1
1
openmpi/ompi/mca/btl/mx/btl_mx.c
Josh Hursey e12ca48cd9 A number of C/R enhancements per RFC below:
http://www.open-mpi.org/community/lists/devel/2010/07/8240.php

Documentation:
  http://osl.iu.edu/research/ft/

Major Changes: 
-------------- 
 * Added C/R-enabled Debugging support. 
   Enabled with the --enable-crdebug flag. See the following website for more information: 
   http://osl.iu.edu/research/ft/crdebug/ 
 * Added Stable Storage (SStore) framework for checkpoint storage 
   * 'central' component does a direct to central storage save 
   * 'stage' component stages checkpoints to central storage while the application continues execution. 
     * 'stage' supports offline compression of checkpoints before moving (sstore_stage_compress) 
     * 'stage' supports local caching of checkpoints to improve automatic recovery (sstore_stage_caching) 
 * Added Compression (compress) framework to support 
 * Add two new ErrMgr recovery policies 
   * {{{crmig}}} C/R Process Migration 
   * {{{autor}}} C/R Automatic Recovery 
 * Added the {{{ompi-migrate}}} command line tool to support the {{{crmig}}} ErrMgr component 
 * Added CR MPI Ext functions (enable them with {{{--enable-mpi-ext=cr}}} configure option) 
   * {{{OMPI_CR_Checkpoint}}} (Fixes trac:2342) 
   * {{{OMPI_CR_Restart}}} 
   * {{{OMPI_CR_Migrate}}} (may need some more work for mapping rules) 
   * {{{OMPI_CR_INC_register_callback}}} (Fixes trac:2192) 
   * {{{OMPI_CR_Quiesce_start}}} 
   * {{{OMPI_CR_Quiesce_checkpoint}}} 
   * {{{OMPI_CR_Quiesce_end}}} 
   * {{{OMPI_CR_self_register_checkpoint_callback}}} 
   * {{{OMPI_CR_self_register_restart_callback}}} 
   * {{{OMPI_CR_self_register_continue_callback}}} 
 * The ErrMgr predicted_fault() interface has been changed to take an opal_list_t of ErrMgr defined types. This will allow us to better support a wider range of fault prediction services in the future. 
 * Add a progress meter to: 
   * FileM rsh (filem_rsh_process_meter) 
   * SnapC full (snapc_full_progress_meter) 
   * SStore stage (sstore_stage_progress_meter) 
 * Added 2 new command line options to ompi-restart 
   * --showme : Display the full command line that would have been exec'ed. 
   * --mpirun_opts : Command line options to pass directly to mpirun. (Fixes trac:2413) 
 * Deprecated some MCA params: 
   * crs_base_snapshot_dir deprecated, use sstore_stage_local_snapshot_dir 
   * snapc_base_global_snapshot_dir deprecated, use sstore_base_global_snapshot_dir 
   * snapc_base_global_shared deprecated, use sstore_stage_global_is_shared 
   * snapc_base_store_in_place deprecated, replaced with different components of SStore 
   * snapc_base_global_snapshot_ref deprecated, use sstore_base_global_snapshot_ref 
   * snapc_base_establish_global_snapshot_dir deprecated, never well supported 
   * snapc_full_skip_filem deprecated, use sstore_stage_skip_filem 

Minor Changes: 
-------------- 
 * Fixes trac:1924 : {{{ompi-restart}}} now recognizes path prefixed checkpoint handles and does the right thing. 
 * Fixes trac:2097 : {{{ompi-info}}} should now report all available CRS components 
 * Fixes trac:2161 : Manual checkpoint movement. A user can 'mv' a checkpoint directory from the original location to another and still restart from it. 
 * Fixes trac:2208 : Honor various TMPDIR varaibles instead of forcing {{{/tmp}}} 
 * Move {{{ompi_cr_continue_like_restart}}} to {{{orte_cr_continue_like_restart}}} to be more flexible in where this should be set. 
 * opal_crs_base_metadata_write* functions have been moved to SStore to support a wider range of metadata handling functionality. 
