1
1
openmpi/ompi/mca/io/ompio/io_ompio_aggregators.c
Edgar Gabriel 8feb497dbe io/ompio: cleanup the aggregator selection logic
and some internal structure elements/components. Along the way,
add support for the cb_nodes Info object.

Signed-off-by: Edgar Gabriel <egabriel@central.uh.edu>
2018-06-07 16:47:10 -05:00

1516 строки
50 KiB
C

/* -*- Mode: C; c-basic-offset:4 ; -*- */
/*
* Copyright (c) 2004-2005 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2017 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2008-2017 University of Houston. All rights reserved.
* Copyright (c) 2011-2018 Cisco Systems, Inc. All rights reserved
* Copyright (c) 2012-2013 Inria. All rights reserved.
* Copyright (c) 2015-2017 Research Organization for Information Science
* and Technology (RIST). All rights reserved.
* Copyright (c) 2017 IBM Corporation. All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "ompi_config.h"
#include "ompi/runtime/params.h"
#include "ompi/communicator/communicator.h"
#include "ompi/mca/pml/pml.h"
#include "ompi/mca/topo/topo.h"
#include "ompi/mca/fcoll/base/fcoll_base_coll_array.h"
#include "opal/datatype/opal_convertor.h"
#include "opal/datatype/opal_datatype.h"
#include "ompi/datatype/ompi_datatype.h"
#include "ompi/info/info.h"
#include "ompi/request/request.h"
#include <math.h>
#include <unistd.h>
#include "io_ompio.h"
/*
** This file contains all the functionality related to determing the number of aggregators
** and the list of aggregators.
**
** The first group functions determines the number of aggregators based on various characteristics
**
** 1. simple_grouping: A heuristic based on a cost model
** 2. fview_based_grouping: analysis the fileview to detect regular patterns
** 3. cart_based_grouping: uses a cartesian communicator to derive certain (probable) properties
** of the access pattern
*/
static double cost_calc (int P, int P_agg, size_t Data_proc, size_t coll_buffer, int dim );
#define DIM1 1
#define DIM2 2
int mca_io_ompio_simple_grouping(mca_io_ompio_file_t *fh,
int *num_groups_out,
mca_io_ompio_contg *contg_groups)
{
int num_groups=1;
double time=0.0, time_prev=0.0, dtime=0.0, dtime_abs=0.0, dtime_diff=0.0, dtime_prev=0.0;
double dtime_threshold=0.0;
/* This is the threshold for absolute improvement. It is not
** exposed as an MCA parameter to avoid overwhelming users. It is
** mostly relevant for smaller process counts and data volumes.
*/
double time_threshold=0.001;
int incr=1, mode=1;
int P_a, P_a_prev;
/* The aggregator selection algorithm is based on the formulas described
** in: Shweta Jha, Edgar Gabriel, 'Performance Models for Communication in
** Collective I/O operations', Proceedings of the 17th IEEE/ACM Symposium
** on Cluster, Cloud and Grid Computing, Workshop on Theoretical
** Approaches to Performance Evaluation, Modeling and Simulation, 2017.
**
** The current implementation is based on the 1-D and 2-D models derived for the even
** file partitioning strategy in the paper. Note, that the formulas currently only model
** the communication aspect of collective I/O operations. There are two extensions in this
** implementation:
**
** 1. Since the resulting formula has an asymptotic behavior w.r.t. the
** no. of aggregators, this version determines the no. of aggregators to
** be used iteratively and stops increasing the no. of aggregators if the
** benefits of increasing the aggregators is below a certain threshold
** value relative to the last number tested. The aggresivnes of cutting of
** the increasie in the number of aggregators is controlled by the new mca
** parameter mca_io_ompio_aggregator_cutoff_threshold. Lower values for
** this parameter will lead to higher number of aggregators (useful e.g
** for PVFS2 and GPFS file systems), while higher number will lead to
** lower no. of aggregators (useful for regular UNIX or NFS file systems).
**
** 2. The algorithm further caps the maximum no. of aggregators used to not exceed
** (no. of processes / mca_io_ompio_max_aggregators_ratio), i.e. a higher value
** for mca_io_ompio_max_aggregators will decrease the maximum number of aggregators
** allowed for the given no. of processes.
*/
dtime_threshold = (double) mca_io_ompio_aggregators_cutoff_threshold / 100.0;
/* Determine whether to use the formula for 1-D or 2-D data decomposition. Anything
** that is not 1-D is assumed to be 2-D in this version
*/
mode = ( fh->f_cc_size == fh->f_view_size ) ? 1 : 2;
/* Determine the increment size when searching the optimal
** no. of aggregators
*/
if ( fh->f_size < 16 ) {
incr = 2;
}
else if (fh->f_size < 128 ) {
incr = 4;
}
else if ( fh->f_size < 4096 ) {
incr = 16;
}
else {
incr = 32;
}
P_a = 1;
time_prev = cost_calc ( fh->f_size, P_a, fh->f_view_size, (size_t) fh->f_bytes_per_agg, mode );
