code need not use it. */
/* #undef STDC_HEADERS */
/* Define to any value to enable support for Just-In-Time compiling. */
/* #undef SUPPORT_JIT */
/* Define to any value to allow pcregrep to be linked with libbz2, so that it
is able to handle .bz2 files. */
/* #undef SUPPORT_LIBBZ2 */
/* Define to any value to allow pcretest to be linked with libedit. */
/* #undef SUPPORT_LIBEDIT */
/* Define to any value to allow pcretest to be linked with libreadline. */
/* #undef SUPPORT_LIBREADLINE */
/* Define to any value to allow pcregrep to be linked with libz, so that it is
able to handle .gz files. */
/* #undef SUPPORT_LIBZ */
/* Define to any value to enable the 16 bit PCRE library. */
/* #undef SUPPORT_PCRE16 */
/* Define to any value to enable the 32 bit PCRE library. */
/* #undef SUPPORT_PCRE32 */
/* Define to any value to enable the 8 bit PCRE library. */
/* #undef SUPPORT_PCRE8 */
/* Define to any value to enable JIT support in pcregrep. */
/* #undef SUPPORT_PCREGREP_JIT */
/* Define to any value to enable support for Unicode properties. */
/* #undef SUPPORT_UCP */
/* Define to any value to enable support for the UTF-8/16/32 Unicode encoding.
This will work even in an EBCDIC environment, but it is incompatible with
the EBCDIC macro. That is, PCRE can support *either* EBCDIC code *or*
ASCII/UTF-8/16/32, but not both at once. */
/* #undef SUPPORT_UTF */
/* Define to any value for valgrind support to find invalid memory reads. */
/* #undef SUPPORT_VALGRIND */
/* Version number of package */
#define VERSION "8.45"
/* Define to empty if `const' does not conform to ANSI C. */
/* #undef const */
/* Define to the type of a signed integer type of width exactly 64 bits if
such a type exists and the standard includes do not define it. */
/* #undef int64_t */
/* Define to `unsigned int' if <sys/types.h> does not define. */
/* #undef size_t */

349
config.h.in Normal file
View File

@ -0,0 +1,349 @@
/* config.h.in. Generated from configure.ac by autoheader. */
/* PCRE is written in Standard C, but there are a few non-standard things it
can cope with, allowing it to run on SunOS4 and other "close to standard"
systems.
In environments that support the GNU autotools, config.h.in is converted into
config.h by the "configure" script. In environments that use CMake,
config-cmake.in is converted into config.h. If you are going to build PCRE "by
hand" without using "configure" or CMake, you should copy the distributed
config.h.generic to config.h, and edit the macro definitions to be the way you
need them. You must then add -DHAVE_CONFIG_H to all of your compile commands,
so that config.h is included at the start of every source.
Alternatively, you can avoid editing by using -D on the compiler command line
to set the macro values. In this case, you do not have to set -DHAVE_CONFIG_H,
but if you do, default values will be taken from config.h for non-boolean
macros that are not defined on the command line.
Boolean macros such as HAVE_STDLIB_H and SUPPORT_PCRE8 should either be defined
(conventionally to 1) for TRUE, and not defined at all for FALSE. All such
macros are listed as a commented #undef in config.h.generic. Macros such as
MATCH_LIMIT, whose actual value is relevant, have defaults defined, but are
surrounded by #ifndef/#endif lines so that the value can be overridden by -D.
PCRE uses memmove() if HAVE_MEMMOVE is defined; otherwise it uses bcopy() if
HAVE_BCOPY is defined. If your system has neither bcopy() nor memmove(), make
sure both macros are undefined; an emulation function will then be used. */
/* By default, the \R escape sequence matches any Unicode line ending
character or sequence of characters. If BSR_ANYCRLF is defined (to any
value), this is changed so that backslash-R matches only CR, LF, or CRLF.
The build-time default can be overridden by the user of PCRE at runtime. */
#undef BSR_ANYCRLF
/* If you are compiling for a system that uses EBCDIC instead of ASCII
character codes, define this macro to any value. You must also edit the
NEWLINE macro below to set a suitable EBCDIC newline, commonly 21 (0x15).
On systems that can use "configure" or CMake to set EBCDIC, NEWLINE is
automatically adjusted. When EBCDIC is set, PCRE assumes that all input
strings are in EBCDIC. If you do not define this macro, PCRE will assume
input strings are ASCII or UTF-8/16/32 Unicode. It is not possible to build
a version of PCRE that supports both EBCDIC and UTF-8/16/32. */
#undef EBCDIC
/* In an EBCDIC environment, define this macro to any value to arrange for the
NL character to be 0x25 instead of the default 0x15. NL plays the role that
LF does in an ASCII/Unicode environment. The value must also be set in the
NEWLINE macro below. On systems that can use "configure" or CMake to set
EBCDIC_NL25, the adjustment of NEWLINE is automatic. */
#undef EBCDIC_NL25
/* Define to 1 if you have the `bcopy' function. */
#undef HAVE_BCOPY
/* Define to 1 if you have the <bits/type_traits.h> header file. */
#undef HAVE_BITS_TYPE_TRAITS_H
/* Define to 1 if you have the <bzlib.h> header file. */
#undef HAVE_BZLIB_H
/* Define to 1 if you have the <dirent.h> header file. */
#undef HAVE_DIRENT_H
/* Define to 1 if you have the <dlfcn.h> header file. */
#undef HAVE_DLFCN_H
/* Define to 1 if you have the <editline/readline.h> header file. */
#undef HAVE_EDITLINE_READLINE_H
/* Define to 1 if you have the <edit/readline/readline.h> header file. */
#undef HAVE_EDIT_READLINE_READLINE_H
/* Define to 1 if you have the <inttypes.h> header file. */
#undef HAVE_INTTYPES_H
/* Define to 1 if you have the <limits.h> header file. */
#undef HAVE_LIMITS_H
/* Define to 1 if the system has the type `long long'. */
#undef HAVE_LONG_LONG
/* Define to 1 if you have the `memmove' function. */
#undef HAVE_MEMMOVE
/* Define if you have POSIX threads libraries and header files. */
#undef HAVE_PTHREAD
/* Have PTHREAD_PRIO_INHERIT. */
#undef HAVE_PTHREAD_PRIO_INHERIT
/* Define to 1 if you have the <readline/history.h> header file. */
#undef HAVE_READLINE_HISTORY_H
/* Define to 1 if you have the <readline/readline.h> header file. */
#undef HAVE_READLINE_READLINE_H
/* Define to 1 if you have the <stdint.h> header file. */
#undef HAVE_STDINT_H
/* Define to 1 if you have the <stdio.h> header file. */
#undef HAVE_STDIO_H
/* Define to 1 if you have the <stdlib.h> header file. */
#undef HAVE_STDLIB_H
/* Define to 1 if you have the `strerror' function. */
#undef HAVE_STRERROR
/* Define to 1 if you have the <string> header file. */
#undef HAVE_STRING
/* Define to 1 if you have the <strings.h> header file. */
#undef HAVE_STRINGS_H
/* Define to 1 if you have the <string.h> header file. */
#undef HAVE_STRING_H
/* Define to 1 if you have `strtoimax'. */
#undef HAVE_STRTOIMAX
/* Define to 1 if you have `strtoll'. */
#undef HAVE_STRTOLL
/* Define to 1 if you have `strtoq'. */
#undef HAVE_STRTOQ
/* Define to 1 if you have the <sys/stat.h> header file. */
#undef HAVE_SYS_STAT_H
/* Define to 1 if you have the <sys/types.h> header file. */
#undef HAVE_SYS_TYPES_H
/* Define to 1 if you have the <type_traits.h> header file. */
#undef HAVE_TYPE_TRAITS_H
/* Define to 1 if you have the <unistd.h> header file. */
#undef HAVE_UNISTD_H
/* Define to 1 if the system has the type `unsigned long long'. */
#undef HAVE_UNSIGNED_LONG_LONG
/* Define to 1 if the compiler supports simple visibility declarations. */
#undef HAVE_VISIBILITY
/* Define to 1 if you have the <windows.h> header file. */
#undef HAVE_WINDOWS_H
/* Define to 1 if you have the <zlib.h> header file. */
#undef HAVE_ZLIB_H
/* Define to 1 if you have `_strtoi64'. */
#undef HAVE__STRTOI64
/* The value of LINK_SIZE determines the number of bytes used to store links
as offsets within the compiled regex. The default is 2, which allows for
compiled patterns up to 64K long. This covers the vast majority of cases.
However, PCRE can also be compiled to use 3 or 4 bytes instead. This allows
for longer patterns in extreme cases. */
#undef LINK_SIZE
/* Define to the sub-directory where libtool stores uninstalled libraries. */
#undef LT_OBJDIR
/* The value of MATCH_LIMIT determines the default number of times the
internal match() function can be called during a single execution of
pcre_exec(). There is a runtime interface for setting a different limit.
The limit exists in order to catch runaway regular expressions that take
for ever to determine that they do not match. The default is set very large
so that it does not accidentally catch legitimate cases. */
#undef MATCH_LIMIT
/* The above limit applies to all calls of match(), whether or not they
increase the recursion depth. In some environments it is desirable to limit
the depth of recursive calls of match() more strictly, in order to restrict
the maximum amount of stack (or heap, if NO_RECURSE is defined) that is
used. The value of MATCH_LIMIT_RECURSION applies only to recursive calls of
match(). To have any useful effect, it must be less than the value of
MATCH_LIMIT. The default is to use the same value as MATCH_LIMIT. There is
a runtime method for setting a different limit. */
#undef MATCH_LIMIT_RECURSION
/* This limit is parameterized just in case anybody ever wants to change it.
Care must be taken if it is increased, because it guards against integer
overflow caused by enormously large patterns. */
#undef MAX_NAME_COUNT
/* This limit is parameterized just in case anybody ever wants to change it.
Care must be taken if it is increased, because it guards against integer
overflow caused by enormously large patterns. */
#undef MAX_NAME_SIZE
/* The value of NEWLINE determines the default newline character sequence.
PCRE client programs can override this by selecting other values at run
time. In ASCII environments, the value can be 10 (LF), 13 (CR), or 3338
(CRLF); in EBCDIC environments the value can be 21 or 37 (LF), 13 (CR), or
3349 or 3365 (CRLF) because there are two alternative codepoints (0x15 and
0x25) that are used as the NL line terminator that is equivalent to ASCII
LF. In both ASCII and EBCDIC environments the value can also be -1 (ANY),
or -2 (ANYCRLF). */
#undef NEWLINE
/* PCRE uses recursive function calls to handle backtracking while matching.
This can sometimes be a problem on systems that have stacks of limited
size. Define NO_RECURSE to any value to get a version that doesn't use
recursion in the match() function; instead it creates its own stack by
steam using pcre_recurse_malloc() to obtain memory from the heap. For more
detail, see the comments and other stuff just above the match() function.
*/
#undef NO_RECURSE
/* Name of package */
#undef PACKAGE
/* Define to the address where bug reports for this package should be sent. */
#undef PACKAGE_BUGREPORT
/* Define to the full name of this package. */
#undef PACKAGE_NAME
/* Define to the full name and version of this package. */
#undef PACKAGE_STRING
/* Define to the one symbol short name of this package. */
#undef PACKAGE_TARNAME
/* Define to the home page for this package. */
#undef PACKAGE_URL
/* Define to the version of this package. */
#undef PACKAGE_VERSION
/* The value of PARENS_NEST_LIMIT specifies the maximum depth of nested
parentheses (of any kind) in a pattern. This limits the amount of system
stack that is used while compiling a pattern. */
#undef PARENS_NEST_LIMIT
/* to make a symbol visible */
#undef PCRECPP_EXP_DECL
/* to make a symbol visible */
#undef PCRECPP_EXP_DEFN
/* The value of PCREGREP_BUFSIZE determines the size of buffer used by
pcregrep to hold parts of the file it is searching. This is also the
minimum value. The actual amount of memory used by pcregrep is three times
this number, because it allows for the buffering of "before" and "after"
lines. */
#undef PCREGREP_BUFSIZE
/* to make a symbol visible */
#undef PCREPOSIX_EXP_DECL
/* to make a symbol visible */
#undef PCREPOSIX_EXP_DEFN
/* to make a symbol visible */
#undef PCRE_EXP_DATA_DEFN
/* to make a symbol visible */
#undef PCRE_EXP_DECL
/* If you are compiling for a system other than a Unix-like system or
Win32, and it needs some magic to be inserted before the definition
of a function that is exported by the library, define this macro to
contain the relevant magic. If you do not define this macro, a suitable
__declspec value is used for Windows systems; in other environments
"extern" is used for a C compiler and "extern C" for a C++ compiler.
This macro apears at the start of every exported function that is part
of the external API. It does not appear on functions that are "external"
in the C sense, but which are internal to the library. */
#undef PCRE_EXP_DEFN
/* Define to any value if linking statically (TODO: make nice with Libtool) */
#undef PCRE_STATIC
/* When calling PCRE via the POSIX interface, additional working storage is
required for holding the pointers to capturing substrings because PCRE
requires three integers per substring, whereas the POSIX interface provides
only two. If the number of expected substrings is small, the wrapper
function uses space on the stack, because this is faster than using
malloc() for each call. The threshold above which the stack is no longer
used is defined by POSIX_MALLOC_THRESHOLD. */
#undef POSIX_MALLOC_THRESHOLD
/* Define to necessary symbol if this constant uses a non-standard name on
your system. */
#undef PTHREAD_CREATE_JOINABLE
/* Define to 1 if all of the C90 standard headers exist (not just the ones
required in a freestanding environment). This macro is provided for
backward compatibility; new code need not use it. */
#undef STDC_HEADERS
/* Define to any value to enable support for Just-In-Time compiling. */
#undef SUPPORT_JIT
/* Define to any value to allow pcregrep to be linked with libbz2, so that it
is able to handle .bz2 files. */
#undef SUPPORT_LIBBZ2
/* Define to any value to allow pcretest to be linked with libedit. */
#undef SUPPORT_LIBEDIT
/* Define to any value to allow pcretest to be linked with libreadline. */
#undef SUPPORT_LIBREADLINE
/* Define to any value to allow pcregrep to be linked with libz, so that it is
able to handle .gz files. */
#undef SUPPORT_LIBZ
/* Define to any value to enable the 16 bit PCRE library. */
#undef SUPPORT_PCRE16
/* Define to any value to enable the 32 bit PCRE library. */
#undef SUPPORT_PCRE32
/* Define to any value to enable the 8 bit PCRE library. */
#undef SUPPORT_PCRE8
/* Define to any value to enable JIT support in pcregrep. */
#undef SUPPORT_PCREGREP_JIT
/* Define to any value to enable support for Unicode properties. */
#undef SUPPORT_UCP
/* Define to any value to enable support for the UTF-8/16/32 Unicode encoding.
This will work even in an EBCDIC environment, but it is incompatible with
the EBCDIC macro. That is, PCRE can support *either* EBCDIC code *or*
ASCII/UTF-8/16/32, but not both at once. */
#undef SUPPORT_UTF
/* Define to any value for valgrind support to find invalid memory reads. */
#undef SUPPORT_VALGRIND
/* Version number of package */
#undef VERSION
/* Define to empty if `const' does not conform to ANSI C. */
#undef const
/* Define to the type of a signed integer type of width exactly 64 bits if
such a type exists and the standard includes do not define it. */
#undef int64_t
/* Define to `unsigned int' if <sys/types.h> does not define. */
#undef size_t

