1
1
openmpi/oshmem/mca/scoll/basic/scoll_basic_reduce.c
Yossi Itigin ad4b33336d oshmem/scoll: fix shmem_collect32/64 for zero-size length
Fixes scoll_basic failures with shmem_verifier, caused by recent changes
in handling of zero-size collectives.

- Check for zero-size length only for fixed size collect (shmem_fcollect),
  but not for variable-size collect (shmem_collect)
- Add 'nlong_type' parameter to internal broadcast function, to indicate
  whether the 'nlong' parameter is valid on non-root PEs, since it's
  used by shmem_collect algorithm. Before this change, some components
  assumed it's true (scoll_mpi) while others assumed it's false
  (scoll_basic).
- In scoll_basic, if nlong_type==false, do not exit if nlong==0, since
  this parameter may not be the same on all PEs.
- In scoll_mpi, fallback to scoll_basic if nlong_type==false, since MPI
  requires the 'count' argument of MPI_Bcast to be valid on all ranks.

(Picked from master 939162e)

Signed-off-by: Yossi Itigin <yosefe@mellanox.com>
2019-01-02 12:15:01 +02:00

820 строки
28 KiB
C

/*
* Copyright (c) 2013 Mellanox Technologies, Inc.
* All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "oshmem_config.h"
#include <stdio.h>
#include <stdlib.h>
#include "opal/util/bit_ops.h"
#include "oshmem/constants.h"
#include "oshmem/op/op.h"
#include "oshmem/mca/spml/spml.h"
#include "oshmem/mca/scoll/scoll.h"
#include "oshmem/mca/scoll/base/base.h"
#include "scoll_basic.h"
static int _algorithm_central_counter(struct oshmem_group_t *group,
struct oshmem_op_t *op,
void *target,
const void *source,
size_t nlong,
long *pSync,
void *pWrk);
static int _algorithm_tournament(struct oshmem_group_t *group,
struct oshmem_op_t *op,
void *target,
const void *source,
size_t nlong,
long *pSync,
void *pWrk);
static int _algorithm_recursive_doubling(struct oshmem_group_t *group,
struct oshmem_op_t *op,
void *target,
const void *source,
size_t nlong,
long *pSync,
void *pWrk);
static int _algorithm_linear(struct oshmem_group_t *group,
struct oshmem_op_t *op,
void *target,
const void *source,
size_t nlong,
long *pSync,
void *pWrk);
static int _algorithm_log(struct oshmem_group_t *group,
struct oshmem_op_t *op,
void *target,
const void *source,
size_t nlong,
long *pSync,
void *pWrk);
int mca_scoll_basic_reduce(struct oshmem_group_t *group,
struct oshmem_op_t *op,
void *target,
const void *source,
size_t nlong,
long *pSync,
void *pWrk,
int alg)
{
int rc = OSHMEM_SUCCESS;
/* Arguments validation */
if (!group) {
SCOLL_ERROR("Active set (group) of PE is not defined");
rc = OSHMEM_ERR_BAD_PARAM;
}
/* Check if this PE is part of the group */
if ((rc == OSHMEM_SUCCESS) && oshmem_proc_group_is_member(group)) {
int i = 0;
/* Do nothing on zero-length request */
if (OPAL_UNLIKELY(!nlong)) {
return OSHMEM_SUCCESS;
}
if (pSync) {
alg = (alg == SCOLL_DEFAULT_ALG ?
mca_scoll_basic_param_reduce_algorithm : alg);
switch (alg) {
case SCOLL_ALG_REDUCE_CENTRAL_COUNTER:
{
rc = _algorithm_central_counter(group,
op,
target,
source,
nlong,
pSync,
pWrk);
break;
}
case SCOLL_ALG_REDUCE_TOURNAMENT:
{
rc = _algorithm_tournament(group,
op,
target,
source,
nlong,
pSync,
pWrk);
break;
}
case SCOLL_ALG_REDUCE_RECURSIVE_DOUBLING:
{
rc = _algorithm_recursive_doubling(group,
op,
target,
source,
nlong,
pSync,
pWrk);
break;
}
case SCOLL_ALG_REDUCE_LEGACY_LINEAR:
{
rc = _algorithm_linear(group,
op,
target,
source,
nlong,
pSync,
pWrk);
break;
}
case SCOLL_ALG_REDUCE_LEGACY_LOG:
{
rc = _algorithm_log(group,
op,
target,
source,
nlong,
pSync,
pWrk);
break;
}
default:
{
rc = _algorithm_central_counter(group,
op,
target,
source,
nlong,
pSync,
pWrk);
}
}
} else {
SCOLL_ERROR("Incorrect argument pSync");
rc = OSHMEM_ERR_BAD_PARAM;
}
/* Restore initial values */
SCOLL_VERBOSE(12,
"PE#%d Restore special synchronization array",
group->my_pe);
for (i = 0; pSync && (i < _SHMEM_REDUCE_SYNC_SIZE); i++) {
pSync[i] = _SHMEM_SYNC_VALUE;
}
}
return rc;
}
/*
This algorithm is quite simple and straightforward for PEs with identical data size.