 * Cleanup the CRS framework and components to work with the SStore framework. 
 * Cleanup the SnapC framework and components to work with the SStore framework (cleans up these code paths considerably). 
 * Add 'quiesce' hook to CRCP for a future enhancement. 
 * We now require a BLCR version that supports {{{cr_request_file()}}} or {{{cr_request_checkpoint()}}} in order to make the code more maintainable. Note that {{{cr_request_file}}} has been deprecated since 0.7.0, so we prefer to use {{{cr_request_checkpoint()}}}. 
 * Add optional application level INC callbacks (registered through the CR MPI Ext interface). 
 * Increase the {{{opal_cr_thread_sleep_wait}}} parameter to 1000 microseconds to make the C/R thread less aggressive. 
 * {{{opal-restart}}} now looks for cache directories before falling back on stable storage when asked. 
 * {{{opal-restart}}} also support local decompression before restarting 
 * {{{orte-checkpoint}}} now uses the SStore framework to work with the metadata 
 * {{{orte-restart}}} now uses the SStore framework to work with the metadata 
 * Remove the {{{orte-restart}}} preload option. This was removed since the user only needs to select the 'stage' component in order to support this functionality. 
 * Since the '-am' parameter is saved in the metadata, {{{ompi-restart}}} no longer hard codes {{{-am ft-enable-cr}}}. 
 * Fix {{{hnp}}} ErrMgr so that if a previous component in the stack has 'fixed' the problem, then it should be skipped. 
 * Make sure to decrement the number of 'num_local_procs' in the orted when one goes away. 
 * odls now checks the SStore framework to see if it needs to load any checkpoint files before launching (to support 'stage'). This separates the SStore logic from the --preload-[binary|files] options. 
 * Add unique IDs to the named pipes established between the orted and the app in SnapC. This is to better support migration and automatic recovery activities. 
 * Improve the checks for 'already checkpointing' error path. 
 * A a recovery output timer, to show how long it takes to restart a job 
 * Do a better job of cleaning up the old session directory on restart. 
 * Add a local module to the autor and crmig ErrMgr components. These small modules prevent the 'orted' component from attempting a local recovery (Which does not work for MPI apps at the moment) 
 * Add a fix for bounding the checkpointable region between MPI_Init and MPI_Finalize. 

This commit was SVN r23587.

The following Trac tickets were found above:
  Ticket 1924 --> https://svn.open-mpi.org/trac/ompi/ticket/1924
  Ticket 2097 --> https://svn.open-mpi.org/trac/ompi/ticket/2097
  Ticket 2161 --> https://svn.open-mpi.org/trac/ompi/ticket/2161
  Ticket 2192 --> https://svn.open-mpi.org/trac/ompi/ticket/2192
  Ticket 2208 --> https://svn.open-mpi.org/trac/ompi/ticket/2208
  Ticket 2342 --> https://svn.open-mpi.org/trac/ompi/ticket/2342
  Ticket 2413 --> https://svn.open-mpi.org/trac/ompi/ticket/2413
2010-08-10 20:51:11 +00:00

703 строки
24 KiB
C

/*
* Copyright (c) 2004-2010 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2008 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "ompi_config.h"
#include "opal/class/opal_bitmap.h"
#if OPAL_ENABLE_FT_CR == 1
#include "ompi/runtime/ompi_cr.h"
#endif
#include "btl_mx.h"
#include "btl_mx_frag.h"
#include "btl_mx_proc.h"
#include "btl_mx_endpoint.h"
#include "opal/datatype/opal_convertor.h"
#include "opal/prefetch.h"
/**
*
*/
int mca_btl_mx_add_procs( struct mca_btl_base_module_t* btl,
size_t nprocs,
struct ompi_proc_t** ompi_procs,
struct mca_btl_base_endpoint_t** peers,
opal_bitmap_t* reachable )
{
mca_btl_mx_module_t* mx_btl = (mca_btl_mx_module_t*)btl;
int i, rc;
for( i = 0; i < (int) nprocs; i++ ) {
struct ompi_proc_t* ompi_proc = ompi_procs[i];
mca_btl_mx_proc_t* mx_proc;
mca_btl_base_endpoint_t* mx_endpoint;
/**
* By default don't allow communications with self nor with any
* other processes on the same node. The BTL self and sm are
* supposed to take care of such communications.