1853
config.sub vendored Executable file

File diff suppressed because it is too large Load Diff

23895
configure vendored Executable file

File diff suppressed because it is too large Load Diff

1126
configure.ac Normal file

File diff suppressed because it is too large Load Diff

791
depcomp Executable file
View File

@ -0,0 +1,791 @@
#! /bin/sh
# depcomp - compile a program generating dependencies as side-effects
scriptversion=2018-03-07.03; # UTC
# Copyright (C) 1999-2020 Free Software Foundation, Inc.
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2, or (at your option)
# any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
# As a special exception to the GNU General Public License, if you
# distribute this file as part of a program that contains a
# configuration script generated by Autoconf, you may include it under
# the same distribution terms that you use for the rest of that program.
# Originally written by Alexandre Oliva <oliva@dcc.unicamp.br>.
case $1 in
'')
echo "$0: No command. Try '$0 --help' for more information." 1>&2
exit 1;
;;
-h | --h*)
cat <<\EOF
Usage: depcomp [--help] [--version] PROGRAM [ARGS]
Run PROGRAMS ARGS to compile a file, generating dependencies
as side-effects.
Environment variables:
depmode Dependency tracking mode.
source Source file read by 'PROGRAMS ARGS'.
object Object file output by 'PROGRAMS ARGS'.
DEPDIR directory where to store dependencies.
depfile Dependency file to output.
tmpdepfile Temporary file to use when outputting dependencies.
libtool Whether libtool is used (yes/no).
Report bugs to <bug-automake@gnu.org>.
EOF
exit $?
;;
-v | --v*)
echo "depcomp $scriptversion"
exit $?
;;
esac
# Get the directory component of the given path, and save it in the
# global variables '$dir'. Note that this directory component will
# be either empty or ending with a '/' character. This is deliberate.
set_dir_from ()
{
case $1 in
*/*) dir=`echo "$1" | sed -e 's|/[^/]*$|/|'`;;
*) dir=;;
esac
}
# Get the suffix-stripped basename of the given path, and save it the
# global variable '$base'.
set_base_from ()
{
base=`echo "$1" | sed -e 's|^.*/||' -e 's/\.[^.]*$//'`
}
# If no dependency file was actually created by the compiler invocation,
# we still have to create a dummy depfile, to avoid errors with the
# Makefile "include basename.Plo" scheme.
make_dummy_depfile ()
{
echo "#dummy" > "$depfile"
}
# Factor out some common post-processing of the generated depfile.
# Requires the auxiliary global variable '$tmpdepfile' to be set.
aix_post_process_depfile ()
{
# If the compiler actually managed to produce a dependency file,
# post-process it.
if test -f "$tmpdepfile"; then
# Each line is of the form 'foo.o: dependency.h'.
# Do two passes, one to just change these to
# $object: dependency.h
# and one to simply output
# dependency.h:
# which is needed to avoid the deleted-header problem.
{ sed -e "s,^.*\.[$lower]*:,$object:," < "$tmpdepfile"
sed -e "s,^.*\.[$lower]*:[$tab ]*,," -e 's,$,:,' < "$tmpdepfile"
} > "$depfile"
rm -f "$tmpdepfile"
else
make_dummy_depfile
fi
}
# A tabulation character.
tab=' '
# A newline character.
nl='
'
# Character ranges might be problematic outside the C locale.
# These definitions help.
upper=ABCDEFGHIJKLMNOPQRSTUVWXYZ
lower=abcdefghijklmnopqrstuvwxyz
digits=0123456789
alpha=${upper}${lower}
if test -z "$depmode" || test -z "$source" || test -z "$object"; then
echo "depcomp: Variables source, object and depmode must be set" 1>&2
exit 1
fi
# Dependencies for sub/bar.o or sub/bar.obj go into sub/.deps/bar.Po.
depfile=${depfile-`echo "$object" |
sed 's|[^\\/]*$|'${DEPDIR-.deps}'/&|;s|\.\([^.]*\)$|.P\1|;s|Pobj$|Po|'`}
tmpdepfile=${tmpdepfile-`echo "$depfile" | sed 's/\.\([^.]*\)$/.T\1/'`}
rm -f "$tmpdepfile"
# Avoid interferences from the environment.
gccflag= dashmflag=
# Some modes work just like other modes, but use different flags. We
# parameterize here, but still list the modes in the big case below,
# to make depend.m4 easier to write. Note that we *cannot* use a case
# here, because this file can only contain one case statement.
if test "$depmode" = hp; then
# HP compiler uses -M and no extra arg.
gccflag=-M
depmode=gcc
fi
if test "$depmode" = dashXmstdout; then
# This is just like dashmstdout with a different argument.
dashmflag=-xM
depmode=dashmstdout
fi
cygpath_u="cygpath -u -f -"
if test "$depmode" = msvcmsys; then
# This is just like msvisualcpp but w/o cygpath translation.
# Just convert the backslash-escaped backslashes to single forward
# slashes to satisfy depend.m4
cygpath_u='sed s,\\\\,/,g'
depmode=msvisualcpp
fi
if test "$depmode" = msvc7msys; then
# This is just like msvc7 but w/o cygpath translation.
# Just convert the backslash-escaped backslashes to single forward
# slashes to satisfy depend.m4
cygpath_u='sed s,\\\\,/,g'
depmode=msvc7
fi
if test "$depmode" = xlc; then
# IBM C/C++ Compilers xlc/xlC can output gcc-like dependency information.
gccflag=-qmakedep=gcc,-MF
depmode=gcc
fi
case "$depmode" in
gcc3)
## gcc 3 implements dependency tracking that does exactly what
## we want. Yay! Note: for some reason libtool 1.4 doesn't like
## it if -MD -MP comes after the -MF stuff. Hmm.
## Unfortunately, FreeBSD c89 acceptance of flags depends upon
## the command line argument order; so add the flags where they
## appear in depend2.am. Note that the slowdown incurred here
## affects only configure: in makefiles, %FASTDEP% shortcuts this.
for arg
do
case $arg in
-c) set fnord "$@" -MT "$object" -MD -MP -MF "$tmpdepfile" "$arg" ;;
*) set fnord "$@" "$arg" ;;
esac
shift # fnord
shift # $arg
done
"$@"
stat=$?
if test $stat -ne 0; then
rm -f "$tmpdepfile"
exit $stat
fi
mv "$tmpdepfile" "$depfile"
;;
gcc)
## Note that this doesn't just cater to obsosete pre-3.x GCC compilers.
## but also to in-use compilers like IMB xlc/xlC and the HP C compiler.
## (see the conditional assignment to $gccflag above).
## There are various ways to get dependency output from gcc. Here's
## why we pick this rather obscure method:
## - Don't want to use -MD because we'd like the dependencies to end
## up in a subdir. Having to rename by hand is ugly.
## (We might end up doing this anyway to support other compilers.)
## - The DEPENDENCIES_OUTPUT environment variable makes gcc act like
## -MM, not -M (despite what the docs say). Also, it might not be
## supported by the other compilers which use the 'gcc' depmode.
## - Using -M directly means running the compiler twice (even worse
## than renaming).
if test -z "$gccflag"; then
gccflag=-MD,
fi
"$@" -Wp,"$gccflag$tmpdepfile"
stat=$?
if test $stat -ne 0; then
rm -f "$tmpdepfile"
exit $stat
fi
rm -f "$depfile"
echo "$object : \\" > "$depfile"
# The second -e expression handles DOS-style file names with drive
# letters.
sed -e 's/^[^:]*: / /' \
-e 's/^['$alpha']:\/[^:]*: / /' < "$tmpdepfile" >> "$depfile"
## This next piece of magic avoids the "deleted header file" problem.
## The problem is that when a header file which appears in a .P file
## is deleted, the dependency causes make to die (because there is
## typically no way to rebuild the header). We avoid this by adding
## dummy dependencies for each header file. Too bad gcc doesn't do
## this for us directly.
## Some versions of gcc put a space before the ':'. On the theory
## that the space means something, we add a space to the output as
## well. hp depmode also adds that space, but also prefixes the VPATH
## to the object. Take care to not repeat it in the output.
## Some versions of the HPUX 10.20 sed can't process this invocation
## correctly. Breaking it into two sed invocations is a workaround.
tr ' ' "$nl" < "$tmpdepfile" \
| sed -e 's/^\\$//' -e '/^$/d' -e "s|.*$object$||" -e '/:$/d' \
| sed -e 's/$/ :/' >> "$depfile"
rm -f "$tmpdepfile"
;;
hp)
# This case exists only to let depend.m4 do its work. It works by
# looking at the text of this script. This case will never be run,
# since it is checked for above.
exit 1
;;
sgi)
if test "$libtool" = yes; then
"$@" "-Wp,-MDupdate,$tmpdepfile"
else
"$@" -MDupdate "$tmpdepfile"
fi
stat=$?
if test $stat -ne 0; then
rm -f "$tmpdepfile"
exit $stat
fi
rm -f "$depfile"
if test -f "$tmpdepfile"; then # yes, the sourcefile depend on other files
echo "$object : \\" > "$depfile"
# Clip off the initial element (the dependent). Don't try to be
# clever and replace this with sed code, as IRIX sed won't handle
# lines with more than a fixed number of characters (4096 in
# IRIX 6.2 sed, 8192 in IRIX 6.5). We also remove comment lines;
# the IRIX cc adds comments like '#:fec' to the end of the
# dependency line.
tr ' ' "$nl" < "$tmpdepfile" \
| sed -e 's/^.*\.o://' -e 's/#.*$//' -e '/^$/ d' \
| tr "$nl" ' ' >> "$depfile"
echo >> "$depfile"
# The second pass generates a dummy entry for each header file.
tr ' ' "$nl" < "$tmpdepfile" \
| sed -e 's/^.*\.o://' -e 's/#.*$//' -e '/^$/ d' -e 's/$/:/' \
>> "$depfile"
else
make_dummy_depfile
fi
rm -f "$tmpdepfile"
;;
xlc)
# This case exists only to let depend.m4 do its work. It works by
# looking at the text of this script. This case will never be run,
# since it is checked for above.
exit 1
;;
aix)
# The C for AIX Compiler uses -M and outputs the dependencies
# in a .u file. In older versions, this file always lives in the
# current directory. Also, the AIX compiler puts '$object:' at the
# start of each line; $object doesn't have directory information.
# Version 6 uses the directory in both cases.
set_dir_from "$object"
set_base_from "$object"
if test "$libtool" = yes; then
tmpdepfile1=$dir$base.u
tmpdepfile2=$base.u
tmpdepfile3=$dir.libs/$base.u
"$@" -Wc,-M
else
tmpdepfile1=$dir$base.u
tmpdepfile2=$dir$base.u
tmpdepfile3=$dir$base.u
"$@" -M
fi
stat=$?
if test $stat -ne 0; then
rm -f "$tmpdepfile1" "$tmpdepfile2" "$tmpdepfile3"
exit $stat
fi
for tmpdepfile in "$tmpdepfile1" "$tmpdepfile2" "$tmpdepfile3"
do
test -f "$tmpdepfile" && break
done
aix_post_process_depfile
;;
tcc)
# tcc (Tiny C Compiler) understand '-MD -MF file' since version 0.9.26
# FIXME: That version still under development at the moment of writing.
# Make that this statement remains true also for stable, released
# versions.
# It will wrap lines (doesn't matter whether long or short) with a
# trailing '\', as in:
#
# foo.o : \
# foo.c \
# foo.h \
#
# It will put a trailing '\' even on the last line, and will use leading
# spaces rather than leading tabs (at least since its commit 0394caf7
# "Emit spaces for -MD").
"$@" -MD -MF "$tmpdepfile"
stat=$?
if test $stat -ne 0; then
rm -f "$tmpdepfile"
exit $stat
fi
rm -f "$depfile"
# Each non-empty line is of the form 'foo.o : \' or ' dep.h \'.
# We have to change lines of the first kind to '$object: \'.
sed -e "s|.*:|$object :|" < "$tmpdepfile" > "$depfile"