One node gathers data from peers and send final result to them.
Outlay:
NP-1 competing network transfers are needed.
*/
static int _algorithm_central_counter(struct oshmem_group_t *group,
struct oshmem_op_t *op,
void *target,
const void *source,
size_t nlong,
long *pSync,
void *pWrk)
{
int rc = OSHMEM_SUCCESS;
int i = 0;
int PE_root = oshmem_proc_pe(group->proc_array[0]);
SCOLL_VERBOSE(12, "[#%d] Reduce algorithm: Central Counter", group->my_pe);
if (PE_root == group->my_pe) {
int pe_cur = 0;
void *target_cur = NULL;
target_cur = malloc(nlong);
if (target_cur) {
memcpy(target, (void *) source, nlong);
SCOLL_VERBOSE(14,
"[#%d] Gather data from all PEs in the group",
group->my_pe);
for (i = 0; (i < group->proc_count) && (rc == OSHMEM_SUCCESS);
i++) {
/* Get PE ID of a peer from the group */
pe_cur = oshmem_proc_pe(group->proc_array[i]);
if (pe_cur == group->my_pe)
continue;
SCOLL_VERBOSE(14,
"[#%d] Gather data (%d bytes) from #%d",
group->my_pe, (int)nlong, pe_cur);
/* Clean up temporary buffer */
memset(target_cur, 0, nlong);
/* Get data from the current peer */
rc = MCA_SPML_CALL(get(oshmem_ctx_default, (void *)source, nlong, target_cur, pe_cur));
/* Do reduction operation */
if (rc == OSHMEM_SUCCESS) {
op->o_func.c_fn(target_cur, target, nlong / op->dt_size);
}
}
free(target_cur);
} else {
rc = OSHMEM_ERR_OUT_OF_RESOURCE;
}
}
/* Send result to all PE in group */
if (rc == OSHMEM_SUCCESS) {
SCOLL_VERBOSE(14,
"[#%d] Broadcast from the root #%d",
group->my_pe, PE_root);
rc = BCAST_FUNC(group,
PE_root,
target,
target,
nlong,
(pSync + 1),
true,
SCOLL_DEFAULT_ALG);
}
return rc;
}
static int _algorithm_tournament(struct oshmem_group_t *group,
struct oshmem_op_t *op,
void *target,
const void *source,
size_t nlong,
long *pSync,
void *pWrk)
{
int rc = OSHMEM_SUCCESS;
int round = 0;
int exit_flag = group->proc_count - 1;
long value = SHMEM_SYNC_INIT;
int my_id = oshmem_proc_group_find_id(group, group->my_pe);
int peer_id = 0;
int peer_pe = 0;
void *target_cur = NULL;
int PE_root = oshmem_proc_pe(group->proc_array[0]);
SCOLL_VERBOSE(12, "[#%d] Reduce algorithm: Tournament", group->my_pe);
SCOLL_VERBOSE(15, "[#%d] pSync[0] = %ld", group->my_pe, pSync[0]);
/* Set current state as WAIT */
pSync[0] = SHMEM_SYNC_WAIT;
target_cur = malloc(nlong);
if (target_cur) {
memcpy(target_cur, (void *) source, nlong);
} else {
return OSHMEM_ERR_OUT_OF_RESOURCE;
}
while (exit_flag && (rc == OSHMEM_SUCCESS)) {
/* Define a peer for competition */
peer_id = my_id ^ (1 << round);
/* Update exit condition and round counter */
exit_flag >>= 1;
round++;
/* Do not have peer for tournament */
if (peer_id >= group->proc_count)
continue;
if (my_id < peer_id) {
pSync[0] = peer_id;
value = my_id;
SCOLL_VERBOSE(14, "[#%d] round = %d wait", group->my_pe, round);
rc = MCA_SPML_CALL(wait((void*)pSync, SHMEM_CMP_EQ, (void*)&value, SHMEM_LONG));
/* Do reduction operation */
if (rc == OSHMEM_SUCCESS) {
op->o_func.c_fn(target, target_cur, nlong / op->dt_size);
}
} else {
peer_pe = oshmem_proc_pe(group->proc_array[peer_id]);
#if 1 /* It is ugly implementation of compare and swap operation
Usage of this hack does not give performance improvement but
it is expected that shmem_long_cswap() will make it faster.