*/
if( OPAL_PROC_ON_LOCAL_NODE(ompi_procs[i]->proc_flags) ) {
if( ompi_procs[i] == ompi_proc_local_proc ) {
if( 0 == mca_btl_mx_component.mx_support_self )
continue;
} else {
if( 0 == mca_btl_mx_component.mx_support_sharedmem )
continue;
}
}
if( NULL == (mx_proc = mca_btl_mx_proc_create(ompi_proc)) ) {
continue;
}
OPAL_THREAD_LOCK(&mx_proc->proc_lock);
/* The btl_proc datastructure is shared by all MX BTL
* instances that are trying to reach this destination.
* Cache the peer instance on the btl_proc.
*/
mx_endpoint = OBJ_NEW(mca_btl_mx_endpoint_t);
if(NULL == mx_endpoint) {
OPAL_THREAD_UNLOCK(&mx_proc->proc_lock);
return OMPI_ERR_OUT_OF_RESOURCE;
}
mx_endpoint->endpoint_btl = mx_btl;
rc = mca_btl_mx_proc_insert( mx_proc, mx_endpoint );
if( rc != OMPI_SUCCESS ) {
OBJ_RELEASE(mx_endpoint);
OBJ_RELEASE(mx_proc);
OPAL_THREAD_UNLOCK(&mx_proc->proc_lock);
continue;
}
opal_bitmap_set_bit(reachable, i);
OPAL_THREAD_UNLOCK(&mx_proc->proc_lock);
peers[i] = mx_endpoint;
}
return OMPI_SUCCESS;
}
int mca_btl_mx_del_procs( struct mca_btl_base_module_t* btl,
size_t nprocs,
struct ompi_proc_t** procs,
struct mca_btl_base_endpoint_t** peers )
{
opal_output( 0, "MX BTL delete procs\n" );
/* TODO */
return OMPI_SUCCESS;
}
/**
* Register callback function to support send/recv semantics
*/
int mca_btl_mx_register( struct mca_btl_base_module_t* btl,
mca_btl_base_tag_t tag,
mca_btl_base_module_recv_cb_fn_t cbfunc,
void* cbdata )
{
mca_btl_mx_module_t* mx_btl = (mca_btl_mx_module_t*) btl;
#if 0
if( (NULL != cbfunc) && ( 0 == mca_btl_mx_component.mx_use_unexpected) ) {
#endif
if( NULL != cbfunc ) {
mca_btl_mx_frag_t* frag = NULL;
mx_return_t mx_return;
mx_segment_t mx_segment;
int i, rc;
/* Post the receives if there is no unexpected handler */
for( i = 0; i < mca_btl_mx_component.mx_max_posted_recv; i++ ) {
MCA_BTL_MX_FRAG_ALLOC_EAGER( mx_btl, frag, rc );
if( NULL == frag ) {
opal_output( 0, "mca_btl_mx_register: unable to allocate more eager fragments\n" );
if( 0 == i ) {
return OMPI_ERROR;
}
break; /* some fragments are already registered. Try to continue... */
}
frag->base.des_dst = frag->segment;
frag->base.des_dst_cnt = 1;
frag->base.des_src = NULL;
frag->base.des_src_cnt = 0;
frag->mx_frag_list = NULL;
frag->type = MCA_BTL_MX_RECV;
mx_segment.segment_ptr = (void*)(frag+1);
mx_segment.segment_length = mx_btl->super.btl_eager_limit;
mx_return = mx_irecv( mx_btl->mx_endpoint, &mx_segment, 1,
0x01ULL, BTL_MX_RECV_MASK,
frag, &(frag->mx_request) );
if( MX_SUCCESS != mx_return ) {
opal_output( 0, "mca_btl_mx_register: mx_irecv failed with status %d (%s)\n",
mx_return, mx_strerror(mx_return) );
MCA_BTL_MX_FRAG_RETURN( mx_btl, frag );
return OMPI_ERROR;
}
}
}
return OMPI_SUCCESS;
}
/**
* Allocate a segment.