P_a_prev = P_a;
for ( P_a = incr; P_a <= fh->f_size; P_a += incr ) {
time = cost_calc ( fh->f_size, P_a, fh->f_view_size, (size_t) fh->f_bytes_per_agg, mode );
dtime_abs = (time_prev - time);
dtime = dtime_abs / time_prev;
dtime_diff = ( P_a == incr ) ? dtime : (dtime_prev - dtime);
#ifdef OMPIO_DEBUG
if ( 0 == fh->f_rank ){
printf(" d_p = %ld P_a = %d time = %lf dtime = %lf dtime_abs =%lf dtime_diff=%lf\n",
fh->f_view_size, P_a, time, dtime, dtime_abs, dtime_diff );
}
#endif
if ( dtime_diff < dtime_threshold ) {
/* The relative improvement compared to the last number
** of aggregators was below a certain threshold. This is typically
** the dominating factor for large data volumes and larger process
** counts
*/
#ifdef OMPIO_DEBUG
if ( 0 == fh->f_rank ) {
printf("dtime_diff below threshold\n");
}
#endif
break;
}
if ( dtime_abs < time_threshold ) {
/* The absolute improvement compared to the last number
** of aggregators was below a given threshold. This is typically
** important for small data valomes and smallers process counts
*/
#ifdef OMPIO_DEBUG
if ( 0 == fh->f_rank ) {
printf("dtime_abs below threshold\n");
}
#endif
break;
}
time_prev = time;
dtime_prev = dtime;
P_a_prev = P_a;
}
num_groups = P_a_prev;
#ifdef OMPIO_DEBUG
printf(" For P=%d d_p=%ld b_c=%d threshold=%f chosen P_a = %d \n",
fh->f_size, fh->f_view_size, fh->f_bytes_per_agg, dtime_threshold, P_a_prev);
#endif
/* Cap the maximum number of aggregators.*/
if ( num_groups > (fh->f_size/mca_io_ompio_max_aggregators_ratio)) {
num_groups = (fh->f_size/mca_io_ompio_max_aggregators_ratio);
}
if ( 1 >= num_groups ) {
num_groups = 1;
}
*num_groups_out = num_groups;
return mca_io_ompio_forced_grouping ( fh, num_groups, contg_groups);
}
int mca_io_ompio_forced_grouping ( mca_io_ompio_file_t *fh,
int num_groups,
mca_io_ompio_contg *contg_groups)
{
int group_size = fh->f_size / num_groups;
int rest = fh->f_size % num_groups;
int flag = OMPI_COMM_IS_MAPBY_NODE (&ompi_mpi_comm_world.comm);
int k=0, p=0, g=0;
int total_procs = 0;
for ( k=0, p=0; p<num_groups; p++ ) {
if ( p < rest ) {
contg_groups[p].procs_per_contg_group = group_size+1;
total_procs +=(group_size+1);
}
else {
contg_groups[p].procs_per_contg_group = group_size;
total_procs +=group_size;
}
if ( flag ) {
/* Map by node used for MPI_COMM_WORLD */
for ( g=0; g<contg_groups[p].procs_per_contg_group; g++ ) {
k = g*num_groups+p;
contg_groups[p].procs_in_contg_group[g] = k;
}
}
else {
for ( g=0; g<contg_groups[p].procs_per_contg_group; g++ ) {
contg_groups[p].procs_in_contg_group[g] = k;
k++;
}
}
}
return OMPI_SUCCESS;
}
int mca_io_ompio_fview_based_grouping(mca_io_ompio_file_t *fh,
int *num_groups,
mca_io_ompio_contg *contg_groups)
{
int k = 0;
int p = 0;
int g = 0;
int ret = OMPI_SUCCESS;
OMPI_MPI_OFFSET_TYPE start_offset_len[3] = {0};
OMPI_MPI_OFFSET_TYPE *end_offsets = NULL;
OMPI_MPI_OFFSET_TYPE *start_offsets_lens = NULL;
//Store start offset,length and corresponding rank in an array
if(NULL == fh->f_decoded_iov){
start_offset_len[0] = 0;
start_offset_len[1] = 0;
}
else{
start_offset_len[0] = (OMPI_MPI_OFFSET_TYPE) fh->f_decoded_iov[0].iov_base;
start_offset_len[1] = fh->f_decoded_iov[0].iov_len;
}
start_offset_len[2] = fh->f_rank;
start_offsets_lens = (OMPI_MPI_OFFSET_TYPE* )malloc (3 * fh->f_size * sizeof(OMPI_MPI_OFFSET_TYPE));
if (NULL == start_offsets_lens) {
opal_output (1, "OUT OF MEMORY\n");
ret = OMPI_ERR_OUT_OF_RESOURCE;
goto exit;
}
end_offsets = (OMPI_MPI_OFFSET_TYPE* )malloc (fh->f_size * sizeof(OMPI_MPI_OFFSET_TYPE));
if (NULL == end_offsets) {
opal_output (1, "OUT OF MEMORY\n");
ret = OMPI_ERR_OUT_OF_RESOURCE;
goto exit;
}
//Allgather start offsets across processes in a group on aggregator
ret = fh->f_comm->c_coll->coll_allgather (start_offset_len,
3,
OMPI_OFFSET_DATATYPE,
start_offsets_lens,
3,
OMPI_OFFSET_DATATYPE,
fh->f_comm,
fh->f_comm->c_coll->coll_allgather_module);
if ( OMPI_SUCCESS != ret ) {
goto exit;
}
//Calculate contg chunk size and contg subgroups
for( k = 0 ; k < fh->f_size; k++){
end_offsets[k] = start_offsets_lens[3*k] + start_offsets_lens[3*k+1];
contg_groups[k].contg_chunk_size = 0;
}
k = 0;
while( k < fh->f_size){
if( k == 0){
contg_groups[p].contg_chunk_size += start_offsets_lens[3*k+1];
contg_groups[p].procs_in_contg_group[g] = start_offsets_lens[3*k + 2];
g++;
contg_groups[p].procs_per_contg_group = g;
k++;
}
else if( start_offsets_lens[3*k] == end_offsets[k - 1] ){
contg_groups[p].contg_chunk_size += start_offsets_lens[3*k+1];
contg_groups[p].procs_in_contg_group[g] = start_offsets_lens[3*k + 2];
g++;
contg_groups[p].procs_per_contg_group = g;
k++;
}
else{
p++;
g = 0;
contg_groups[p].contg_chunk_size += start_offsets_lens[3*k+1];