# And for each line of the second kind, we have to emit a 'dep.h:'
# dummy dependency, to avoid the deleted-header problem.
sed -n -e 's|^ *\(.*\) *\\$|\1:|p' < "$tmpdepfile" >> "$depfile"
rm -f "$tmpdepfile"
;;
## The order of this option in the case statement is important, since the
## shell code in configure will try each of these formats in the order
## listed in this file. A plain '-MD' option would be understood by many
## compilers, so we must ensure this comes after the gcc and icc options.
pgcc)
# Portland's C compiler understands '-MD'.
# Will always output deps to 'file.d' where file is the root name of the
# source file under compilation, even if file resides in a subdirectory.
# The object file name does not affect the name of the '.d' file.
# pgcc 10.2 will output
# foo.o: sub/foo.c sub/foo.h
# and will wrap long lines using '\' :
# foo.o: sub/foo.c ... \
# sub/foo.h ... \
# ...
set_dir_from "$object"
# Use the source, not the object, to determine the base name, since
# that's sadly what pgcc will do too.
set_base_from "$source"
tmpdepfile=$base.d
# For projects that build the same source file twice into different object
# files, the pgcc approach of using the *source* file root name can cause
# problems in parallel builds. Use a locking strategy to avoid stomping on
# the same $tmpdepfile.
lockdir=$base.d-lock
trap "
echo '$0: caught signal, cleaning up...' >&2
rmdir '$lockdir'
exit 1
" 1 2 13 15
numtries=100
i=$numtries
while test $i -gt 0; do
# mkdir is a portable test-and-set.
if mkdir "$lockdir" 2>/dev/null; then
# This process acquired the lock.
"$@" -MD
stat=$?
# Release the lock.
rmdir "$lockdir"
break
else
# If the lock is being held by a different process, wait
# until the winning process is done or we timeout.
while test -d "$lockdir" && test $i -gt 0; do
sleep 1
i=`expr $i - 1`
done
fi
i=`expr $i - 1`
done
trap - 1 2 13 15
if test $i -le 0; then
echo "$0: failed to acquire lock after $numtries attempts" >&2
echo "$0: check lockdir '$lockdir'" >&2
exit 1
fi
if test $stat -ne 0; then
rm -f "$tmpdepfile"
exit $stat
fi
rm -f "$depfile"
# Each line is of the form `foo.o: dependent.h',
# or `foo.o: dep1.h dep2.h \', or ` dep3.h dep4.h \'.
# Do two passes, one to just change these to
# `$object: dependent.h' and one to simply `dependent.h:'.
sed "s,^[^:]*:,$object :," < "$tmpdepfile" > "$depfile"
# Some versions of the HPUX 10.20 sed can't process this invocation
# correctly. Breaking it into two sed invocations is a workaround.
sed 's,^[^:]*: \(.*\)$,\1,;s/^\\$//;/^$/d;/:$/d' < "$tmpdepfile" \
| sed -e 's/$/ :/' >> "$depfile"
rm -f "$tmpdepfile"
;;
hp2)
# The "hp" stanza above does not work with aCC (C++) and HP's ia64
# compilers, which have integrated preprocessors. The correct option
# to use with these is +Maked; it writes dependencies to a file named
# 'foo.d', which lands next to the object file, wherever that
# happens to be.
# Much of this is similar to the tru64 case; see comments there.
set_dir_from "$object"
set_base_from "$object"
if test "$libtool" = yes; then
tmpdepfile1=$dir$base.d
tmpdepfile2=$dir.libs/$base.d
"$@" -Wc,+Maked
else
tmpdepfile1=$dir$base.d
tmpdepfile2=$dir$base.d
"$@" +Maked
fi
stat=$?
if test $stat -ne 0; then
rm -f "$tmpdepfile1" "$tmpdepfile2"
exit $stat
fi
for tmpdepfile in "$tmpdepfile1" "$tmpdepfile2"
do
test -f "$tmpdepfile" && break
done
if test -f "$tmpdepfile"; then
sed -e "s,^.*\.[$lower]*:,$object:," "$tmpdepfile" > "$depfile"
# Add 'dependent.h:' lines.
sed -ne '2,${
s/^ *//
s/ \\*$//
s/$/:/
p
}' "$tmpdepfile" >> "$depfile"
else
make_dummy_depfile
fi
rm -f "$tmpdepfile" "$tmpdepfile2"
;;
tru64)
# The Tru64 compiler uses -MD to generate dependencies as a side
# effect. 'cc -MD -o foo.o ...' puts the dependencies into 'foo.o.d'.
# At least on Alpha/Redhat 6.1, Compaq CCC V6.2-504 seems to put
# dependencies in 'foo.d' instead, so we check for that too.
# Subdirectories are respected.
set_dir_from "$object"
set_base_from "$object"
if test "$libtool" = yes; then
# Libtool generates 2 separate objects for the 2 libraries. These
# two compilations output dependencies in $dir.libs/$base.o.d and
# in $dir$base.o.d. We have to check for both files, because
# one of the two compilations can be disabled. We should prefer
# $dir$base.o.d over $dir.libs/$base.o.d because the latter is
# automatically cleaned when .libs/ is deleted, while ignoring
# the former would cause a distcleancheck panic.
tmpdepfile1=$dir$base.o.d # libtool 1.5
tmpdepfile2=$dir.libs/$base.o.d # Likewise.
tmpdepfile3=$dir.libs/$base.d # Compaq CCC V6.2-504
"$@" -Wc,-MD
else
tmpdepfile1=$dir$base.d
tmpdepfile2=$dir$base.d
tmpdepfile3=$dir$base.d
"$@" -MD
fi
stat=$?
if test $stat -ne 0; then
rm -f "$tmpdepfile1" "$tmpdepfile2" "$tmpdepfile3"
exit $stat
fi
for tmpdepfile in "$tmpdepfile1" "$tmpdepfile2" "$tmpdepfile3"
do
test -f "$tmpdepfile" && break
done
# Same post-processing that is required for AIX mode.
aix_post_process_depfile
;;
msvc7)
if test "$libtool" = yes; then
showIncludes=-Wc,-showIncludes
else
showIncludes=-showIncludes
fi
"$@" $showIncludes > "$tmpdepfile"
stat=$?
grep -v '^Note: including file: ' "$tmpdepfile"
if test $stat -ne 0; then
rm -f "$tmpdepfile"
exit $stat
fi
rm -f "$depfile"
echo "$object : \\" > "$depfile"
# The first sed program below extracts the file names and escapes
# backslashes for cygpath. The second sed program outputs the file
# name when reading, but also accumulates all include files in the
# hold buffer in order to output them again at the end. This only
# works with sed implementations that can handle large buffers.
sed < "$tmpdepfile" -n '
/^Note: including file: *\(.*\)/ {
s//\1/
s/\\/\\\\/g
p
}' | $cygpath_u | sort -u | sed -n '
s/ /\\ /g
s/\(.*\)/'"$tab"'\1 \\/p
s/.\(.*\) \\/\1:/
H
$ {
s/.*/'"$tab"'/
G
p
}' >> "$depfile"
echo >> "$depfile" # make sure the fragment doesn't end with a backslash
rm -f "$tmpdepfile"
;;
msvc7msys)
# This case exists only to let depend.m4 do its work. It works by
# looking at the text of this script. This case will never be run,
# since it is checked for above.
exit 1
;;
#nosideeffect)
# This comment above is used by automake to tell side-effect
# dependency tracking mechanisms from slower ones.
dashmstdout)
# Important note: in order to support this mode, a compiler *must*
# always write the preprocessed file to stdout, regardless of -o.
"$@" || exit $?
# Remove the call to Libtool.
if test "$libtool" = yes; then
while test "X$1" != 'X--mode=compile'; do
shift
done
shift
fi
# Remove '-o $object'.
IFS=" "
for arg
do
case $arg in
-o)
shift
;;
$object)
shift
;;
*)
set fnord "$@" "$arg"
shift # fnord
shift # $arg
;;
esac
done
test -z "$dashmflag" && dashmflag=-M
# Require at least two characters before searching for ':'
# in the target name. This is to cope with DOS-style filenames:
# a dependency such as 'c:/foo/bar' could be seen as target 'c' otherwise.
"$@" $dashmflag |
sed "s|^[$tab ]*[^:$tab ][^:][^:]*:[$tab ]*|$object: |" > "$tmpdepfile"
rm -f "$depfile"
cat < "$tmpdepfile" > "$depfile"
# Some versions of the HPUX 10.20 sed can't process this sed invocation
# correctly. Breaking it into two sed invocations is a workaround.
tr ' ' "$nl" < "$tmpdepfile" \
| sed -e 's/^\\$//' -e '/^$/d' -e '/:$/d' \
| sed -e 's/$/ :/' >> "$depfile"
rm -f "$tmpdepfile"
;;
dashXmstdout)
# This case only exists to satisfy depend.m4. It is never actually
# run, as this mode is specially recognized in the preamble.
exit 1
;;
makedepend)
"$@" || exit $?
# Remove any Libtool call
if test "$libtool" = yes; then
while test "X$1" != 'X--mode=compile'; do
shift
done
shift
fi
# X makedepend
shift
cleared=no eat=no
for arg
do
case $cleared in
no)
set ""; shift
cleared=yes ;;
esac
if test $eat = yes; then
eat=no
continue
fi
case "$arg" in
-D*|-I*)
set fnord "$@" "$arg"; shift ;;
# Strip any option that makedepend may not understand. Remove
# the object too, otherwise makedepend will parse it as a source file.
-arch)
eat=yes ;;
-*|$object)
;;
*)
set fnord "$@" "$arg"; shift ;;
esac
done
obj_suffix=`echo "$object" | sed 's/^.*\././'`
touch "$tmpdepfile"
${MAKEDEPEND-makedepend} -o"$obj_suffix" -f"$tmpdepfile" "$@"
rm -f "$depfile"
# makedepend may prepend the VPATH from the source file name to the object.
# No need to regex-escape $object, excess matching of '.' is harmless.
sed "s|^.*\($object *:\)|\1|" "$tmpdepfile" > "$depfile"
# Some versions of the HPUX 10.20 sed can't process the last invocation
# correctly. Breaking it into two sed invocations is a workaround.
sed '1,2d' "$tmpdepfile" \
| tr ' ' "$nl" \
| sed -e 's/^\\$//' -e '/^$/d' -e '/:$/d' \
| sed -e 's/$/ :/' >> "$depfile"
rm -f "$tmpdepfile" "$tmpdepfile".bak
;;
cpp)
# Important note: in order to support this mode, a compiler *must*
# always write the preprocessed file to stdout.
"$@" || exit $?
# Remove the call to Libtool.
if test "$libtool" = yes; then
while test "X$1" != 'X--mode=compile'; do
shift
done
shift
fi
# Remove '-o $object'.
IFS=" "
for arg
do
case $arg in
-o)
shift
;;
$object)
shift
;;
*)
set fnord "$@" "$arg"
shift # fnord
shift # $arg
;;
esac
done
"$@" -E \
| sed -n -e '/^# [0-9][0-9]* "\([^"]*\)".*/ s:: \1 \\:p' \
-e '/^#line [0-9][0-9]* "\([^"]*\)".*/ s:: \1 \\:p' \
| sed '$ s: \\$::' > "$tmpdepfile"
rm -f "$depfile"
echo "$object : \\" > "$depfile"
cat < "$tmpdepfile" >> "$depfile"
sed < "$tmpdepfile" '/^$/d;s/^ //;s/ \\$//;s/$/ :/' >> "$depfile"
rm -f "$tmpdepfile"
;;
msvisualcpp)
# Important note: in order to support this mode, a compiler *must*
# always write the preprocessed file to stdout.
"$@" || exit $?
# Remove the call to Libtool.
if test "$libtool" = yes; then
while test "X$1" != 'X--mode=compile'; do
shift
done
shift
fi
IFS=" "
for arg
do
case "$arg" in
-o)
shift
;;
$object)
shift
;;
"-Gm"|"/Gm"|"-Gi"|"/Gi"|"-ZI"|"/ZI")
set fnord "$@"
shift
shift
;;
*)
set fnord "$@" "$arg"
shift
shift
;;
esac
done
"$@" -E 2>/dev/null |
sed -n '/^#line [0-9][0-9]* "\([^"]*\)"/ s::\1:p' | $cygpath_u | sort -u > "$tmpdepfile"
rm -f "$depfile"
echo "$object : \\" > "$depfile"
sed < "$tmpdepfile" -n -e 's% %\\ %g' -e '/^\(.*\)$/ s::'"$tab"'\1 \\:p' >> "$depfile"
echo "$tab" >> "$depfile"
sed < "$tmpdepfile" -n -e 's% %\\ %g' -e '/^\(.*\)$/ s::\1\::p' >> "$depfile"
rm -f "$tmpdepfile"
;;
msvcmsys)
# This case exists only to let depend.m4 do its work. It works by
# looking at the text of this script. This case will never be run,
# since it is checked for above.
exit 1
;;
none)
exec "$@"
;;
*)
echo "Unknown depmode $depmode" 1>&2
exit 1
;;
esac
exit 0
# Local Variables:
# mode: shell-script
# sh-indentation: 2
# eval: (add-hook 'before-save-hook 'time-stamp)
# time-stamp-start: "scriptversion="
# time-stamp-format: "%:y-%02m-%02d.%02H"
# time-stamp-time-zone: "UTC0"
# time-stamp-end: "; # UTC"
# End:

212
dftables.c Normal file
View File

@ -0,0 +1,212 @@
/*************************************************
* Perl-Compatible Regular Expressions *
*************************************************/
/* PCRE is a library of functions to support regular expressions whose syntax
and semantics are as close as possible to those of the Perl 5 language.
Written by Philip Hazel
Copyright (c) 1997-2012 University of Cambridge
-----------------------------------------------------------------------------
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the University of Cambridge nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
-----------------------------------------------------------------------------
*/
/* This is a freestanding support program to generate a file containing
character tables for PCRE. The tables are built according to the current
locale. Now that pcre_maketables is a function visible to the outside world, we
make use of its code from here in order to be consistent. */
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <ctype.h>
#include <stdio.h>
#include <string.h>
#include <locale.h>
#include "pcre_internal.h"
#define DFTABLES /* pcre_maketables.c notices this */
#include "pcre_maketables.c"
int main(int argc, char **argv)
{
FILE *f;
int i = 1;
const unsigned char *tables;
const unsigned char *base_of_tables;
/* By default, the default C locale is used rather than what the building user
happens to have set. However, if the -L option is given, set the locale from
the LC_xxx environment variables. */
if (argc > 1 && strcmp(argv[1], "-L") == 0)
{
setlocale(LC_ALL, ""); /* Set from environment variables */
i++;
}
if (argc < i + 1)
{
fprintf(stderr, "dftables: one filename argument is required\n");
return 1;
}
tables = pcre_maketables();
base_of_tables = tables;
f = fopen(argv[i], "wb");
if (f == NULL)
{
fprintf(stderr, "dftables: failed to open %s for writing\n", argv[1]);
return 1;
}
/* There are several fprintf() calls here, because gcc in pedantic mode
complains about the very long string otherwise. */
fprintf(f,
"/*************************************************\n"
"* Perl-Compatible Regular Expressions *\n"
"*************************************************/\n\n"
"/* This file was automatically written by the dftables auxiliary\n"
"program. It contains character tables that are used when no external\n"
"tables are passed to PCRE by the application that calls it. The tables\n"
"are used only for characters whose code values are less than 256.\n\n");
fprintf(f,
"The following #includes are present because without them gcc 4.x may remove\n"
"the array definition from the final binary if PCRE is built into a static\n"
"library and dead code stripping is activated. This leads to link errors.\n"
"Pulling in the header ensures that the array gets flagged as \"someone\n"
"outside this compilation unit might reference this\" and so it will always\n"
"be supplied to the linker. */\n\n");
/* Force config.h in z/OS */
#if defined NATIVE_ZOS
fprintf(f,
"/* For z/OS, config.h is forced */\n"
"#ifndef HAVE_CONFIG_H\n"
"#define HAVE_CONFIG_H 1\n"
"#endif\n\n");
#endif
fprintf(f,
"#ifdef HAVE_CONFIG_H\n"
"#include \"config.h\"\n"
"#endif\n\n"
"#include \"pcre_internal.h\"\n\n");
fprintf(f,
"const pcre_uint8 PRIV(default_tables)[] = {\n\n"
"/* This table is a lower casing table. */\n\n");
fprintf(f, " ");
for (i = 0; i < 256; i++)
{
if ((i & 7) == 0 && i != 0) fprintf(f, "\n ");
fprintf(f, "%3d", *tables++);
if (i != 255) fprintf(f, ",");
}
fprintf(f, ",\n\n");
fprintf(f, "/* This table is a case flipping table. */\n\n");
fprintf(f, " ");
for (i = 0; i < 256; i++)
{
if ((i & 7) == 0 && i != 0) fprintf(f, "\n ");
fprintf(f, "%3d", *tables++);
if (i != 255) fprintf(f, ",");
}
fprintf(f, ",\n\n");
fprintf(f,
"/* This table contains bit maps for various character classes.\n"
"Each map is 32 bytes long and the bits run from the least\n"
"significant end of each byte. The classes that have their own\n"
"maps are: space, xdigit, digit, upper, lower, word, graph\n"
"print, punct, and cntrl. Other classes are built from combinations. */\n\n");
fprintf(f, " ");
for (i = 0; i < cbit_length; i++)
{
if ((i & 7) == 0 && i != 0)
{
if ((i & 31) == 0) fprintf(f, "\n");
fprintf(f, "\n ");
}
fprintf(f, "0x%02x", *tables++);
if (i != cbit_length - 1) fprintf(f, ",");
}
fprintf(f, ",\n\n");
fprintf(f,
"/* This table identifies various classes of character by individual bits:\n"
" 0x%02x white space character\n"
" 0x%02x letter\n"
" 0x%02x decimal digit\n"
" 0x%02x hexadecimal digit\n"
" 0x%02x alphanumeric or '_'\n"
" 0x%02x regular expression metacharacter or binary zero\n*/\n\n",
ctype_space, ctype_letter, ctype_digit, ctype_xdigit, ctype_word,
ctype_meta);
fprintf(f, " ");
for (i = 0; i < 256; i++)
{
if ((i & 7) == 0 && i != 0)
{
fprintf(f, " /* ");
if (isprint(i-8)) fprintf(f, " %c -", i-8);
else fprintf(f, "%3d-", i-8);
if (isprint(i-1)) fprintf(f, " %c ", i-1);
else fprintf(f, "%3d", i-1);
fprintf(f, " */\n ");
}
fprintf(f, "0x%02x", *tables++);
if (i != 255) fprintf(f, ",");
}
fprintf(f, "};/* ");
if (isprint(i-8)) fprintf(f, " %c -", i-8);
else fprintf(f, "%3d-", i-8);
if (isprint(i-1)) fprintf(f, " %c ", i-1);
else fprintf(f, "%3d", i-1);
fprintf(f, " */\n\n/* End of pcre_chartables.c */\n");
fclose(f);
free((void *)base_of_tables);
return 0;
}
/* End of dftables.c */