*/
do {
MCA_SPML_CALL(get(oshmem_ctx_default, (void*)pSync, sizeof(value), (void*)&value, peer_pe));
} while (value != my_id);
SCOLL_VERBOSE(14,
"[#%d] round = %d send data to #%d",
group->my_pe, round, peer_pe);
rc = MCA_SPML_CALL(put(oshmem_ctx_default, target, nlong, target_cur, peer_pe));
MCA_SPML_CALL(fence(oshmem_ctx_default));
SCOLL_VERBOSE(14,
"[#%d] round = %d signals to #%d",
group->my_pe, round, peer_pe);
value = peer_id;
rc = MCA_SPML_CALL(put(oshmem_ctx_default, (void*)pSync, sizeof(value), (void*)&value, peer_pe));
#endif
SCOLL_VERBOSE(14, "[#%d] round = %d wait", group->my_pe, round);
value = SHMEM_SYNC_RUN;
rc = MCA_SPML_CALL(wait((void*)pSync, SHMEM_CMP_EQ, (void*)&value, SHMEM_LONG));
break;
}
}
/* Send result to all PE in group */
if ((my_id == 0) && (rc == OSHMEM_SUCCESS)) {
SCOLL_VERBOSE(14, "[#%d] signals to all", group->my_pe);
memcpy(target, target_cur, nlong);
value = SHMEM_SYNC_RUN;
for (peer_id = 1;
(peer_id < group->proc_count) && (rc == OSHMEM_SUCCESS);
peer_id++) {
peer_pe = oshmem_proc_pe(group->proc_array[peer_id]);
rc = MCA_SPML_CALL(put(oshmem_ctx_default, (void*)pSync, sizeof(value), (void*)&value, peer_pe));
}
}
/* Send result to all PE in group */
if (rc == OSHMEM_SUCCESS) {
SCOLL_VERBOSE(14,
"[#%d] Broadcast from the root #%d",
group->my_pe, PE_root);
rc = BCAST_FUNC(group,
PE_root,
target,
target,
nlong,
(pSync + 1),
true,
SCOLL_DEFAULT_ALG);
}
free(target_cur);
SCOLL_VERBOSE(15, "[#%d] pSync[0] = %ld", group->my_pe, pSync[0]);
return rc;
}
static int _algorithm_recursive_doubling(struct oshmem_group_t *group,
struct oshmem_op_t *op,
void *target,
const void *source,
size_t nlong,
long *pSync,
void *pWrk)
{
int rc = OSHMEM_SUCCESS;
int round = 0;
int floor2_proc = 0;
int exit_flag = 0;
long value = SHMEM_SYNC_INIT;
void *target_cur = NULL;
int my_id = oshmem_proc_group_find_id(group, group->my_pe);
int peer_id = 0;
int peer_pe = 0;
int i = 0;
floor2_proc = 1;
i = group->proc_count;
i >>= 1;
while (i) {
i >>= 1;
floor2_proc <<= 1;
}
target_cur = malloc(nlong);
if (target_cur) {
memcpy(target_cur, (void *) source, nlong);
} else {
return OSHMEM_ERR_OUT_OF_RESOURCE;
}
SCOLL_VERBOSE(12,
"[#%d] Reduce algorithm: Recursive Doubling",
group->my_pe);
SCOLL_VERBOSE(15,
"[#%d] pSync[0] = %ld floor2_proc = %d",
group->my_pe, pSync[0], floor2_proc);
if (my_id >= floor2_proc) {
/* I am in extra group, my partner is node (my_id-y) in basic group */
peer_id = my_id - floor2_proc;
peer_pe = oshmem_proc_pe(group->proc_array[peer_id]);
/* Special procedure is needed in case target and source are the same */
if (source == target) {
SCOLL_VERBOSE(14,
"[#%d] wait for peer #%d is ready",
group->my_pe, peer_pe);
value = SHMEM_SYNC_WAIT;
rc = MCA_SPML_CALL(wait((void*)pSync, SHMEM_CMP_EQ, (void*)&value, SHMEM_LONG));
}
SCOLL_VERBOSE(14,
"[#%d] is extra send data to #%d",
group->my_pe, peer_pe);
rc = MCA_SPML_CALL(put(oshmem_ctx_default, target, nlong, target_cur, peer_pe));
MCA_SPML_CALL(fence(oshmem_ctx_default));
SCOLL_VERBOSE(14,
"[#%d] is extra and signal to #%d",
group->my_pe, peer_pe);
value = SHMEM_SYNC_RUN;
rc = MCA_SPML_CALL(put(oshmem_ctx_default, (void*)pSync, sizeof(value), (void*)&value, peer_pe));