contg_groups[p].procs_in_contg_group[g] = start_offsets_lens[3*k + 2];
g++;
contg_groups[p].procs_per_contg_group = g;
k++;
}
}
*num_groups = p+1;
ret = OMPI_SUCCESS;
exit:
if (NULL != start_offsets_lens) {
free (start_offsets_lens);
}
if (NULL != end_offsets) {
free(end_offsets);
}
return ret;
}
int mca_io_ompio_cart_based_grouping(mca_io_ompio_file_t *ompio_fh,
int *num_groups,
mca_io_ompio_contg *contg_groups)
{
int k = 0;
int g=0;
int ret = OMPI_SUCCESS, tmp_rank = 0;
int *coords_tmp = NULL;
mca_io_ompio_cart_topo_components cart_topo;
memset (&cart_topo, 0, sizeof(mca_io_ompio_cart_topo_components));
ret = ompio_fh->f_comm->c_topo->topo.cart.cartdim_get(ompio_fh->f_comm, &cart_topo.ndims);
if (OMPI_SUCCESS != ret ) {
goto exit;
}
if (cart_topo.ndims < 2 ) {
/* We shouldn't be here, this routine only works for more than 1 dimension */
ret = MPI_ERR_INTERN;
goto exit;
}
cart_topo.dims = (int*)malloc (cart_topo.ndims * sizeof(int));
if (NULL == cart_topo.dims) {
opal_output (1, "OUT OF MEMORY\n");
ret = OMPI_ERR_OUT_OF_RESOURCE;
goto exit;
}
cart_topo.periods = (int*)malloc (cart_topo.ndims * sizeof(int));
if (NULL == cart_topo.periods) {
opal_output (1, "OUT OF MEMORY\n");
ret = OMPI_ERR_OUT_OF_RESOURCE;
goto exit;
}
cart_topo.coords = (int*)malloc (cart_topo.ndims * sizeof(int));
if (NULL == cart_topo.coords) {
opal_output (1, "OUT OF MEMORY\n");
ret = OMPI_ERR_OUT_OF_RESOURCE;
goto exit;
}
coords_tmp = (int*)malloc (cart_topo.ndims * sizeof(int));
if (NULL == coords_tmp) {
opal_output (1, "OUT OF MEMORY\n");
ret = OMPI_ERR_OUT_OF_RESOURCE;
goto exit;
}
ret = ompio_fh->f_comm->c_topo->topo.cart.cart_get(ompio_fh->f_comm,
cart_topo.ndims,
cart_topo.dims,
cart_topo.periods,
cart_topo.coords);
if ( OMPI_SUCCESS != ret ) {
opal_output (1, "mca_io_ompio_cart_based_grouping: Error in cart_get \n");
goto exit;
}
*num_groups = cart_topo.dims[0]; //number of rows
for(k = 0; k < cart_topo.dims[0]; k++){
int done = 0;
int index = cart_topo.ndims-1;
memset ( coords_tmp, 0, cart_topo.ndims * sizeof(int));
contg_groups[k].procs_per_contg_group = (ompio_fh->f_size / cart_topo.dims[0]);
coords_tmp[0] = k;
ret = ompio_fh->f_comm->c_topo->topo.cart.cart_rank (ompio_fh->f_comm,coords_tmp,&tmp_rank);
if ( OMPI_SUCCESS != ret ) {
opal_output (1, "mca_io_ompio_cart_based_grouping: Error in cart_rank\n");
goto exit;
}
contg_groups[k].procs_in_contg_group[0] = tmp_rank;
for ( g=1; g< contg_groups[k].procs_per_contg_group; g++ ) {
done = 0;
index = cart_topo.ndims-1;
while ( ! done ) {
coords_tmp[index]++;
if ( coords_tmp[index] ==cart_topo.dims[index] ) {
coords_tmp[index]=0;
index--;
}
else {
done = 1;
}
if ( index == 0 ) {
done = 1;
}
}
ret = ompio_fh->f_comm->c_topo->topo.cart.cart_rank (ompio_fh->f_comm,coords_tmp,&tmp_rank);
if ( OMPI_SUCCESS != ret ) {
opal_output (1, "mca_io_ompio_cart_based_grouping: Error in cart_rank\n");
goto exit;
}
contg_groups[k].procs_in_contg_group[g] = tmp_rank;
}
}
exit:
if (NULL != cart_topo.dims) {
free (cart_topo.dims);
cart_topo.dims = NULL;
}
if (NULL != cart_topo.periods) {
free (cart_topo.periods);
cart_topo.periods = NULL;
}
if (NULL != cart_topo.coords) {
free (cart_topo.coords);
cart_topo.coords = NULL;
}
if (NULL != coords_tmp) {
free (coords_tmp);
coords_tmp = NULL;
}
return ret;
}
int mca_io_ompio_finalize_initial_grouping(mca_io_ompio_file_t *fh,
int num_groups,
mca_io_ompio_contg *contg_groups)
{
int z = 0;
int y = 0;
fh->f_init_num_aggrs = num_groups;
if (NULL != fh->f_init_aggr_list) {
free(fh->f_init_aggr_list);
}
fh->f_init_aggr_list = (int*)malloc (fh->f_init_num_aggrs * sizeof(int));
if (NULL == fh->f_init_aggr_list) {
opal_output (1, "OUT OF MEMORY\n");
return OMPI_ERR_OUT_OF_RESOURCE;
}
for( z = 0 ;z < num_groups; z++){
for( y = 0; y < contg_groups[z].procs_per_contg_group; y++){
if ( fh->f_rank == contg_groups[z].procs_in_contg_group[y] ) {
fh->f_init_procs_per_group = contg_groups[z].procs_per_contg_group;
if (NULL != fh->f_init_procs_in_group) {
free(fh->f_init_procs_in_group);
}
fh->f_init_procs_in_group = (int*)malloc (fh->f_init_procs_per_group * sizeof(int));
if (NULL == fh->f_init_procs_in_group) {
opal_output (1, "OUT OF MEMORY\n");
return OMPI_ERR_OUT_OF_RESOURCE;
}
memcpy ( fh->f_init_procs_in_group, contg_groups[z].procs_in_contg_group,
contg_groups[z].procs_per_contg_group * sizeof (int));
}
}
}
for( z = 0 ;z < num_groups; z++){
fh->f_init_aggr_list[z] = contg_groups[z].procs_in_contg_group[0];
}
return OMPI_SUCCESS;
}
/*****************************************************************************************************/
/*****************************************************************************************************/
/*****************************************************************************************************/