*
* @param btl (IN) BTL module
* @param size (IN) Request segment size.
*/
mca_btl_base_descriptor_t* mca_btl_mx_alloc( struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
uint8_t order,
size_t size,
uint32_t flags)
{
mca_btl_mx_module_t* mx_btl = (mca_btl_mx_module_t*) btl;
mca_btl_mx_frag_t* frag = NULL;
int rc;
MCA_BTL_MX_FRAG_ALLOC_EAGER(mx_btl, frag, rc);
if( OPAL_UNLIKELY(NULL == frag) ) {
return NULL;
}
frag->segment[0].seg_len =
size <= mx_btl->super.btl_eager_limit ?
size : mx_btl->super.btl_eager_limit ;
frag->segment[0].seg_addr.pval = (void*)(frag+1);
frag->base.des_src = frag->segment;
frag->base.des_src_cnt = 1;
frag->base.des_flags = flags;
frag->base.order = MCA_BTL_NO_ORDER;
return (mca_btl_base_descriptor_t*)frag;
}
/**
* Return a segment
*/
int mca_btl_mx_free( struct mca_btl_base_module_t* btl,
mca_btl_base_descriptor_t* des )
{
mca_btl_mx_frag_t* frag = (mca_btl_mx_frag_t*)des;
assert( MCA_BTL_MX_SEND == frag->type );
MCA_BTL_MX_FRAG_RETURN(btl, frag);
return OMPI_SUCCESS;
}
/**
* Pack data and return a descriptor that can be
* used for send/put.
*
* @param btl (IN) BTL module
* @param peer (IN) BTL peer addressing
*/
mca_btl_base_descriptor_t*
mca_btl_mx_prepare_src( struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
struct mca_mpool_base_registration_t* registration,
struct opal_convertor_t* convertor,
uint8_t order,
size_t reserve,
size_t* size,
uint32_t flags)
{
mca_btl_mx_frag_t* frag = NULL;
struct iovec iov;
uint32_t iov_count = 1;
size_t max_data;
int rc;
max_data = btl->btl_eager_limit - reserve;
if( (*size) < max_data ) {
max_data = *size;
}
/* If the data is contiguous we can use directly the pointer
* to the user memory.
*/
if( 0 == opal_convertor_need_buffers(convertor) ) {
/**
* let the convertor figure out the correct pointer depending
* on the data layout
*/
iov.iov_base = NULL;
if( 0 == reserve ) {
MCA_BTL_MX_FRAG_ALLOC_USER(btl, frag, rc);
if( OPAL_UNLIKELY(NULL == frag) ) {
return NULL;
}
max_data = *size;
frag->base.des_src_cnt = 1;
} else {
MCA_BTL_MX_FRAG_ALLOC_EAGER( mx_btl, frag, rc );
if( OPAL_UNLIKELY(NULL == frag) ) {
return NULL;
}
frag->base.des_src_cnt = 2;
}
} else {
MCA_BTL_MX_FRAG_ALLOC_EAGER( mx_btl, frag, rc );
if( OPAL_UNLIKELY(NULL == frag) ) {
return NULL;
}
frag->base.des_src_cnt = 1;
iov.iov_base = (void*)((unsigned char*)frag->segment[0].seg_addr.pval + reserve);
}
iov.iov_len = max_data;
(void)opal_convertor_pack(convertor, &iov, &iov_count, &max_data );
*size = max_data;
if( 1 == frag->base.des_src_cnt ) {
frag->segment[0].seg_len = reserve + max_data;
if( 0 == reserve )
frag->segment[0].seg_addr.pval = iov.iov_base;
} else {
frag->segment[0].seg_len = reserve;
frag->segment[1].seg_len = max_data;
frag->segment[1].seg_addr.pval = iov.iov_base;
}
frag->base.des_src = frag->segment;
frag->base.des_flags = flags;
frag->base.order = MCA_BTL_NO_ORDER;
return &frag->base;
}
/**
* Prepare a descriptor for send/rdma using the supplied
* convertor. If the convertor references data that is contigous,
* the descriptor may simply point to the user buffer. Otherwise,
* this routine is responsible for allocating buffer space and
* packing if required.