SCOLL_VERBOSE(14, "[#%d] wait", group->my_pe);
value = SHMEM_SYNC_RUN;
rc = MCA_SPML_CALL(wait((void*)pSync, SHMEM_CMP_EQ, (void*)&value, SHMEM_LONG));
} else {
/* Wait for a peer from extra group */
if ((group->proc_count - floor2_proc) > my_id) {
/* I am in basic group, my partner is node (my_id+y) in extra group */
peer_id = my_id + floor2_proc;
peer_pe = oshmem_proc_pe(group->proc_array[peer_id]);
/* Special procedure is needed in case target and source are the same */
if (source == target) {
SCOLL_VERBOSE(14,
"[#%d] signal to #%d that I am ready",
group->my_pe, peer_pe);
value = SHMEM_SYNC_WAIT;
rc = MCA_SPML_CALL(put(oshmem_ctx_default, (void*)pSync, sizeof(value), (void*)&value, peer_pe));
}
SCOLL_VERBOSE(14,
"[#%d] wait a signal from #%d",
group->my_pe, peer_pe);
value = SHMEM_SYNC_RUN;
rc = MCA_SPML_CALL(wait((void*)pSync, SHMEM_CMP_EQ, (void*)&value, SHMEM_LONG));
/* Do reduction operation */
if (rc == OSHMEM_SUCCESS) {
op->o_func.c_fn(target, target_cur, nlong / op->dt_size);
}
}
/* Pairwise exchange */
exit_flag = floor2_proc - 1;
pSync[0] = round;
while (exit_flag && (rc == OSHMEM_SUCCESS)) {
/* Define a peer for competition */
peer_id = my_id ^ (1 << round);
/* Update exit condition and round counter */
exit_flag >>= 1;
round++;
peer_pe = oshmem_proc_pe(group->proc_array[peer_id]);
#if 1 /* It is ugly implementation of compare and swap operation
Usage of this hack does not give performance improvement but
it is expected that shmem_long_cswap() will make it faster.
*/
do {
MCA_SPML_CALL(get(oshmem_ctx_default, (void*)pSync, sizeof(value), (void*)&value, peer_pe));
} while (value != (round - 1));
SCOLL_VERBOSE(14,
"[#%d] round = %d send data to #%d",
group->my_pe, round, peer_pe);
rc = MCA_SPML_CALL(put(oshmem_ctx_default, target, nlong, target_cur, peer_pe));
MCA_SPML_CALL(fence(oshmem_ctx_default));
SCOLL_VERBOSE(14,
"[#%d] round = %d signals to #%d",
group->my_pe, round, peer_pe);
value = SHMEM_SYNC_RUN;
rc = MCA_SPML_CALL(put(oshmem_ctx_default, (void*)pSync, sizeof(value), (void*)&value, peer_pe));
#endif
SCOLL_VERBOSE(14, "[#%d] round = %d wait", group->my_pe, round);
value = SHMEM_SYNC_RUN;
rc = MCA_SPML_CALL(wait((void*)pSync, SHMEM_CMP_EQ, (void*)&value, SHMEM_LONG));
/* Do reduction operation */
if (rc == OSHMEM_SUCCESS) {
op->o_func.c_fn(target, target_cur, nlong / op->dt_size);
}
pSync[0] = round;
}
memcpy(target, target_cur, nlong);
/* Notify a peer from extra group */
if ((group->proc_count - floor2_proc) > my_id) {
/* I am in basic group, my partner is node (my_id+y) in extra group */
peer_id = my_id + floor2_proc;
peer_pe = oshmem_proc_pe(group->proc_array[peer_id]);
SCOLL_VERBOSE(14,
"[#%d] is extra send data to #%d",
group->my_pe, peer_pe);
rc = MCA_SPML_CALL(put(oshmem_ctx_default, target, nlong, target_cur, peer_pe));
MCA_SPML_CALL(fence(oshmem_ctx_default));
SCOLL_VERBOSE(14, "[#%d] signals to #%d", group->my_pe, peer_pe);
value = SHMEM_SYNC_RUN;
rc = MCA_SPML_CALL(put(oshmem_ctx_default, (void*)pSync, sizeof(value), (void*)&value, peer_pe));
}
}
free(target_cur);
SCOLL_VERBOSE(15, "[#%d] pSync[0] = %ld", group->my_pe, pSync[0]);
return rc;
}
static int _algorithm_linear(struct oshmem_group_t *group,