/*
** This function is called by the collective I/O operations to determine the final number
** of aggregators.
*/
int mca_io_ompio_set_aggregator_props (struct mca_io_ompio_file_t *fh,
int num_aggregators,
size_t bytes_per_proc)
{
int j;
int ret=OMPI_SUCCESS;
fh->f_flags |= OMPIO_AGGREGATOR_IS_SET;
if ( (-1 == num_aggregators) &&
((SIMPLE != mca_io_ompio_grouping_option &&
NO_REFINEMENT != mca_io_ompio_grouping_option &&
SIMPLE_PLUS != mca_io_ompio_grouping_option ))) {
ret = mca_io_ompio_create_groups(fh,bytes_per_proc);
}
else {
fh->f_procs_per_group = fh->f_init_procs_per_group;
fh->f_procs_in_group = (int*)malloc (fh->f_procs_per_group * sizeof(int));
if (NULL == fh->f_procs_in_group) {
opal_output (1, "OUT OF MEMORY\n");
return OMPI_ERR_OUT_OF_RESOURCE;
}
for (j=0 ; j<fh->f_procs_per_group ; j++) {
fh->f_procs_in_group[j] = fh->f_init_procs_in_group[j];
}
fh->f_num_aggrs = fh->f_init_num_aggrs;
fh->f_aggr_list = (int*) malloc ( fh->f_num_aggrs * sizeof(int));
if (NULL == fh->f_aggr_list ) {
opal_output (1, "OUT OF MEMORY\n");
return OMPI_ERR_OUT_OF_RESOURCE;
}
for (j=0 ; j<fh->f_num_aggrs; j++) {
fh->f_aggr_list[j] = fh->f_init_aggr_list[j];
}
}
return ret;
}
int mca_io_ompio_create_groups(mca_io_ompio_file_t *fh,
size_t bytes_per_proc)
{
int is_aggregator = 0;
int final_aggr = 0;
int final_num_aggrs = 0;
int ret = OMPI_SUCCESS, ompio_grouping_flag = 0;
int *tmp_final_aggrs=NULL;
int *decision_list = NULL;
int i,j;
OMPI_MPI_OFFSET_TYPE *start_offsets_lens = NULL;
OMPI_MPI_OFFSET_TYPE *end_offsets = NULL;
OMPI_MPI_OFFSET_TYPE bytes_per_group = 0;
OMPI_MPI_OFFSET_TYPE *aggr_bytes_per_group = NULL;
ret = mca_io_ompio_prepare_to_group(fh,
&start_offsets_lens,
&end_offsets,
&aggr_bytes_per_group,
&bytes_per_group,
&decision_list,
bytes_per_proc,
&is_aggregator,
&ompio_grouping_flag);
if ( OMPI_SUCCESS != ret ) {
opal_output (1, "mca_io_ompio_create_groups: error in mca_io_ompio_prepare_to_group\n");
goto exit;
}
switch(ompio_grouping_flag){
case OMPIO_SPLIT:
ret = mca_io_ompio_split_initial_groups(fh,
start_offsets_lens,
end_offsets,
bytes_per_group);
break;
case OMPIO_MERGE:
ret = mca_io_ompio_merge_initial_groups(fh,
aggr_bytes_per_group,
decision_list,
is_aggregator);
break;
case OMPIO_RETAIN:
ret = mca_io_ompio_retain_initial_groups(fh);
break;
}
if ( OMPI_SUCCESS != ret ) {
opal_output (1, "mca_io_ompio_create_groups: error in subroutine called within switch statement\n");
goto exit;
}
//Set aggregator index
//Calculate final number of aggregators
if(fh->f_rank == fh->f_procs_in_group[0]){
final_aggr = 1;
}
ret = fh->f_comm->c_coll->coll_allreduce (&final_aggr,
&final_num_aggrs,
1,
MPI_INT,
MPI_SUM,
fh->f_comm,
fh->f_comm->c_coll->coll_allreduce_module);
if ( OMPI_SUCCESS != ret ) {
opal_output (1, "mca_io_ompio_create_groups: error in allreduce\n");
goto exit;
}
tmp_final_aggrs =(int*) malloc ( fh->f_size *sizeof(int));
if ( NULL == tmp_final_aggrs ) {
opal_output(1,"mca_io_ompio_create_groups: could not allocate memory\n");
goto exit;
}
ret = fh->f_comm->c_coll->coll_allgather (&final_aggr,
1,
MPI_INT,
tmp_final_aggrs,
1,
MPI_INT,
fh->f_comm,
fh->f_comm->c_coll->coll_allgather_module);
if ( OMPI_SUCCESS != ret ) {
opal_output (1, "mca_io_ompio_create_groups: error in allreduce\n");
goto exit;
}
//Set final number of aggregators in file handle
fh->f_num_aggrs = final_num_aggrs;
fh->f_aggr_list = (int*) malloc (fh->f_num_aggrs * sizeof(int));
if ( NULL == fh->f_aggr_list ) {
opal_output(1,"mca_io_ompio_create_groups: could not allocate memory\n");
goto exit;
}
for ( i=0, j=0; i<fh->f_num_aggrs; i++ ) {
for ( ; j<fh->f_size; j++ ) {
if ( 1 == tmp_final_aggrs[j] ) {
break;
}
fh->f_aggr_list[i] = tmp_final_aggrs[j];
}
}
exit:
if (NULL != start_offsets_lens) {
free (start_offsets_lens);
}
if (NULL != end_offsets) {
free (end_offsets);
}
if(NULL != aggr_bytes_per_group){
free(aggr_bytes_per_group);
}
if( NULL != decision_list){
free(decision_list);
}
if ( NULL != tmp_final_aggrs){
free(tmp_final_aggrs);
}
return ret;
}
int mca_io_ompio_merge_initial_groups(mca_io_ompio_file_t *fh,
OMPI_MPI_OFFSET_TYPE *aggr_bytes_per_group,
int *decision_list,
int is_aggregator){
OMPI_MPI_OFFSET_TYPE sum_bytes = 0;
MPI_Request *sendreqs = NULL;
int start = 0;
int end = 0;
int i = 0;
int j = 0;
int r = 0;
int merge_pair_flag = 4;
int first_merge_flag = 4;
int *merge_aggrs = NULL;
int is_new_aggregator= 0;
int ret = OMPI_SUCCESS;
if(is_aggregator){
i = 0;
sum_bytes = 0;
//go through the decision list
//Find the aggregators that could merge
while(i < fh->f_init_num_aggrs){
while(1){
if( i >= fh->f_init_num_aggrs){
break;
}
else if((decision_list[i] == OMPIO_MERGE) &&
(sum_bytes <= mca_io_ompio_bytes_per_agg)){
sum_bytes = sum_bytes + aggr_bytes_per_group[i];
decision_list[i] = merge_pair_flag;
i++;
}
else if((decision_list[i] == OMPIO_MERGE) &&
(sum_bytes >= mca_io_ompio_bytes_per_agg)){
if(decision_list[i+1] == OMPIO_MERGE){
merge_pair_flag++;
decision_list[i] = merge_pair_flag;
sum_bytes = aggr_bytes_per_group[i];
i++;
}
else{
decision_list[i] = merge_pair_flag;
i++;
}
}
else{
i++;
if(decision_list[i] == OMPIO_MERGE)
merge_pair_flag++;
sum_bytes = 0;
break;
}
}
}
//Now go through the new edited decision list and
//make lists of aggregators to merge and number
//of groups to me merged.