*
* @param btl (IN) BTL module
* @param endpoint (IN) BTL peer addressing
* @param convertor (IN) Data type convertor
* @param reserve (IN) Additional bytes requested by upper layer to precede user data
* @param size (IN/OUT) Number of bytes to prepare (IN), number of bytes actually prepared (OUT)
*/
mca_btl_base_descriptor_t* mca_btl_mx_prepare_dst( struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
struct mca_mpool_base_registration_t* registration,
struct opal_convertor_t* convertor,
uint8_t order,
size_t reserve,
size_t* size,
uint32_t flags)
{
mca_btl_mx_module_t* mx_btl = (mca_btl_mx_module_t*)btl;
mca_btl_mx_frag_t* frag = NULL;
mx_return_t mx_return;
mx_segment_t mx_segment;
int rc;
MCA_BTL_MX_FRAG_ALLOC_USER(btl, frag, rc);
if( OPAL_UNLIKELY(NULL == frag) ) {
return NULL;
}
frag->segment[0].seg_len = *size;
opal_convertor_get_current_pointer( convertor, (void**)&(frag->segment[0].seg_addr.pval) );
frag->segment[0].seg_key.key64 = (uint64_t)(intptr_t)frag;
mx_segment.segment_ptr = frag->segment[0].seg_addr.pval;
mx_segment.segment_length = frag->segment[0].seg_len;
mx_return = mx_irecv( mx_btl->mx_endpoint, &mx_segment, 1,
frag->segment[0].seg_key.key64,
BTL_MX_PUT_MASK, NULL, &(frag->mx_request) );
if( OPAL_UNLIKELY(MX_SUCCESS != mx_return) ) {
opal_output( 0, "Fail to re-register a fragment with the MX NIC ...\n" );
MCA_BTL_MX_FRAG_RETURN( btl, frag );
return NULL;
}
#ifdef HAVE_MX_FORGET
{
mx_return = mx_forget( mx_btl->mx_endpoint, &(frag->mx_request) );
if( OPAL_UNLIKELY(MX_SUCCESS != mx_return) ) {
opal_output( 0, "mx_forget failed in mca_btl_mx_prepare_dst with error %d (%s)\n",
mx_return, mx_strerror(mx_return) );
return NULL;
}
}
#endif
/* Allow the fragment to be recycled using the mca_btl_mx_free function */
frag->type = MCA_BTL_MX_SEND;
frag->base.des_dst = frag->segment;
frag->base.des_dst_cnt = 1;
frag->base.des_flags = flags;
frag->base.order = MCA_BTL_NO_ORDER;
return &frag->base;
}
/**
* Initiate an asynchronous put.
*
* @param btl (IN) BTL module
* @param endpoint (IN) BTL addressing information
* @param descriptor (IN) Description of the data to be transferred
*/
static int mca_btl_mx_put( struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
struct mca_btl_base_descriptor_t* descriptor )
{
mca_btl_mx_module_t* mx_btl = (mca_btl_mx_module_t*)btl;
mca_btl_mx_frag_t* frag = (mca_btl_mx_frag_t*)descriptor;
mx_segment_t mx_segment[2];
mx_return_t mx_return;
uint32_t i = 0;
if( OPAL_UNLIKELY(MCA_BTL_MX_CONNECTED != ((mca_btl_mx_endpoint_t*)endpoint)->status) ) {
if( MCA_BTL_MX_NOT_REACHEABLE == ((mca_btl_mx_endpoint_t*)endpoint)->status )
return OMPI_ERROR;
if( MCA_BTL_MX_CONNECTION_PENDING == ((mca_btl_mx_endpoint_t*)endpoint)->status )
return OMPI_ERR_OUT_OF_RESOURCE;
if( OMPI_SUCCESS != mca_btl_mx_proc_connect( (mca_btl_mx_endpoint_t*)endpoint ) )
return OMPI_ERROR;
}
frag->endpoint = endpoint;
frag->type = MCA_BTL_MX_SEND;
descriptor->des_flags |= MCA_BTL_DES_SEND_ALWAYS_CALLBACK;
do {
mx_segment[i].segment_ptr = descriptor->des_src[i].seg_addr.pval;
mx_segment[i].segment_length = descriptor->des_src[i].seg_len;
} while (++i < descriptor->des_src_cnt);
mx_return = mx_isend( mx_btl->mx_endpoint, mx_segment, descriptor->des_src_cnt,
endpoint->mx_peer_addr,
descriptor->des_dst[0].seg_key.key64, frag,
&frag->mx_request );
if( OPAL_UNLIKELY(MX_SUCCESS != mx_return) ) {
opal_output( 0, "mx_isend fails with error %s\n", mx_strerror(mx_return) );
return OMPI_ERROR;
}
return OMPI_SUCCESS;
}
/**
* Initiate an inline send to the peer. If failure then return a descriptor.