struct oshmem_op_t *op,
void *target,
const void *source,
size_t nlong,
long *pSync,
void *pWrk)
{
int rc = OSHMEM_SUCCESS;
int i, rank, size;
char *free_buffer = NULL;
char *pml_buffer = NULL;
char *inbuf;
int peer_id = 0;
int peer_pe = 0;
/* Initialize */
rank = group->my_pe;
size = group->proc_count;
int root_id = size - 1;
int root_pe = oshmem_proc_pe(group->proc_array[root_id]);
SCOLL_VERBOSE(12, "[#%d] Reduce algorithm: Basic", group->my_pe);
/* If not root, send data to the root. */
if (rank != root_pe) {
rc = MCA_SPML_CALL(send((void*)source, nlong, root_pe, MCA_SPML_BASE_PUT_STANDARD));
} else {
/* for reducing buffer allocation lengths.... */
if (size > 1) {
free_buffer = (char*) malloc(nlong);
if (NULL == free_buffer) {
return OSHMEM_ERR_OUT_OF_RESOURCE;
}
pml_buffer = free_buffer;
}
/* Initialize the receive buffer. */
if (root_id == (size - 1)) {
memcpy(target, (void *) source, nlong);
} else {
peer_id = size - 1;
peer_pe = oshmem_proc_pe(group->proc_array[peer_id]);
rc = MCA_SPML_CALL(recv(target, nlong, peer_pe));
}
if (OSHMEM_SUCCESS != rc) {
if (NULL != free_buffer) {
free(free_buffer);
}
return rc;
}
/* Loop receiving and calling reduction function (C or Fortran). */
for (i = size - 2; i >= 0; --i) {
if (root_id == i) {
inbuf = (char*) source;
} else {
peer_id = i;
peer_pe = oshmem_proc_pe(group->proc_array[peer_id]);
rc = MCA_SPML_CALL(recv(pml_buffer, nlong, peer_pe));
if (OSHMEM_SUCCESS != rc) {
if (NULL != free_buffer) {
free(free_buffer);
}
return rc;
}
inbuf = pml_buffer;
}
/* Perform the reduction */
op->o_func.c_fn(inbuf, target, nlong / op->dt_size);
}
if (NULL != free_buffer) {
free(free_buffer);
}
}
/* Send result to all PE in group */
if (rc == OSHMEM_SUCCESS) {
SCOLL_VERBOSE(14,
"[#%d] Broadcast from the root #%d",
group->my_pe, root_pe);
rc = BCAST_FUNC(group,
root_pe,
target,
target,
nlong,
(pSync + 1),
true,
SCOLL_DEFAULT_ALG);
}
/* All done */
return rc;
}
static int _algorithm_log(struct oshmem_group_t *group,
struct oshmem_op_t *op,
void *target,
const void *source,
size_t nlong,
long *pSync,
void *pWrk)
{
int rc = OSHMEM_SUCCESS;
int i, size, rank, vrank;
int mask;
void *sbuf = (void*) source;
void *rbuf = target;
char *free_buffer = NULL;
char *free_rbuf = NULL;
char *pml_buffer = NULL;
char *snd_buffer = NULL;
char *rcv_buffer = (char*) rbuf;
int my_id = oshmem_proc_group_find_id(group, group->my_pe);
int peer_id = 0;
int peer_pe = 0;
int root_id = 0;
int root_pe = oshmem_proc_pe(group->proc_array[root_id]);
int dim = 0;
/* Initialize */
rank = group->my_pe;
size = group->proc_count;
dim = opal_cube_dim(group->proc_count);
vrank = (my_id + size - root_id) % size;
SCOLL_VERBOSE(12, "[#%d] Reduce algorithm: Log", rank);
/* Allocate the incoming and resulting message buffers. See lengthy
* rationale above. */
free_buffer = (char*) malloc(nlong);
if (NULL == free_buffer) {
return OSHMEM_ERR_OUT_OF_RESOURCE;
}
pml_buffer = free_buffer;
rcv_buffer = pml_buffer;
/* Allocate sendbuf in case the MPI_IN_PLACE option has been used. See lengthy
* rationale above. */
snd_buffer = (char*) sbuf;
if (my_id != root_id && 0 == (vrank & 1)) {
/* root is the only one required to provide a valid rbuf.