i = 0;
j = 0;
while(i < fh->f_init_num_aggrs){
if(decision_list[i] >= first_merge_flag){
start = i;
while((decision_list[i] >= first_merge_flag) &&
(i < fh->f_init_num_aggrs-1)){
if(decision_list[i+1] == decision_list[i]){
i++;
}
else{
break;
}
end = i;
}
merge_aggrs = (int *)malloc((end - start + 1) * sizeof(int));
if (NULL == merge_aggrs) {
opal_output (1, "OUT OF MEMORY\n");
return OMPI_ERR_OUT_OF_RESOURCE;
}
j = 0;
for( j = 0 ; j < end - start + 1; j++){
merge_aggrs[j] = fh->f_init_aggr_list[start+j];
}
if(fh->f_rank == merge_aggrs[0])
is_new_aggregator = 1;
for( j = 0 ; j < end-start+1 ;j++){
if(fh->f_rank == merge_aggrs[j]){
ret = mca_io_ompio_merge_groups(fh, merge_aggrs,
end-start+1);
if ( OMPI_SUCCESS != ret ) {
opal_output (1, "mca_io_ompio_merge_initial_groups: error in mca_io_ompio_merge_groups\n");
free ( merge_aggrs );
return ret;
}
}
}
if(NULL != merge_aggrs){
free(merge_aggrs);
merge_aggrs = NULL;
}
}
i++;
}
}//end old aggregators
//New aggregators communicate new grouping info to the groups
if(is_new_aggregator){
sendreqs = (MPI_Request *)malloc ( 2 *fh->f_procs_per_group * sizeof(MPI_Request));
if (NULL == sendreqs) {
return OMPI_ERR_OUT_OF_RESOURCE;
}
//Communicate grouping info
for( j = 0 ; j < fh->f_procs_per_group; j++){
if (fh->f_procs_in_group[j] == fh->f_rank ) {
continue;
}
//new aggregator sends new procs_per_group to all its members
ret = MCA_PML_CALL(isend(&fh->f_procs_per_group,
1,
MPI_INT,
fh->f_procs_in_group[j],
OMPIO_PROCS_PER_GROUP_TAG,
MCA_PML_BASE_SEND_STANDARD,
fh->f_comm,
sendreqs + r++));
if ( OMPI_SUCCESS != ret ) {
opal_output (1, "mca_io_ompio_merge_initial_groups: error in Isend\n");
goto exit;
}
//new aggregator sends distribution of process to all its new members
ret = MCA_PML_CALL(isend(fh->f_procs_in_group,
fh->f_procs_per_group,
MPI_INT,
fh->f_procs_in_group[j],
OMPIO_PROCS_IN_GROUP_TAG,
MCA_PML_BASE_SEND_STANDARD,
fh->f_comm,
sendreqs + r++));
if ( OMPI_SUCCESS != ret ) {
opal_output (1, "mca_io_ompio_merge_initial_groups: error in Isend 2\n");
goto exit;
}
}
}
else {
//All non aggregators
//All processes receive initial process distribution from aggregators
ret = MCA_PML_CALL(recv(&fh->f_procs_per_group,
1,
MPI_INT,
MPI_ANY_SOURCE,
OMPIO_PROCS_PER_GROUP_TAG,
fh->f_comm,
MPI_STATUS_IGNORE));
if ( OMPI_SUCCESS != ret ) {
opal_output (1, "mca_io_ompio_merge_initial_groups: error in Recv\n");
return ret;
}
fh->f_procs_in_group = (int*)malloc (fh->f_procs_per_group * sizeof(int));
if (NULL == fh->f_procs_in_group) {
opal_output (1, "OUT OF MEMORY\n");
return OMPI_ERR_OUT_OF_RESOURCE;
}
ret = MCA_PML_CALL(recv(fh->f_procs_in_group,
fh->f_procs_per_group,
MPI_INT,
MPI_ANY_SOURCE,
OMPIO_PROCS_IN_GROUP_TAG,
fh->f_comm,
MPI_STATUS_IGNORE));
if ( OMPI_SUCCESS != ret ) {
opal_output (1, "mca_io_ompio_merge_initial_groups: error in Recv 2\n");
return ret;
}
}
if(is_new_aggregator) {
ret = ompi_request_wait_all (r, sendreqs, MPI_STATUSES_IGNORE);
}
exit:
if (NULL != sendreqs) {
free(sendreqs);
}
return ret;
}
int mca_io_ompio_split_initial_groups(mca_io_ompio_file_t *fh,
OMPI_MPI_OFFSET_TYPE *start_offsets_lens,
OMPI_MPI_OFFSET_TYPE *end_offsets,
OMPI_MPI_OFFSET_TYPE bytes_per_group){
int size_new_group = 0;
int size_old_group = 0;
int size_last_group = 0;
int size_smallest_group = 0;
int num_groups = 0;
int ret = OMPI_SUCCESS;
OMPI_MPI_OFFSET_TYPE max_cci = 0;
OMPI_MPI_OFFSET_TYPE min_cci = 0;
size_new_group = ceil ((float)mca_io_ompio_bytes_per_agg * fh->f_init_procs_per_group/ bytes_per_group);
size_old_group = fh->f_init_procs_per_group;
ret = mca_io_ompio_split_a_group(fh,
start_offsets_lens,
end_offsets,
size_new_group,
&max_cci,
&min_cci,
&num_groups,
&size_smallest_group);
if (OMPI_SUCCESS != ret ) {
opal_output (1, "mca_io_ompio_split_initial_groups: error in mca_io_ompio_split_a_group\n");
return ret;
}
switch(mca_io_ompio_grouping_option){
case DATA_VOLUME:
//Just use size as returned by split group
size_last_group = size_smallest_group;
break;
case UNIFORM_DISTRIBUTION:
if(size_smallest_group <= OMPIO_UNIFORM_DIST_THRESHOLD * size_new_group){
//uneven split need to call split again
if( size_old_group % num_groups == 0 ){
//most even distribution possible
size_new_group = size_old_group / num_groups;
size_last_group = size_new_group;
}
else{
//merge the last small group with the previous group
size_last_group = size_new_group + size_smallest_group;
}
}
else{
//Considered uniform
size_last_group = size_smallest_group;
}
break;
case CONTIGUITY:
while(1){
if((max_cci < OMPIO_CONTG_THRESHOLD) &&
(size_new_group < size_old_group)){
size_new_group = floor( (float) (size_new_group + size_old_group ) / 2 );
ret = mca_io_ompio_split_a_group(fh,
start_offsets_lens,
end_offsets,
size_new_group,
&max_cci,
&min_cci,
&num_groups,
&size_smallest_group);
if (OMPI_SUCCESS != ret ) {
opal_output (1, "mca_io_ompio_split_initial_groups: error in mca_io_ompio_split_a_group 2\n");
return ret;
}
}
else{
break;
}
}
size_last_group = size_smallest_group;
break;
case OPTIMIZE_GROUPING:
//This case is a combination of Data volume, contiguity and uniform distribution
while(1){
if((max_cci < OMPIO_CONTG_THRESHOLD) &&
(size_new_group < size_old_group)){ //can be a better condition
//monitor the previous iteration
//break if it has not changed.