View File

@ -0,0 +1,773 @@
Building PCRE without using autotools
-------------------------------------
NOTE: This document relates to PCRE releases that use the original API, with
library names libpcre, libpcre16, and libpcre32. January 2015 saw the first
release of a new API, known as PCRE2, with release numbers starting at 10.00
and library names libpcre2-8, libpcre2-16, and libpcre2-32. The old libraries
(now called PCRE1) are now at end of life, and 8.45 is the final release. New
projects are advised to use the new PCRE2 libraries.
This document contains the following sections:
General
Generic instructions for the PCRE C library
The C++ wrapper functions
Building for virtual Pascal
Stack size in Windows environments
Linking programs in Windows environments
Calling conventions in Windows environments
Comments about Win32 builds
Building PCRE on Windows with CMake
Use of relative paths with CMake on Windows
Testing with RunTest.bat
Building under Windows CE with Visual Studio 200x
Building under Windows with BCC5.5
Building using Borland C++ Builder 2007 (CB2007) and higher
Building PCRE on OpenVMS
Building PCRE on Stratus OpenVOS
Building PCRE on native z/OS and z/VM
GENERAL
I (Philip Hazel) have no experience of Windows or VMS sytems and how their
libraries work. The items in the PCRE distribution and Makefile that relate to
anything other than Linux systems are untested by me.
There are some other comments and files (including some documentation in CHM
format) in the Contrib directory on the FTP site:
ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/Contrib
The basic PCRE library consists entirely of code written in Standard C, and so
should compile successfully on any system that has a Standard C compiler and
library. The C++ wrapper functions are a separate issue (see below).
The PCRE distribution includes a "configure" file for use by the configure/make
(autotools) build system, as found in many Unix-like environments. The README
file contains information about the options for "configure".
There is also support for CMake, which some users prefer, especially in Windows
environments, though it can also be run in Unix-like environments. See the
section entitled "Building PCRE on Windows with CMake" below.
Versions of config.h and pcre.h are distributed in the PCRE tarballs under the
names config.h.generic and pcre.h.generic. These are provided for those who
build PCRE without using "configure" or CMake. If you use "configure" or CMake,
the .generic versions are not used.
GENERIC INSTRUCTIONS FOR THE PCRE C LIBRARY
The following are generic instructions for building the PCRE C library "by
hand". If you are going to use CMake, this section does not apply to you; you
can skip ahead to the CMake section.
(1) Copy or rename the file config.h.generic as config.h, and edit the macro
settings that it contains to whatever is appropriate for your environment.
In particular, you can alter the definition of the NEWLINE macro to
specify what character(s) you want to be interpreted as line terminators.
In an EBCDIC environment, you MUST change NEWLINE, because its default
value is 10, an ASCII LF. The usual EBCDIC newline character is 21 (0x15,
NL), though in some cases it may be 37 (0x25).
When you compile any of the PCRE modules, you must specify -DHAVE_CONFIG_H
to your compiler so that config.h is included in the sources.
An alternative approach is not to edit config.h, but to use -D on the
compiler command line to make any changes that you need to the
configuration options. In this case -DHAVE_CONFIG_H must not be set.
NOTE: There have been occasions when the way in which certain parameters
in config.h are used has changed between releases. (In the configure/make
world, this is handled automatically.) When upgrading to a new release,
you are strongly advised to review config.h.generic before re-using what
you had previously.
(2) Copy or rename the file pcre.h.generic as pcre.h.
(3) EITHER:
Copy or rename file pcre_chartables.c.dist as pcre_chartables.c.
OR:
Compile dftables.c as a stand-alone program (using -DHAVE_CONFIG_H if
you have set up config.h), and then run it with the single argument
"pcre_chartables.c". This generates a set of standard character tables
and writes them to that file. The tables are generated using the default
C locale for your system. If you want to use a locale that is specified
by LC_xxx environment variables, add the -L option to the dftables
command. You must use this method if you are building on a system that
uses EBCDIC code.
The tables in pcre_chartables.c are defaults. The caller of PCRE can
specify alternative tables at run time.
(4) Ensure that you have the following header files:
pcre_internal.h
ucp.h
(5) For an 8-bit library, compile the following source files, setting
-DHAVE_CONFIG_H as a compiler option if you have set up config.h with your
configuration, or else use other -D settings to change the configuration
as required.
pcre_byte_order.c
pcre_chartables.c
pcre_compile.c
pcre_config.c
pcre_dfa_exec.c
pcre_exec.c
pcre_fullinfo.c
pcre_get.c
pcre_globals.c
pcre_jit_compile.c
pcre_maketables.c
pcre_newline.c
pcre_ord2utf8.c
pcre_refcount.c
pcre_string_utils.c
pcre_study.c
pcre_tables.c
pcre_ucd.c
pcre_valid_utf8.c
pcre_version.c
pcre_xclass.c
Make sure that you include -I. in the compiler command (or equivalent for
an unusual compiler) so that all included PCRE header files are first
sought in the current directory. Otherwise you run the risk of picking up
a previously-installed file from somewhere else.
Note that you must still compile pcre_jit_compile.c, even if you have not
defined SUPPORT_JIT in config.h, because when JIT support is not
configured, dummy functions are compiled. When JIT support IS configured,
pcre_jit_compile.c #includes sources from the sljit subdirectory, where
there should be 16 files, all of whose names begin with "sljit".
(6) Now link all the compiled code into an object library in whichever form
your system keeps such libraries. This is the basic PCRE C 8-bit library.
If your system has static and shared libraries, you may have to do this
once for each type.
(7) If you want to build a 16-bit library (as well as, or instead of the 8-bit
or 32-bit libraries) repeat steps 5-6 with the following files:
pcre16_byte_order.c
pcre16_chartables.c
pcre16_compile.c
pcre16_config.c
pcre16_dfa_exec.c
pcre16_exec.c
pcre16_fullinfo.c
pcre16_get.c
pcre16_globals.c
pcre16_jit_compile.c
pcre16_maketables.c
pcre16_newline.c
pcre16_ord2utf16.c
pcre16_refcount.c
pcre16_string_utils.c
pcre16_study.c
pcre16_tables.c
pcre16_ucd.c
pcre16_utf16_utils.c
pcre16_valid_utf16.c
pcre16_version.c
pcre16_xclass.c
(8) If you want to build a 32-bit library (as well as, or instead of the 8-bit
or 16-bit libraries) repeat steps 5-6 with the following files:
pcre32_byte_order.c
pcre32_chartables.c
pcre32_compile.c
pcre32_config.c
pcre32_dfa_exec.c
pcre32_exec.c
pcre32_fullinfo.c
pcre32_get.c
pcre32_globals.c
pcre32_jit_compile.c
pcre32_maketables.c
pcre32_newline.c
pcre32_ord2utf32.c
pcre32_refcount.c
pcre32_string_utils.c
pcre32_study.c
pcre32_tables.c
pcre32_ucd.c
pcre32_utf32_utils.c
pcre32_valid_utf32.c
pcre32_version.c
pcre32_xclass.c
(9) If you want to build the POSIX wrapper functions (which apply only to the
8-bit library), ensure that you have the pcreposix.h file and then compile
pcreposix.c (remembering -DHAVE_CONFIG_H if necessary). Link the result
(on its own) as the pcreposix library.
(10) The pcretest program can be linked with any combination of the 8-bit,
16-bit and 32-bit libraries (depending on what you selected in config.h).
Compile pcretest.c and pcre_printint.c (again, don't forget
-DHAVE_CONFIG_H) and link them together with the appropriate library/ies.
If you compiled an 8-bit library, pcretest also needs the pcreposix
wrapper library unless you compiled it with -DNOPOSIX.
(11) Run pcretest on the testinput files in the testdata directory, and check
that the output matches the corresponding testoutput files. There are
comments about what each test does in the section entitled "Testing PCRE"
in the README file. If you compiled more than one of the 8-bit, 16-bit and
32-bit libraries, you need to run pcretest with the -16 option to do
16-bit tests and with the -32 option to do 32-bit tests.
Some tests are relevant only when certain build-time options are selected.
For example, test 4 is for UTF-8/UTF-16/UTF-32 support, and will not run
if you have built PCRE without it. See the comments at the start of each
testinput file. If you have a suitable Unix-like shell, the RunTest script
will run the appropriate tests for you. The command "RunTest list" will
output a list of all the tests.
Note that the supplied files are in Unix format, with just LF characters
as line terminators. You may need to edit them to change this if your
system uses a different convention. If you are using Windows, you probably
should use the wintestinput3 file instead of testinput3 (and the
corresponding output file). This is a locale test; wintestinput3 sets the
locale to "french" rather than "fr_FR", and there some minor output
differences.
(12) If you have built PCRE with SUPPORT_JIT, the JIT features will be tested
by the testdata files. However, you might also like to build and run
the freestanding JIT test program, pcre_jit_test.c.
(13) If you want to use the pcregrep command, compile and link pcregrep.c; it
uses only the basic 8-bit PCRE library (it does not need the pcreposix
library).
THE C++ WRAPPER FUNCTIONS
The PCRE distribution also contains some C++ wrapper functions and tests,
applicable to the 8-bit library, which were contributed by Google Inc. On a
system that can use "configure" and "make", the functions are automatically
built into a library called pcrecpp. It should be straightforward to compile
the .cc files manually on other systems. The files called xxx_unittest.cc are
test programs for each of the corresponding xxx.cc files.
BUILDING FOR VIRTUAL PASCAL
A script for building PCRE using Borland's C++ compiler for use with VPASCAL
