1
1
openmpi/ompi/mca/coll/spacc/coll_spacc_allreduce.c
Mikhail Kurnosov 44acc92104 Fix buffer overflow
Add check for bounds of sindex[] and rindex[].

Signed-off-by: Mikhail Kurnosov <mkurnosov@gmail.com>
2017-07-06 10:49:08 +09:00

356 строки
16 KiB
C

/*
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "ompi_config.h"
#include "coll_spacc.h"
#include "mpi.h"
#include "ompi/constants.h"
#include "opal/util/bit_ops.h"
#include "ompi/datatype/ompi_datatype.h"
#include "ompi/communicator/communicator.h"
#include "ompi/mca/coll/coll.h"
#include "ompi/mca/coll/base/coll_base_functions.h"
#include "ompi/mca/coll/base/coll_tags.h"
#include "ompi/mca/coll/base/coll_base_util.h"
#include "ompi/mca/pml/pml.h"
#include "ompi/op/op.h"
/*
* mca_coll_spacc_allreduce_intra_redscat_gather
*
* Function: Allreduce using Rabenseifner's algorithm.
* Accepts: Same arguments as MPI_Allreduce
* Returns: MPI_SUCCESS or error code
*
* Description: an implementation of Rabenseifner's allreduce algorithm [1, 2].
* [1] Rajeev Thakur, Rolf Rabenseifner and William Gropp.
* Optimization of Collective Communication Operations in MPICH //
* The Int. Journal of High Performance Computing Applications. Vol 19,
* Issue 1, pp. 49--66.
* [2] http://www.hlrs.de/mpi/myreduce.html.
*
* This algorithm is a combination of a reduce-scatter implemented with
* recursive vector halving and recursive distance doubling, followed either
* by an allgather implemented with recursive doubling [1].
*
* Step 1. If the number of processes is not a power of two, reduce it to
* the nearest lower power of two (p' = 2^{\floor{\log_2 p}})
* by removing r = p - p' extra processes as follows. In the first 2r processes
* (ranks 0 to 2r - 1), all the even ranks send the second half of the input
* vector to their right neighbor (rank + 1), and all the odd ranks send
* the first half of the input vector to their left neighbor (rank - 1).
* The even ranks compute the reduction on the first half of the vector and
* the odd ranks compute the reduction on the second half. The odd ranks then
* send the result to their left neighbors (the even ranks). As a result,
* the even ranks among the first 2r processes now contain the reduction with
* the input vector on their right neighbors (the odd ranks). These odd ranks
* do not participate in the rest of the algorithm, which leaves behind
* a power-of-two number of processes. The first r even-ranked processes and
* the last p - 2r processes are now renumbered from 0 to p' - 1.
*
* Step 2. The remaining processes now perform a reduce-scatter by using
* recursive vector halving and recursive distance doubling. The even-ranked
* processes send the second half of their buffer to rank + 1 and the odd-ranked
* processes send the first half of their buffer to rank - 1. All processes
* then compute the reduction between the local buffer and the received buffer.
* In the next log_2(p') - 1 steps, the buffers are recursively halved, and the
* distance is doubled. At the end, each of the p' processes has 1 / p' of the
* total reduction result.
*
* Step 3. An allgather is performed by using recursive vector doubling and
* distance halving. All exchanges are executed in reverse order relative
* to recursive doubling on previous step. If the number of processes is not
* a power of two, the total result vector must be sent to the r processes
* that were removed in the first step.
*
* Limitations:
* count >= 2^{\floor{\log_2 p}}
* commutative operations only
* intra-communicators only
*
* Memory requirements (per process):
* count * typesize + 4 * log_2(p) * sizeof(int) = O(count)
*/
int mca_coll_spacc_allreduce_intra_redscat_allgather(
const void *sbuf, void *rbuf, int count, struct ompi_datatype_t *dtype,
struct ompi_op_t *op, struct ompi_communicator_t *comm,
mca_coll_base_module_t *module)
{
int *rindex = NULL, *rcount = NULL, *sindex = NULL, *scount = NULL;
int comm_size = ompi_comm_size(comm);
int rank = ompi_comm_rank(comm);
opal_output_verbose(30, mca_coll_spacc_stream,
"coll:spacc:allreduce_intra_redscat_allgather: rank %d/%d",
rank, comm_size);
/* Find nearest power-of-two less than or equal to comm_size */
int nsteps = opal_hibit(comm_size, comm->c_cube_dim + 1); /* ilog2(comm_size) */
assert(nsteps >= 0);
int nprocs_pof2 = 1 << nsteps; /* flp2(comm_size) */
if (count < nprocs_pof2 || !ompi_op_is_commute(op)) {
opal_output_verbose(20, mca_coll_spacc_stream,
"coll:spacc:allreduce_intra_redscat_allgather: rank %d/%d count %d switching to base allreduce",
rank, comm_size, count);
return ompi_coll_base_allreduce_intra_basic_linear(sbuf, rbuf, count, dtype,
op, comm, module);
}
int err = MPI_SUCCESS;
ptrdiff_t lb, extent, dsize, gap = 0;
ompi_datatype_get_extent(dtype, &lb, &extent);
dsize = opal_datatype_span(&dtype->super, count, &gap);
/* Temporary buffer for receiving messages */
char *tmp_buf = NULL;
char *tmp_buf_raw = (char *)malloc(dsize);
if (NULL == tmp_buf_raw)
return OMPI_ERR_OUT_OF_RESOURCE;
tmp_buf = tmp_buf_raw - gap;
if (sbuf != MPI_IN_PLACE) {
/* Copy sbuf to rbuf */
err = ompi_datatype_copy_content_same_ddt(dtype, count, (char *)rbuf,
(char *)sbuf);
}
/*
* Step 1. Reduce the number of processes to the nearest lower power of two
* p' = 2^{\floor{\log_2 p}} by removing r = p - p' processes.