size_new_group = ceil( (float) (size_new_group + size_old_group ) / 2 );
ret = mca_io_ompio_split_a_group(fh,
start_offsets_lens,
end_offsets,
size_new_group,
&max_cci,
&min_cci,
&num_groups,
&size_smallest_group);
if (OMPI_SUCCESS != ret ) {
opal_output (1, "mca_io_ompio_split_initial_groups: error in mca_io_ompio_split_a_group 3\n");
return ret;
}
}
else{
break;
}
}
if(size_smallest_group <= OMPIO_UNIFORM_DIST_THRESHOLD * size_new_group){
//uneven split need to call split again
if( size_old_group % num_groups == 0 ){
//most even distribution possible
size_new_group = size_old_group / num_groups;
size_last_group = size_new_group;
}
else{
//merge the last small group with the previous group
size_last_group = size_new_group + size_smallest_group;
}
}
else{
//Considered uniform
size_last_group = size_smallest_group;
}
break;
}
ret = mca_io_ompio_finalize_split(fh, size_new_group, size_last_group);
return ret;
}
int mca_io_ompio_retain_initial_groups(mca_io_ompio_file_t *fh){
int i = 0;
fh->f_procs_per_group = fh->f_init_procs_per_group;
fh->f_procs_in_group = (int*)malloc (fh->f_procs_per_group * sizeof(int));
if (NULL == fh->f_procs_in_group) {
opal_output (1, "OUT OF MEMORY\n");
return OMPI_ERR_OUT_OF_RESOURCE;
}
for( i = 0 ; i < fh->f_procs_per_group; i++){
fh->f_procs_in_group[i] = fh->f_init_procs_in_group[i];
}
return OMPI_SUCCESS;
}
int mca_io_ompio_merge_groups(mca_io_ompio_file_t *fh,
int *merge_aggrs,
int num_merge_aggrs)
{
int i = 0;
int *sizes_old_group;
int ret;
int *displs = NULL;
sizes_old_group = (int*)malloc(num_merge_aggrs * sizeof(int));
if (NULL == sizes_old_group) {
opal_output (1, "OUT OF MEMORY\n");
ret = OMPI_ERR_OUT_OF_RESOURCE;
goto exit;
}
displs = (int*)malloc(num_merge_aggrs * sizeof(int));
if (NULL == displs) {
opal_output (1, "OUT OF MEMORY\n");
ret = OMPI_ERR_OUT_OF_RESOURCE;
goto exit;
}
//merge_aggrs[0] is considered the new aggregator
//New aggregator collects group sizes of the groups to be merged
ret = ompi_fcoll_base_coll_allgather_array (&fh->f_init_procs_per_group,
1,
MPI_INT,
sizes_old_group,
1,
MPI_INT,
0,
merge_aggrs,
num_merge_aggrs,
fh->f_comm);
if ( OMPI_SUCCESS != ret ) {
goto exit;
}
fh->f_procs_per_group = 0;
for( i = 0; i < num_merge_aggrs; i++){
fh->f_procs_per_group = fh->f_procs_per_group + sizes_old_group[i];
}
displs[0] = 0;
for(i = 1; i < num_merge_aggrs; i++){
displs[i] = displs[i-1] + sizes_old_group[i-1];
}
fh->f_procs_in_group = (int*)malloc (fh->f_procs_per_group * sizeof(int));
if (NULL == fh->f_procs_in_group) {
opal_output (1, "OUT OF MEMORY\n");
ret = OMPI_ERR_OUT_OF_RESOURCE;
goto exit;
}
//New aggregator also collects the grouping distribution
//This is the actual merge
//use allgatherv array
ret = ompi_fcoll_base_coll_allgatherv_array (fh->f_init_procs_in_group,
fh->f_init_procs_per_group,
MPI_INT,
fh->f_procs_in_group,
sizes_old_group,
displs,
MPI_INT,
0,
merge_aggrs,
num_merge_aggrs,
fh->f_comm);
exit:
if (NULL != displs) {
free (displs);
}
if (NULL != sizes_old_group) {
free (sizes_old_group);
}
return ret;
}
int mca_io_ompio_split_a_group(mca_io_ompio_file_t *fh,
OMPI_MPI_OFFSET_TYPE *start_offsets_lens,
OMPI_MPI_OFFSET_TYPE *end_offsets,
int size_new_group,
OMPI_MPI_OFFSET_TYPE *max_cci,
OMPI_MPI_OFFSET_TYPE *min_cci,
int *num_groups,
int *size_smallest_group)
{
OMPI_MPI_OFFSET_TYPE *cci = NULL;
*num_groups = fh->f_init_procs_per_group / size_new_group;
*size_smallest_group = size_new_group;
int i = 0;
int k = 0;
int flag = 0; //all groups same size
int size = 0;
if( fh->f_init_procs_per_group % size_new_group != 0 ){
*num_groups = *num_groups + 1;
*size_smallest_group = fh->f_init_procs_per_group % size_new_group;
flag = 1;
}
cci = (OMPI_MPI_OFFSET_TYPE*)malloc(*num_groups * sizeof( OMPI_MPI_OFFSET_TYPE ));
if (NULL == cci) {
opal_output(1, "OUT OF MEMORY\n");
return OMPI_ERR_OUT_OF_RESOURCE;
}
//check contiguity within new groups
size = size_new_group;
for( i = 0; i < *num_groups; i++){
cci[i] = start_offsets_lens[3*size_new_group*i + 1];
//if it is the last group check if it is the smallest group
if( (i == *num_groups-1) && flag == 1){
size = *size_smallest_group;
}
for( k = 0; k < size-1; k++){
if( end_offsets[size_new_group* i + k] == start_offsets_lens[3*size_new_group*i + 3*(k+1)] ){
cci[i] += start_offsets_lens[3*size_new_group*i + 3*(k + 1) + 1];