was contributed by Alexander Tokarev. Stefan Weber updated the script and added
additional files. The following files in the distribution are for building PCRE
for use with VP/Borland: makevp_c.txt, makevp_l.txt, makevp.bat, pcregexp.pas.
STACK SIZE IN WINDOWS ENVIRONMENTS
The default processor stack size of 1Mb in some Windows environments is too
small for matching patterns that need much recursion. In particular, test 2 may
fail because of this. Normally, running out of stack causes a crash, but there
have been cases where the test program has just died silently. See your linker
documentation for how to increase stack size if you experience problems. The
Linux default of 8Mb is a reasonable choice for the stack, though even that can
be too small for some pattern/subject combinations.
PCRE has a compile configuration option to disable the use of stack for
recursion so that heap is used instead. However, pattern matching is
significantly slower when this is done. There is more about stack usage in the
"pcrestack" documentation.
LINKING PROGRAMS IN WINDOWS ENVIRONMENTS
If you want to statically link a program against a PCRE library in the form of
a non-dll .a file, you must define PCRE_STATIC before including pcre.h or
pcrecpp.h, otherwise the pcre_malloc() and pcre_free() exported functions will
be declared __declspec(dllimport), with unwanted results.
CALLING CONVENTIONS IN WINDOWS ENVIRONMENTS
It is possible to compile programs to use different calling conventions using
MSVC. Search the web for "calling conventions" for more information. To make it
easier to change the calling convention for the exported functions in the
PCRE library, the macro PCRE_CALL_CONVENTION is present in all the external
definitions. It can be set externally when compiling (e.g. in CFLAGS). If it is
not set, it defaults to empty; the default calling convention is then used
(which is what is wanted most of the time).
COMMENTS ABOUT WIN32 BUILDS (see also "BUILDING PCRE ON WINDOWS WITH CMAKE")
There are two ways of building PCRE using the "configure, make, make install"
paradigm on Windows systems: using MinGW or using Cygwin. These are not at all
the same thing; they are completely different from each other. There is also
support for building using CMake, which some users find a more straightforward
way of building PCRE under Windows.
The MinGW home page (http://www.mingw.org/) says this:
MinGW: A collection of freely available and freely distributable Windows
specific header files and import libraries combined with GNU toolsets that
allow one to produce native Windows programs that do not rely on any
3rd-party C runtime DLLs.
The Cygwin home page (http://www.cygwin.com/) says this:
Cygwin is a Linux-like environment for Windows. It consists of two parts:
. A DLL (cygwin1.dll) which acts as a Linux API emulation layer providing
substantial Linux API functionality
. A collection of tools which provide Linux look and feel.
The Cygwin DLL currently works with all recent, commercially released x86 32
bit and 64 bit versions of Windows, with the exception of Windows CE.
On both MinGW and Cygwin, PCRE should build correctly using:
./configure && make && make install
This should create two libraries called libpcre and libpcreposix, and, if you
have enabled building the C++ wrapper, a third one called libpcrecpp. These are
independent libraries: when you link with libpcreposix or libpcrecpp you must
also link with libpcre, which contains the basic functions. (Some earlier
releases of PCRE included the basic libpcre functions in libpcreposix. This no
longer happens.)
A user submitted a special-purpose patch that makes it easy to create
"pcre.dll" under mingw32 using the "msys" environment. It provides "pcre.dll"
as a special target. If you use this target, no other files are built, and in
particular, the pcretest and pcregrep programs are not built. An example of how
this might be used is:
./configure --enable-utf --disable-cpp CFLAGS="-03 -s"; make pcre.dll
Using Cygwin's compiler generates libraries and executables that depend on
cygwin1.dll. If a library that is generated this way is distributed,
cygwin1.dll has to be distributed as well. Since cygwin1.dll is under the GPL
licence, this forces not only PCRE to be under the GPL, but also the entire
application. A distributor who wants to keep their own code proprietary must
purchase an appropriate Cygwin licence.
MinGW has no such restrictions. The MinGW compiler generates a library or
executable that can run standalone on Windows without any third party dll or
licensing issues.
But there is more complication:
If a Cygwin user uses the -mno-cygwin Cygwin gcc flag, what that really does is
to tell Cygwin's gcc to use the MinGW gcc. Cygwin's gcc is only acting as a
front end to MinGW's gcc (if you install Cygwin's gcc, you get both Cygwin's
gcc and MinGW's gcc). So, a user can:
. Build native binaries by using MinGW or by getting Cygwin and using
-mno-cygwin.
. Build binaries that depend on cygwin1.dll by using Cygwin with the normal
compiler flags.
The test files that are supplied with PCRE are in UNIX format, with LF
characters as line terminators. Unless your PCRE library uses a default newline
option that includes LF as a valid newline, it may be necessary to change the
line terminators in the test files to get some of the tests to work.
BUILDING PCRE ON WINDOWS WITH CMAKE
CMake is an alternative configuration facility that can be used instead of
"configure". CMake creates project files (make files, solution files, etc.)
tailored to numerous development environments, including Visual Studio,
Borland, Msys, MinGW, NMake, and Unix. If possible, use short paths with no
spaces in the names for your CMake installation and your PCRE source and build
directories.
The following instructions were contributed by a PCRE user. If they are not
followed exactly, errors may occur. In the event that errors do occur, it is
recommended that you delete the CMake cache before attempting to repeat the
CMake build process. In the CMake GUI, the cache can be deleted by selecting
"File > Delete Cache".
1. Install the latest CMake version available from http://www.cmake.org/, and
ensure that cmake\bin is on your path.
2. Unzip (retaining folder structure) the PCRE source tree into a source
directory such as C:\pcre. You should ensure your local date and time
is not earlier than the file dates in your source dir if the release is
very new.
3. Create a new, empty build directory, preferably a subdirectory of the
source dir. For example, C:\pcre\pcre-xx\build.
4. Run cmake-gui from the Shell envirornment of your build tool, for example,
Msys for Msys/MinGW or Visual Studio Command Prompt for VC/VC++. Do not try
to start Cmake from the Windows Start menu, as this can lead to errors.
5. Enter C:\pcre\pcre-xx and C:\pcre\pcre-xx\build for the source and build
directories, respectively.
6. Hit the "Configure" button.
7. Select the particular IDE / build tool that you are using (Visual
Studio, MSYS makefiles, MinGW makefiles, etc.)
8. The GUI will then list several configuration options. This is where
you can enable UTF-8 support or other PCRE optional features.
9. Hit "Configure" again. The adjacent "Generate" button should now be
active.
10. Hit "Generate".
11. The build directory should now contain a usable build system, be it a
solution file for Visual Studio, makefiles for MinGW, etc. Exit from
cmake-gui and use the generated build system with your compiler or IDE.
E.g., for MinGW you can run "make", or for Visual Studio, open the PCRE
solution, select the desired configuration (Debug, or Release, etc.) and
build the ALL_BUILD project.
12. If during configuration with cmake-gui you've elected to build the test
programs, you can execute them by building the test project. E.g., for
MinGW: "make test"; for Visual Studio build the RUN_TESTS project. The
most recent build configuration is targeted by the tests. A summary of
test results is presented. Complete test output is subsequently
available for review in Testing\Temporary under your build dir.
USE OF RELATIVE PATHS WITH CMAKE ON WINDOWS
A PCRE user comments as follows: I thought that others may want to know the
current state of CMAKE_USE_RELATIVE_PATHS support on Windows. Here it is:
-- AdditionalIncludeDirectories is only partially modified (only the
first path - see below)
-- Only some of the contained file paths are modified - shown below for
pcre.vcproj
-- It properly modifies
I am sure CMake people can fix that if they want to. Until then one will
need to replace existing absolute paths in project files with relative
paths manually (e.g. from VS) - relative to project file location. I did
just that before being told to try CMAKE_USE_RELATIVE_PATHS. Not a big
deal.
AdditionalIncludeDirectories="E:\builds\pcre\build;E:\builds\pcre\pcre-7.5;"
AdditionalIncludeDirectories=".;E:\builds\pcre\pcre-7.5;"
RelativePath="pcre.h"
RelativePath="pcre_chartables.c"
RelativePath="pcre_chartables.c.rule"
TESTING WITH RUNTEST.BAT
If configured with CMake, building the test project ("make test" or building
ALL_TESTS in Visual Studio) creates (and runs) pcre_test.bat (and depending
on your configuration options, possibly other test programs) in the build
directory. Pcre_test.bat runs RunTest.Bat with correct source and exe paths.
For manual testing with RunTest.bat, provided the build dir is a subdirectory
of the source directory: Open command shell window. Chdir to the location
of your pcretest.exe and pcregrep.exe programs. Call RunTest.bat with
"..\RunTest.Bat" or "..\..\RunTest.bat" as appropriate.
To run only a particular test with RunTest.Bat provide a test number argument.
Otherwise:
1. Copy RunTest.bat into the directory where pcretest.exe and pcregrep.exe
have been created.
2. Edit RunTest.bat to indentify the full or relative location of
the pcre source (wherein which the testdata folder resides), e.g.:
set srcdir=C:\pcre\pcre-8.20