*
* @param btl (IN) BTL module
* @param peer (IN) BTL peer addressing
*/
static int mca_btl_mx_sendi( struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
struct opal_convertor_t* convertor,
void* header,
size_t header_size,
size_t payload_size,
uint8_t order,
uint32_t flags,
mca_btl_base_tag_t tag,
mca_btl_base_descriptor_t** descriptor )
{
mca_btl_mx_module_t* mx_btl = (mca_btl_mx_module_t*) btl;
size_t max_data;
if( OPAL_UNLIKELY(MCA_BTL_MX_CONNECTED != ((mca_btl_mx_endpoint_t*)endpoint)->status) ) {
if( MCA_BTL_MX_NOT_REACHEABLE == ((mca_btl_mx_endpoint_t*)endpoint)->status )
return OMPI_ERROR;
if( MCA_BTL_MX_CONNECTION_PENDING == ((mca_btl_mx_endpoint_t*)endpoint)->status )
return OMPI_ERR_OUT_OF_RESOURCE;
if( OMPI_SUCCESS != mca_btl_mx_proc_connect( (mca_btl_mx_endpoint_t*)endpoint ) )
return OMPI_ERROR;
}
if( !opal_convertor_need_buffers(convertor) ) {
uint32_t mx_segment_count = 0;
uint64_t tag64 = 0x01ULL | (((uint64_t)tag) << 8);
mx_return_t mx_return;
mx_request_t mx_request;
mx_segment_t mx_segments[2], *mx_segment = mx_segments;
if( 0 != header_size ) {
mx_segment->segment_ptr = header;
mx_segment->segment_length = header_size;
mx_segment++;
mx_segment_count++;
}
if( 0 != payload_size ) {
struct iovec iov;
uint32_t iov_count = 1;
iov.iov_base = NULL;
iov.iov_len = payload_size;
(void)opal_convertor_pack( convertor, &iov, &iov_count, &max_data );
assert( max_data == payload_size );
mx_segment->segment_ptr = iov.iov_base;
mx_segment->segment_length = max_data;
mx_segment_count++;
}
mx_return = mx_isend( mx_btl->mx_endpoint, mx_segments, mx_segment_count,
endpoint->mx_peer_addr, tag64, NULL, &mx_request );
if( OPAL_UNLIKELY(MX_SUCCESS != mx_return) ) {
opal_output( 0, "mx_isend fails with error %s\n", mx_strerror(mx_return) );
return OMPI_ERROR;
}
#ifdef HAVE_MX_FORGET
{
uint32_t mx_result;
mx_return = mx_ibuffered( mx_btl->mx_endpoint, &mx_request, &mx_result );
if( OPAL_UNLIKELY(MX_SUCCESS != mx_return) ) {
opal_output( 0, "mx_ibuffered failed with error %d (%s)\n",
mx_return, mx_strerror(mx_return) );
return OMPI_SUCCESS;
}
if( mx_result ) {
mx_return = mx_forget( mx_btl->mx_endpoint, &mx_request );
if( OPAL_UNLIKELY(MX_SUCCESS != mx_return) ) {
opal_output( 0, "mx_forget failed with error %d (%s)\n",
mx_return, mx_strerror(mx_return) );
}
}
return OMPI_SUCCESS;
}
#endif
}
/* No optimization on this path. Just allocate a descriptor and return it
* to the user.