* 1. In the first 2r processes (ranks 0 to 2r - 1), all the even ranks send
* the second half of the input vector to their right neighbor (rank + 1)
* and all the odd ranks send the first half of the input vector to their
* left neighbor (rank - 1).
* 2. All 2r processes compute the reduction on their half.
* 3. The odd ranks then send the result to their left neighbors
* (the even ranks).
*
* The even ranks (0 to 2r - 1) now contain the reduction with the input
* vector on their right neighbors (the odd ranks). The first r even
* processes and the p - 2r last processes are renumbered from
* 0 to 2^{\floor{\log_2 p}} - 1.
*/
int vrank, step, wsize;
int nprocs_rem = comm_size - nprocs_pof2;
if (rank < 2 * nprocs_rem) {
int count_lhalf = count / 2;
int count_rhalf = count - count_lhalf;
if (rank % 2 != 0) {
/*
* Odd process -- exchange with rank - 1
* Send the left half of the input vector to the left neighbor,
* Recv the right half of the input vector from the left neighbor
*/
err = ompi_coll_base_sendrecv(rbuf, count_lhalf, dtype, rank - 1,
MCA_COLL_BASE_TAG_ALLREDUCE,
(char *)tmp_buf + (ptrdiff_t)count_lhalf * extent,
count_rhalf, dtype, rank - 1,
MCA_COLL_BASE_TAG_ALLREDUCE, comm,
MPI_STATUS_IGNORE, rank);
if (MPI_SUCCESS != err) { goto cleanup_and_return; }
/* Reduce on the right half of the buffers (result in rbuf) */
ompi_op_reduce(op, (char *)tmp_buf + (ptrdiff_t)count_lhalf * extent,
(char *)rbuf + count_lhalf * extent, count_rhalf, dtype);
/* Send the right half to the left neighbor */
err = MCA_PML_CALL(send((char *)rbuf + (ptrdiff_t)count_lhalf * extent,
count_rhalf, dtype, rank - 1,
MCA_COLL_BASE_TAG_ALLREDUCE,
MCA_PML_BASE_SEND_STANDARD, comm));
if (MPI_SUCCESS != err) { goto cleanup_and_return; }
/* This process does not pariticipate in recursive doubling phase */
vrank = -1;
} else {
/*
* Even process -- exchange with rank + 1
* Send the right half of the input vector to the right neighbor,
* Recv the left half of the input vector from the right neighbor
*/
err = ompi_coll_base_sendrecv((char *)rbuf + (ptrdiff_t)count_lhalf * extent,
count_rhalf, dtype, rank + 1,
MCA_COLL_BASE_TAG_ALLREDUCE,
tmp_buf, count_lhalf, dtype, rank + 1,
MCA_COLL_BASE_TAG_ALLREDUCE, comm,
MPI_STATUS_IGNORE, rank);
if (MPI_SUCCESS != err) { goto cleanup_and_return; }
/* Reduce on the right half of the buffers (result in rbuf) */
ompi_op_reduce(op, tmp_buf, rbuf, count_lhalf, dtype);
/* Recv the right half from the right neighbor */
err = MCA_PML_CALL(recv((char *)rbuf + (ptrdiff_t)count_lhalf * extent,
count_rhalf, dtype, rank + 1,
MCA_COLL_BASE_TAG_ALLREDUCE, comm,
MPI_STATUS_IGNORE));
if (MPI_SUCCESS != err) { goto cleanup_and_return; }
vrank = rank / 2;
}
} else { /* rank >= 2 * nprocs_rem */
vrank = rank - nprocs_rem;
}
/*
* Step 2. Reduce-scatter implemented with recursive vector halving and
* recursive distance doubling. We have p' = 2^{\floor{\log_2 p}}
* power-of-two number of processes with new ranks (vrank) and result in rbuf.
*
* The even-ranked processes send the right half of their buffer to rank + 1
* and the odd-ranked processes send the left half of their buffer to
* rank - 1. All processes then compute the reduction between the local
* buffer and the received buffer. In the next \log_2(p') - 1 steps, the
* buffers are recursively halved, and the distance is doubled. At the end,
* each of the p' processes has 1 / p' of the total reduction result.