* Assume rbuf is invalid for all other ranks, so fix it up
* here to be valid on all non-leaf ranks */
free_rbuf = (char*) malloc(nlong);
if (NULL == free_rbuf) {
rc = OSHMEM_ERR_OUT_OF_RESOURCE;
goto cleanup_and_return;
}
rbuf = free_rbuf;
}
/* Loop over cube dimensions. High processes send to low ones in the
* dimension. */
for (i = 0, mask = 1; i < dim; ++i, mask <<= 1) {
/* A high-proc sends to low-proc and stops. */
if (vrank & mask) {
peer_id = vrank & ~mask;
peer_id = (peer_id + root_id) % size;
peer_pe = oshmem_proc_pe(group->proc_array[peer_id]);
rc = MCA_SPML_CALL(send((void*)snd_buffer, nlong, peer_pe, MCA_SPML_BASE_PUT_STANDARD));
if (OSHMEM_SUCCESS != rc) {
goto cleanup_and_return;
}
snd_buffer = (char*) rbuf;
break;
}
/* A low-proc receives, reduces, and moves to a higher
* dimension. */
else {
peer_id = vrank | mask;
if (peer_id >= size) {
continue;
}
peer_id = (peer_id + root_id) % size;
peer_pe = oshmem_proc_pe(group->proc_array[peer_id]);
/* Most of the time (all except the first one for commutative
* operations) we receive in the user provided buffer
* (rbuf). But the exception is here to allow us to dont have
* to copy from the sbuf to a temporary location. If the
* operation is commutative we dont care in which order we
* apply the operation, so for the first time we can receive
* the data in the pml_buffer and then apply to operation
* between this buffer and the user provided data. */
rc = MCA_SPML_CALL(recv(rcv_buffer, nlong, peer_pe));
if (OSHMEM_SUCCESS != rc) {
goto cleanup_and_return;
}
/* Perform the operation. The target is always the user
* provided buffer We do the operation only if we receive it
* not in the user buffer */
if (snd_buffer != sbuf) {
/* the target buffer is the locally allocated one */
op->o_func.c_fn(rcv_buffer, pml_buffer, nlong / op->dt_size);
} else {
/* If we're commutative, we don't care about the order of
* operations and we can just reduce the operations now.
* If we are not commutative, we have to copy the send
* buffer into a temp buffer (pml_buffer) and then reduce
* what we just received against it. */
{
op->o_func.c_fn(sbuf, pml_buffer, nlong / op->dt_size);
}
/* now we have to send the buffer containing the computed data */
snd_buffer = pml_buffer;
/* starting from now we always receive in the user
* provided buffer */
rcv_buffer = (char*) rbuf;
}
}
}
/* Get the result to the root if needed. */
rc = OSHMEM_SUCCESS;
if (0 == vrank) {
if (root_id == my_id) {
memcpy(rbuf, snd_buffer, nlong);
} else {
rc = MCA_SPML_CALL(send((void*)snd_buffer, nlong, root_pe, MCA_SPML_BASE_PUT_STANDARD));
}
} else if (my_id == root_id) {
rc = MCA_SPML_CALL(recv(rcv_buffer, nlong, root_pe));
if (rcv_buffer != rbuf) {
op->o_func.c_fn(rcv_buffer, rbuf, nlong / op->dt_size);
}
}
cleanup_and_return: if (NULL != free_buffer) {
free(free_buffer);
}
if (NULL != free_rbuf) {
free(free_rbuf);
}
/* Send result to all PE in group */
if (rc == OSHMEM_SUCCESS) {
SCOLL_VERBOSE(14,
"[#%d] Broadcast from the root #%d",
rank, root_pe);
rc = BCAST_FUNC(group,
root_pe,
target,
target,
nlong,
(pSync + 1),
true,
SCOLL_DEFAULT_ALG);
}
/* All done */
return rc;
}