*/
*descriptor = mca_btl_mx_alloc( btl, endpoint, order,
header_size + payload_size, flags );
return OMPI_ERR_RESOURCE_BUSY;
}
/**
* Initiate an asynchronous send.
*
* @param btl (IN) BTL module
* @param endpoint (IN) BTL addressing information
* @param descriptor (IN) Description of the data to be transfered
* @param tag (IN) The tag value used to notify the peer.
*/
int mca_btl_mx_send( struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
struct mca_btl_base_descriptor_t* descriptor,
mca_btl_base_tag_t tag )
{
mca_btl_mx_module_t* mx_btl = (mca_btl_mx_module_t*)btl;
mca_btl_mx_frag_t* frag = (mca_btl_mx_frag_t*)descriptor;
mx_segment_t mx_segment[2];
mx_return_t mx_return;
uint64_t total_length = 0, tag64;
uint32_t i = 0;
int btl_ownership = (descriptor->des_flags & MCA_BTL_DES_FLAGS_BTL_OWNERSHIP);
if( OPAL_UNLIKELY(MCA_BTL_MX_CONNECTED != ((mca_btl_mx_endpoint_t*)endpoint)->status) ) {
if( MCA_BTL_MX_NOT_REACHEABLE == ((mca_btl_mx_endpoint_t*)endpoint)->status )
return OMPI_ERROR;
if( MCA_BTL_MX_CONNECTION_PENDING == ((mca_btl_mx_endpoint_t*)endpoint)->status )
return OMPI_ERR_OUT_OF_RESOURCE;
if( OMPI_SUCCESS != mca_btl_mx_proc_connect( (mca_btl_mx_endpoint_t*)endpoint ) )
return OMPI_ERROR;
}
frag->endpoint = endpoint;
frag->type = MCA_BTL_MX_SEND;
do {
mx_segment[i].segment_ptr = descriptor->des_src[i].seg_addr.pval;
mx_segment[i].segment_length = descriptor->des_src[i].seg_len;
total_length += descriptor->des_src[i].seg_len;
} while (++i < descriptor->des_src_cnt);
tag64 = 0x01ULL | (((uint64_t)tag) << 8);
mx_return = mx_isend( mx_btl->mx_endpoint, mx_segment, descriptor->des_src_cnt,
endpoint->mx_peer_addr,
tag64, frag, &frag->mx_request );
if( OPAL_UNLIKELY(MX_SUCCESS != mx_return) ) {
opal_output( 0, "mx_isend fails with error %s\n", mx_strerror(mx_return) );
return OMPI_ERROR;
}
#ifdef HAVE_MX_FORGET
{
uint32_t mx_result;
mx_return = mx_ibuffered( mx_btl->mx_endpoint, &(frag->mx_request), &mx_result );
if( OPAL_UNLIKELY(MX_SUCCESS != mx_return) ) {
opal_output( 0, "mx_ibuffered failed with error %d (%s)\n",
mx_return, mx_strerror(mx_return) );
frag->base.des_flags |= MCA_BTL_DES_SEND_ALWAYS_CALLBACK;
return OMPI_ERROR;
}
if( mx_result ) {
mx_return = mx_forget( mx_btl->mx_endpoint, &(frag->mx_request) );
if( OPAL_UNLIKELY(MX_SUCCESS != mx_return) ) {
opal_output( 0, "mx_forget failed with error %d (%s)\n",
mx_return, mx_strerror(mx_return) );
frag->base.des_flags |= MCA_BTL_DES_SEND_ALWAYS_CALLBACK;
return OMPI_SUCCESS;
}
if( MCA_BTL_DES_SEND_ALWAYS_CALLBACK & frag->base.des_flags ) {
frag->base.des_cbfunc( &(mx_btl->super), frag->endpoint,
&(frag->base), OMPI_SUCCESS);
}
if( btl_ownership ) {
MCA_BTL_MX_FRAG_RETURN( mx_btl, frag );
}
return 1;
}
}
#endif
if( 2048 > total_length ) {
mx_status_t mx_status;
uint32_t mx_result;
/* let's check for completness */
mx_return = mx_test( mx_btl->mx_endpoint, &(frag->mx_request),
&mx_status, &mx_result );
if( OPAL_LIKELY(MX_SUCCESS == mx_return) ) {
if( mx_result ) {
if( MCA_BTL_DES_SEND_ALWAYS_CALLBACK & frag->base.des_flags ) {
frag->base.des_cbfunc( &(mx_btl->super), frag->endpoint,
&(frag->base), OMPI_SUCCESS);
}
if( btl_ownership ) {
MCA_BTL_MX_FRAG_RETURN( mx_btl, frag );
}
return 1;
}
}
}
frag->base.des_flags |= MCA_BTL_DES_SEND_ALWAYS_CALLBACK;
return OMPI_SUCCESS;
}
/*
* Cleanup/release module resources.