*/
rindex = malloc(sizeof(*rindex) * nsteps);
sindex = malloc(sizeof(*sindex) * nsteps);
rcount = malloc(sizeof(*rcount) * nsteps);
scount = malloc(sizeof(*scount) * nsteps);
if (NULL == rindex || NULL == sindex || NULL == rcount || NULL == scount) {
err = OMPI_ERR_OUT_OF_RESOURCE;
goto cleanup_and_return;
}
if (vrank != -1) {
step = 0;
wsize = count;
sindex[0] = rindex[0] = 0;
for (int mask = 1; mask < nprocs_pof2; mask <<= 1) {
/*
* On each iteration: rindex[step] = sindex[step] -- begining of the
* current window. Length of the current window is storded in wsize.
*/
int vdest = vrank ^ mask;
/* Translate vdest virtual rank to real rank */
int dest = (vdest < nprocs_rem) ? vdest * 2 : vdest + nprocs_rem;
if (rank < dest) {
/*
* Recv into the left half of the current window, send the right
* half of the window to the peer (perform reduce on the left
* half of the current window)
*/
rcount[step] = wsize / 2;
scount[step] = wsize - rcount[step];
sindex[step] = rindex[step] + rcount[step];
} else {
/*
* Recv into the right half of the current window, send the left
* half of the window to the peer (perform reduce on the right
* half of the current window)
*/
scount[step] = wsize / 2;
rcount[step] = wsize - scount[step];
rindex[step] = sindex[step] + scount[step];
}
/* Send part of data from the rbuf, recv into the tmp_buf */
err = ompi_coll_base_sendrecv((char *)rbuf + (ptrdiff_t)sindex[step] * extent,
scount[step], dtype, dest,
MCA_COLL_BASE_TAG_ALLREDUCE,
(char *)tmp_buf + (ptrdiff_t)rindex[step] * extent,
rcount[step], dtype, dest,
MCA_COLL_BASE_TAG_ALLREDUCE, comm,
MPI_STATUS_IGNORE, rank);
if (MPI_SUCCESS != err) { goto cleanup_and_return; }
/* Local reduce: rbuf[] = tmp_buf[] <op> rbuf[] */
ompi_op_reduce(op, (char *)tmp_buf + (ptrdiff_t)rindex[step] * extent,
(char *)rbuf + (ptrdiff_t)rindex[step] * extent,
rcount[step], dtype);
/* Move the current window to the received message */
if (step + 1 < nsteps) {
rindex[step + 1] = rindex[step];
sindex[step + 1] = rindex[step];
wsize = rcount[step];
step++;
}
}
/*
* Assertion: each process has 1 / p' of the total reduction result:
* rcount[nsteps - 1] elements in the rbuf[rindex[nsteps - 1], ...].
*/
/*
* Step 3. Allgather by the recursive doubling algorithm.
* Each process has 1 / p' of the total reduction result:
* rcount[nsteps - 1] elements in the rbuf[rindex[nsteps - 1], ...].
* All exchanges are executed in reverse order relative
* to recursive doubling (previous step).
*/
step--;
for (int mask = nprocs_pof2 >> 1; mask > 0; mask >>= 1) {
int vdest = vrank ^ mask;
/* Translate vdest virtual rank to real rank */
int dest = (vdest < nprocs_rem) ? vdest * 2 : vdest + nprocs_rem;
/*
* Send rcount[step] elements from rbuf[rindex[step]...]
* Recv scount[step] elements to rbuf[sindex[step]...]
*/
err = ompi_coll_base_sendrecv((char *)rbuf + (ptrdiff_t)rindex[step] * extent,
rcount[step], dtype, dest,
MCA_COLL_BASE_TAG_ALLREDUCE,
(char *)rbuf + (ptrdiff_t)sindex[step] * extent,
scount[step], dtype, dest,
MCA_COLL_BASE_TAG_ALLREDUCE, comm,
MPI_STATUS_IGNORE, rank);
if (MPI_SUCCESS != err) { goto cleanup_and_return; }
step--;
}
}
/*
* Step 4. Send total result to excluded odd ranks.
*/
if (rank < 2 * nprocs_rem) {
if (rank % 2 != 0) {
/* Odd process -- recv result from rank - 1 */
err = MCA_PML_CALL(recv(rbuf, count, dtype, rank - 1,
MCA_COLL_BASE_TAG_ALLREDUCE, comm,
MPI_STATUS_IGNORE));
if (OMPI_SUCCESS != err) { goto cleanup_and_return; }
} else {
/* Even process -- send result to rank + 1 */
err = MCA_PML_CALL(send(rbuf, count, dtype, rank + 1,
MCA_COLL_BASE_TAG_ALLREDUCE,
MCA_PML_BASE_SEND_STANDARD, comm));
if (MPI_SUCCESS != err) { goto cleanup_and_return; }
}
}
cleanup_and_return:
if (NULL != tmp_buf_raw)
free(tmp_buf_raw);
if (NULL != rindex)
free(rindex);
if (NULL != sindex)
free(sindex);
if (NULL != rcount)
free(rcount);
if (NULL != scount)
free(scount);
return err;
}