3. In a Windows command environment, chdir to the location of your bat and
exe programs.
4. Run RunTest.bat. Test outputs will automatically be compared to expected
results, and discrepancies will be identified in the console output.
To independently test the just-in-time compiler, run pcre_jit_test.exe.
To test pcrecpp, run pcrecpp_unittest.exe, pcre_stringpiece_unittest.exe and
pcre_scanner_unittest.exe.
BUILDING UNDER WINDOWS CE WITH VISUAL STUDIO 200x
Vincent Richomme sent a zip archive of files to help with this process. They
can be found in the file "pcre-vsbuild.zip" in the Contrib directory of the FTP
site.
BUILDING UNDER WINDOWS WITH BCC5.5
Michael Roy sent these comments about building PCRE under Windows with BCC5.5:
Some of the core BCC libraries have a version of PCRE from 1998 built in, which
can lead to pcre_exec() giving an erroneous PCRE_ERROR_NULL from a version
mismatch. I'm including an easy workaround below, if you'd like to include it
in the non-unix instructions:
When linking a project with BCC5.5, pcre.lib must be included before any of the
libraries cw32.lib, cw32i.lib, cw32mt.lib, and cw32mti.lib on the command line.
BUILDING USING BORLAND C++ BUILDER 2007 (CB2007) AND HIGHER
A PCRE user sent these comments about this environment (see also the comment
from another user that follows them):
The XE versions of C++ Builder come with a RegularExpressionsCore class which
contain a version of TPerlRegEx. However, direct use of the C PCRE library may
be desirable.
The default makevp.bat, however, supplied with PCRE builds a version of PCRE
that is not usable with any version of C++ Builder because the compiler ships
with an embedded version of PCRE, version 2.01 from 1998! [See also the note
about BCC5.5 above.] If you want to use PCRE you'll need to rename the
functions (pcre_compile to pcre_compile_bcc, etc) or do as I have done and just
use the 16 bit versions. I'm using std::wstring everywhere anyway. Since the
embedded version of PCRE does not have the 16 bit function names, there is no
conflict.
Building PCRE using a C++ Builder static library project file (recommended):
1. Rename or remove pcre.h, pcreposi.h, and pcreposix.h from your C++ Builder
original include path.
2. Download PCRE from pcre.org and extract to a directory.
3. Rename pcre_chartables.c.dist to pcre_chartables.c, pcre.h.generic to
pcre.h, and config.h.generic to config.h.
4. Edit pcre.h and pcre_config.c so that they include config.h.
5. Edit config.h like so:
Comment out the following lines:
#define PACKAGE "pcre"
#define PACKAGE_BUGREPORT ""
#define PACKAGE_NAME "PCRE"
#define PACKAGE_STRING "PCRE 8.32"
#define PACKAGE_TARNAME "pcre"
#define PACKAGE_URL ""
#define PACKAGE_VERSION "8.32"
Add the following lines:
#ifndef SUPPORT_UTF
#define SUPPORT_UTF 100 // any value is fine
#endif
#ifndef SUPPORT_UCP
#define SUPPORT_UCP 101 // any value is fine
#endif
#ifndef SUPPORT_UCP
#define SUPPORT_PCRE16 102 // any value is fine
#endif
#ifndef SUPPORT_UTF8
#define SUPPORT_UTF8 103 // any value is fine
#endif
6. Build a C++ Builder project using the IDE. Go to File / New / Other and
choose Static Library. You can name it pcre.cbproj or whatever. Now set your
paths by going to Project / Options. Set the Include path. Do this from the
"Base" option to apply to both Release and Debug builds. Now add the following
files to the project:
pcre.h
pcre16_byte_order.c
pcre16_chartables.c
pcre16_compile.c
pcre16_config.c
pcre16_dfa_exec.c
pcre16_exec.c
pcre16_fullinfo.c
pcre16_get.c
pcre16_globals.c
pcre16_maketables.c
pcre16_newline.c
pcre16_ord2utf16.c
pcre16_printint.c
pcre16_refcount.c
pcre16_string_utils.c
pcre16_study.c
pcre16_tables.c
pcre16_ucd.c
pcre16_utf16_utils.c
pcre16_valid_utf16.c
pcre16_version.c
pcre16_xclass.c
//Optional
pcre_version.c
7. After compiling the .lib file, copy the .lib and header files to a project
you want to use PCRE with. Enjoy.
Optional ... Building PCRE using the makevp.bat file:
1. Edit makevp_c.txt and makevp_l.txt and change all the names to the 16 bit
versions.
2. Edit makevp.bat and set the path to C++ Builder. Run makevp.bat.
Another PCRE user added this comment:
Another approach I successfully used for some years with BCB 5 and 6 was to
make sure that include and library paths of PCRE are configured before the
default paths of the IDE in the dialogs where one can manage those paths.
Afterwards one can open the project files using a text editor and manually add
the self created library for pcre itself, pcrecpp doesn't ship with the IDE, in
the library nodes where the IDE manages its own libraries to link against in
front of the IDE-own libraries. This way one can use the default PCRE function
names without getting access violations on runtime.
<ALLLIB value="libpcre.lib $(LIBFILES) $(LIBRARIES) import32.lib cp32mt.lib"/>
BUILDING PCRE ON OPENVMS
Stephen Hoffman sent the following, in December 2012:
"Here <http://labs.hoffmanlabs.com/node/1847> is a very short write-up on the
OpenVMS port and here
<http://labs.hoffmanlabs.com/labsnotes/pcre-vms-8_32.zip>
is a zip with the OpenVMS files, and with one modified testing-related PCRE
file." This is a port of PCRE 8.32.
Earlier, Dan Mooney sent the following comments about building PCRE on OpenVMS.
They relate to an older version of PCRE that used fewer source files, so the
exact commands will need changing. See the current list of source files above.
"It was quite easy to compile and link the library. I don't have a formal
make file but the attached file [reproduced below] contains the OpenVMS DCL
commands I used to build the library. I had to add #define
POSIX_MALLOC_THRESHOLD 10 to pcre.h since it was not defined anywhere.
The library was built on:
O/S: HP OpenVMS v7.3-1
Compiler: Compaq C v6.5-001-48BCD
Linker: vA13-01
The test results did not match 100% due to the issues you mention in your
documentation regarding isprint(), iscntrl(), isgraph() and ispunct(). I
modified some of the character tables temporarily and was able to get the
results to match. Tests using the fr locale did not match since I don't have
that locale loaded. The study size was always reported to be 3 less than the
value in the standard test output files."
=========================
$! This DCL procedure builds PCRE on OpenVMS
$!
$! I followed the instructions in the non-unix-use file in the distribution.
$!
$ COMPILE == "CC/LIST/NOMEMBER_ALIGNMENT/PREFIX_LIBRARY_ENTRIES=ALL_ENTRIES
$ COMPILE DFTABLES.C
$ LINK/EXE=DFTABLES.EXE DFTABLES.OBJ
$ RUN DFTABLES.EXE/OUTPUT=CHARTABLES.C
$ COMPILE MAKETABLES.C
$ COMPILE GET.C
$ COMPILE STUDY.C
$! I had to set POSIX_MALLOC_THRESHOLD to 10 in PCRE.H since the symbol
$! did not seem to be defined anywhere.
$! I edited pcre.h and added #DEFINE SUPPORT_UTF8 to enable UTF8 support.
$ COMPILE PCRE.C
$ LIB/CREATE PCRE MAKETABLES.OBJ, GET.OBJ, STUDY.OBJ, PCRE.OBJ
$! I had to set POSIX_MALLOC_THRESHOLD to 10 in PCRE.H since the symbol
$! did not seem to be defined anywhere.
$ COMPILE PCREPOSIX.C
$ LIB/CREATE PCREPOSIX PCREPOSIX.OBJ
$ COMPILE PCRETEST.C
$ LINK/EXE=PCRETEST.EXE PCRETEST.OBJ, PCRE/LIB, PCREPOSIX/LIB
$! C programs that want access to command line arguments must be
$! defined as a symbol
$ PCRETEST :== "$ SYS$ROADSUSERS:[DMOONEY.REGEXP]PCRETEST.EXE"
$! Arguments must be enclosed in quotes.
$ PCRETEST "-C"
$! Test results:
$!
$! The test results did not match 100%. The functions isprint(), iscntrl(),
$! isgraph() and ispunct() on OpenVMS must not produce the same results
$! as the system that built the test output files provided with the
$! distribution.
$!
$! The study size did not match and was always 3 less on OpenVMS.
$!
$! Locale could not be set to fr
$!
=========================
BUILDING PCRE ON STRATUS OPENVOS
These notes on the port of PCRE to VOS (lightly edited) were supplied by
Ashutosh Warikoo, whose email address has the local part awarikoo and the
domain nse.co.in. The port was for version 7.9 in August 2009.
1. Building PCRE
I built pcre on OpenVOS Release 17.0.1at using GNU Tools 3.4a without any
problems. I used the following packages to build PCRE:
ftp://ftp.stratus.com/pub/vos/posix/ga/posix.save.evf.gz
Please read and follow the instructions that come with these packages. To start
the build of pcre, from the root of the package type:
./build.sh
2. Installing PCRE
Once you have successfully built PCRE, login to the SysAdmin group, switch to
the root user, and type
[ !create_dir (master_disk)>usr --if needed ]
[ !create_dir (master_disk)>usr>local --if needed ]
!gmake install
This installs PCRE and its man pages into /usr/local. You can add
(master_disk)>usr>local>bin to your command search paths, or if you are in
BASH, add /usr/local/bin to the PATH environment variable.
4. Restrictions
This port requires readline library optionally. However during the build I
faced some yet unexplored errors while linking with readline. As it was an
optional component I chose to disable it.
5. Known Problems
I ran the test suite, but you will have to be your own judge of whether this
command, and this port, suits your purposes. If you find any problems that
appear to be related to the port itself, please let me know. Please see the
build.log file in the root of the package also.
BUILDING PCRE ON NATIVE Z/OS AND Z/VM
z/OS and z/VM are operating systems for mainframe computers, produced by IBM.
The character code used is EBCDIC, not ASCII or Unicode. In z/OS, UNIX APIs and
applications can be supported through UNIX System Services, and in such an
environment PCRE can be built in the same way as in other systems. However, in
native z/OS (without UNIX System Services) and in z/VM, special ports are
required. PCRE1 version 8.39 is available in file 882 on this site:
http://www.cbttape.org
Everything, source and executable, is in EBCDIC and native z/OS file formats.
However, this software is not maintained and will not be upgraded. If you are
new to PCRE you should be looking at PCRE2 (version 10.30 or later).
==========================
Last Updated: 15 June 2021
==========================