}
}
}
//get min and max cci
*min_cci = cci[0];
*max_cci = cci[0];
for( i = 1 ; i < *num_groups; i++){
if(cci[i] > *max_cci){
*max_cci = cci[i];
}
else if(cci[i] < *min_cci){
*min_cci = cci[i];
}
}
free (cci);
return OMPI_SUCCESS;
}
int mca_io_ompio_finalize_split(mca_io_ompio_file_t *fh,
int size_new_group,
int size_last_group)
{
//based on new group and last group finalize f_procs_per_group and f_procs_in_group
int i = 0;
int j = 0;
int k = 0;
for( i = 0; i < fh->f_init_procs_per_group ; i++){
if( fh->f_rank == fh->f_init_procs_in_group[i]){
if( i >= fh->f_init_procs_per_group - size_last_group ){
fh->f_procs_per_group = size_last_group;
}
else{
fh->f_procs_per_group = size_new_group;
}
}
}
fh->f_procs_in_group = (int*)malloc (fh->f_procs_per_group * sizeof(int));
if (NULL == fh->f_procs_in_group) {
opal_output (1, "OUT OF MEMORY\n");
return OMPI_ERR_OUT_OF_RESOURCE;
}
for( i = 0; i < fh->f_init_procs_per_group ; i++){
if( fh->f_rank == fh->f_init_procs_in_group[i]){
if( i >= fh->f_init_procs_per_group - size_last_group ){
//distribution of last group
for( j = 0; j < fh->f_procs_per_group; j++){
fh->f_procs_in_group[j] = fh->f_init_procs_in_group[fh->f_init_procs_per_group - size_last_group + j];
}
}
else{
//distribute all other groups
for( j = 0 ; j < fh->f_init_procs_per_group; j = j + size_new_group){
if(i >= j && i < j+size_new_group ){
for( k = 0; k < fh->f_procs_per_group ; k++){
fh->f_procs_in_group[k] = fh->f_init_procs_in_group[j+k];
}
}
}
}
}
}
return OMPI_SUCCESS;
}
int mca_io_ompio_prepare_to_group(mca_io_ompio_file_t *fh,
OMPI_MPI_OFFSET_TYPE **start_offsets_lens,
OMPI_MPI_OFFSET_TYPE **end_offsets, // need it?
OMPI_MPI_OFFSET_TYPE **aggr_bytes_per_group,
OMPI_MPI_OFFSET_TYPE *bytes_per_group,
int **decision_list,
size_t bytes_per_proc,
int *is_aggregator,
int *ompio_grouping_flag)
{
OMPI_MPI_OFFSET_TYPE start_offset_len[3] = {0};
OMPI_MPI_OFFSET_TYPE *aggr_bytes_per_group_tmp = NULL;
OMPI_MPI_OFFSET_TYPE *start_offsets_lens_tmp = NULL;
OMPI_MPI_OFFSET_TYPE *end_offsets_tmp = NULL;
int *decision_list_tmp = NULL;
int i = 0;
int j = 0;
int k = 0;
int merge_count = 0;
int split_count = 0; //not req?
int retain_as_is_count = 0; //not req?
int ret=OMPI_SUCCESS;
//Store start offset and length in an array //also add bytes per process
if(NULL == fh->f_decoded_iov){
start_offset_len[0] = 0;
start_offset_len[1] = 0;
}
else{
start_offset_len[0] = (OMPI_MPI_OFFSET_TYPE) fh->f_decoded_iov[0].iov_base;
start_offset_len[1] = fh->f_decoded_iov[0].iov_len;
}
start_offset_len[2] = bytes_per_proc;
start_offsets_lens_tmp = (OMPI_MPI_OFFSET_TYPE* )malloc (3 * fh->f_init_procs_per_group * sizeof(OMPI_MPI_OFFSET_TYPE));
if (NULL == start_offsets_lens_tmp) {
opal_output (1, "OUT OF MEMORY\n");
return OMPI_ERR_OUT_OF_RESOURCE;
}
//Gather start offsets across processes in a group on aggregator
ret = ompi_fcoll_base_coll_allgather_array (start_offset_len,
3,
OMPI_OFFSET_DATATYPE,
start_offsets_lens_tmp,
3,
OMPI_OFFSET_DATATYPE,
0,
fh->f_init_procs_in_group,
fh->f_init_procs_per_group,
fh->f_comm);
if ( OMPI_SUCCESS != ret ) {
opal_output (1, "mca_io_ompio_prepare_to_grou[: error in ompi_fcoll_base_coll_allgather_array\n");
goto exit;
}
end_offsets_tmp = (OMPI_MPI_OFFSET_TYPE* )malloc (fh->f_init_procs_per_group * sizeof(OMPI_MPI_OFFSET_TYPE));
if (NULL == end_offsets_tmp) {
opal_output (1, "OUT OF MEMORY\n");
goto exit;
}
for( k = 0 ; k < fh->f_init_procs_per_group; k++){
end_offsets_tmp[k] = start_offsets_lens_tmp[3*k] + start_offsets_lens_tmp[3*k+1];
}
//Every process has the total bytes written in its group
for(j = 0; j < fh->f_init_procs_per_group; j++){
*bytes_per_group = *bytes_per_group + start_offsets_lens_tmp[3*j+2];
}
*start_offsets_lens = &start_offsets_lens_tmp[0];
*end_offsets = &end_offsets_tmp[0];
for( j = 0 ; j < fh->f_init_num_aggrs ; j++){
if(fh->f_rank == fh->f_init_aggr_list[j])
*is_aggregator = 1;
}
//Decide groups going in for a merge or a split
//Merge only if the groups are consecutive
if(*is_aggregator == 1){
aggr_bytes_per_group_tmp = (OMPI_MPI_OFFSET_TYPE*)malloc (fh->f_init_num_aggrs * sizeof(OMPI_MPI_OFFSET_TYPE));
if (NULL == aggr_bytes_per_group_tmp) {
opal_output (1, "OUT OF MEMORY\n");
ret = OMPI_ERR_OUT_OF_RESOURCE;
free(end_offsets_tmp);
goto exit;
}
decision_list_tmp = (int* )malloc (fh->f_init_num_aggrs * sizeof(int));