1002
doc/html/README.txt Normal file

File diff suppressed because it is too large Load Diff

185
doc/html/index.html Normal file
View File

@ -0,0 +1,185 @@
<html>
<!-- This is a manually maintained file that is the root of the HTML version of
the PCRE documentation. When the HTML documents are built from the man
page versions, the entire doc/html directory is emptied, this file is then
copied into doc/html/index.html, and the remaining files therein are
created by the 132html script.
-->
<head>
<title>PCRE specification</title>
</head>
<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
<h1>Perl-compatible Regular Expressions (PCRE)</h1>
<p>
The HTML documentation for PCRE consists of a number of pages that are listed
below in alphabetical order. If you are new to PCRE, please read the first one
first.
</p>
<table>
<tr><td><a href="pcre.html">pcre</a></td>
<td>&nbsp;&nbsp;Introductory page</td></tr>
<tr><td><a href="pcre-config.html">pcre-config</a></td>
<td>&nbsp;&nbsp;Information about the installation configuration</td></tr>
<tr><td><a href="pcre16.html">pcre16</a></td>
<td>&nbsp;&nbsp;Discussion of the 16-bit PCRE library</td></tr>
<tr><td><a href="pcre32.html">pcre32</a></td>
<td>&nbsp;&nbsp;Discussion of the 32-bit PCRE library</td></tr>
<tr><td><a href="pcreapi.html">pcreapi</a></td>
<td>&nbsp;&nbsp;PCRE's native API</td></tr>
<tr><td><a href="pcrebuild.html">pcrebuild</a></td>
<td>&nbsp;&nbsp;Building PCRE</td></tr>
<tr><td><a href="pcrecallout.html">pcrecallout</a></td>
<td>&nbsp;&nbsp;The <i>callout</i> facility</td></tr>
<tr><td><a href="pcrecompat.html">pcrecompat</a></td>
<td>&nbsp;&nbsp;Compability with Perl</td></tr>
<tr><td><a href="pcrecpp.html">pcrecpp</a></td>
<td>&nbsp;&nbsp;The C++ wrapper for the PCRE library</td></tr>
<tr><td><a href="pcredemo.html">pcredemo</a></td>
<td>&nbsp;&nbsp;A demonstration C program that uses the PCRE library</td></tr>
<tr><td><a href="pcregrep.html">pcregrep</a></td>
<td>&nbsp;&nbsp;The <b>pcregrep</b> command</td></tr>
<tr