if (NULL == decision_list_tmp) {
opal_output (1, "OUT OF MEMORY\n");
ret = OMPI_ERR_OUT_OF_RESOURCE;
free(end_offsets_tmp);
if (NULL != aggr_bytes_per_group_tmp) {
free(aggr_bytes_per_group_tmp);
}
goto exit;
}
//Communicate bytes per group between all aggregators
ret = ompi_fcoll_base_coll_allgather_array (bytes_per_group,
1,
OMPI_OFFSET_DATATYPE,
aggr_bytes_per_group_tmp,
1,
OMPI_OFFSET_DATATYPE,
0,
fh->f_init_aggr_list,
fh->f_init_num_aggrs,
fh->f_comm);
if ( OMPI_SUCCESS != ret ) {
opal_output (1, "mca_io_ompio_prepare_to_group: error in ompi_fcoll_base_coll_allgather_array 2\n");
free(decision_list_tmp);
goto exit;
}
for( i = 0; i < fh->f_init_num_aggrs; i++){
if((size_t)(aggr_bytes_per_group_tmp[i])>
(size_t)mca_io_ompio_bytes_per_agg){
decision_list_tmp[i] = OMPIO_SPLIT;
split_count++;
}
else if((size_t)(aggr_bytes_per_group_tmp[i])<
(size_t)mca_io_ompio_bytes_per_agg){
decision_list_tmp[i] = OMPIO_MERGE;
merge_count++;
}
else{
decision_list_tmp[i] = OMPIO_RETAIN;
retain_as_is_count++;
}
}
*aggr_bytes_per_group = &aggr_bytes_per_group_tmp[0];
//Go through the decision list to see if non consecutive
//processes intend to merge, if yes retain original grouping
for( i = 0; i < fh->f_init_num_aggrs ; i++){
if(decision_list_tmp[i] == OMPIO_MERGE){
if( (i == 0) &&
(decision_list_tmp[i+1] != OMPIO_MERGE)){ //first group
decision_list_tmp[i] = OMPIO_RETAIN;
}
else if( (i == fh->f_init_num_aggrs-1) &&
(decision_list_tmp[i-1] != OMPIO_MERGE)){
decision_list_tmp[i] = OMPIO_RETAIN;
}
else if(!((decision_list_tmp[i-1] == OMPIO_MERGE) ||
(decision_list_tmp[i+1] == OMPIO_MERGE))){
decision_list_tmp[i] = OMPIO_RETAIN;
}
}
}
//Set the flag as per the decision list
for( i = 0 ; i < fh->f_init_num_aggrs; i++){
if((decision_list_tmp[i] == OMPIO_MERGE)&&
(fh->f_rank == fh->f_init_aggr_list[i]))
*ompio_grouping_flag = OMPIO_MERGE;
if((decision_list_tmp[i] == OMPIO_SPLIT)&&
(fh->f_rank == fh->f_init_aggr_list[i]))
*ompio_grouping_flag = OMPIO_SPLIT;
if((decision_list_tmp[i] == OMPIO_RETAIN)&&
(fh->f_rank == fh->f_init_aggr_list[i]))
*ompio_grouping_flag = OMPIO_RETAIN;
}
//print decision list of aggregators
/*printf("RANK%d : Printing decsion list : \n",fh->f_rank);
for( i = 0; i < fh->f_init_num_aggrs; i++){
if(decision_list_tmp[i] == OMPIO_MERGE)
printf("MERGE,");
else if(decision_list_tmp[i] == OMPIO_SPLIT)
printf("SPLIT, ");
else if(decision_list_tmp[i] == OMPIO_RETAIN)
printf("RETAIN, " );
}
printf("\n\n");
*/
*decision_list = &decision_list_tmp[0];
}
//Communicate flag to all group members
ret = ompi_fcoll_base_coll_bcast_array (ompio_grouping_flag,
1,
MPI_INT,
0,
fh->f_init_procs_in_group,
fh->f_init_procs_per_group,
fh->f_comm);
exit:
/* Do not free aggr_bytes_per_group_tmp,
** start_offsets_lens_tmp, and end_offsets_tmp
** here. The memory is released in the layer above.
*/
return ret;
}
/*
** This is the actual formula of the cost function from the paper.
** One change made here is to use floating point values for
** all parameters, since the ceil() function leads to sometimes
** unexpected jumps in the execution time. Using float leads to
** more consistent predictions for the no. of aggregators.
*/
static double cost_calc (int P, int P_a, size_t d_p, size_t b_c, int dim )
{
float n_as=1.0, m_s=1.0, n_s=1.0;
float n_ar=1.0;
double t_send, t_recv, t_tot;
/* LogGP parameters based on DDR InfiniBand values */
double L=.00000184;
double o=.00000149;
double g=.0000119;
double G=.00000000067;
long file_domain = (P * d_p) / P_a;
float n_r = (float)file_domain/(float) b_c;
switch (dim) {
case DIM1:
{
if( d_p > b_c ){
//printf("case 1\n");
n_ar = 1;
n_as = 1;
m_s = b_c;
n_s = (float)d_p/(float)b_c;
}
else {
n_ar = (float)b_c/(float)d_p;
n_as = 1;
m_s = d_p;
n_s = 1;
}
break;
}
case DIM2:
{
int P_x, P_y, c;
P_x = P_y = (int) sqrt(P);
c = (float) P_a / (float)P_x;
n_ar = (float) P_y;
n_as = (float) c;
if ( d_p > (P_a*b_c/P )) {
m_s = fmin(b_c / P_y, d_p);
}
else {
m_s = fmin(d_p * P_x / P_a, d_p);
}
break;
}
default :
printf("stop putting random values\n");
break;
}
n_s = (float) d_p / (float)(n_as * m_s);
if( m_s < 33554432) {
g = .00000108;
}
t_send = n_s * (L + 2 * o + (n_as -1) * g + (m_s - 1) * n_as * G);
t_recv= n_r * (L + 2 * o + (n_ar -1) * g + (m_s - 1) * n_ar * G);;
t_tot = t_send + t_recv;
return t_tot;
}