*/
int mca_btl_mx_finalize( struct mca_btl_base_module_t* btl )
{
mca_btl_mx_module_t* mx_btl = (mca_btl_mx_module_t*) btl;
if( NULL != mx_btl->mx_endpoint )
mx_close_endpoint(mx_btl->mx_endpoint);
OBJ_DESTRUCT( &mx_btl->mx_lock );
OBJ_DESTRUCT( &mx_btl->mx_peers );
free(mx_btl);
return OMPI_SUCCESS;
}
#if OPAL_ENABLE_FT_CR == 0
int mca_btl_mx_ft_event(int state) {
return OMPI_SUCCESS;
}
#else
int mca_btl_mx_ft_event(int state) {
mca_btl_mx_module_t* mx_btl;
int i;
if(OPAL_CRS_CHECKPOINT == state) {
/* Continue must reconstruct the routes (including modex), since we
* have to tear down the devices completely.
* We have to do this because the MX driver can be checkpointed, but
* cannot be restarted with BLCR due to an mmap problem. If we do not
* close MX then BLCR throws the following error in /var/log/messages:
* kernel: do_mmap(<file>, 00002aaab0aac000, 0000000000400000, ...) failed: ffffffffffffffff
* kernel: vmadump: mmap failed: /dev/mx0
* kernel: blcr: thaw_threads returned error, aborting. -1
* JJH: It may be possible to, instead of restarting the entire driver, just reconnect endpoints
*/
orte_cr_continue_like_restart = true;
for( i = 0; i < mca_btl_mx_component.mx_num_btls; i++ ) {
mx_btl = mca_btl_mx_component.mx_btls[i];
if( NULL != mx_btl->mx_endpoint ) {
mx_close_endpoint(mx_btl->mx_endpoint);
mx_btl->mx_endpoint = NULL;
}
}
}
else if(OPAL_CRS_CONTINUE == state) {
;
}
else if(OPAL_CRS_RESTART == state) {
;
}
else if(OPAL_CRS_TERM == state ) {
;
}
else {
;
}
return OMPI_SUCCESS;
}
#endif /* OPAL_ENABLE_FT_CR */
mca_btl_mx_module_t mca_btl_mx_module = {
{
&mca_btl_mx_component.super,
0, /* max size of first fragment */
0, /* min send fragment size */
0, /* max send fragment size */
0, /* btl_rdma_pipeline_send_length */
0, /* btl_rdma_pipeline_frag_size */
0, /* btl_min_rdma_pipeline_size */
0, /* exclusivity */
0, /* latency */
0, /* bandwidth */
MCA_BTL_FLAGS_SEND_INPLACE | MCA_BTL_FLAGS_PUT, /* flags */
mca_btl_mx_add_procs,
mca_btl_mx_del_procs,
mca_btl_mx_register,
mca_btl_mx_finalize,
mca_btl_mx_alloc,
mca_btl_mx_free,
mca_btl_mx_prepare_src,
mca_btl_mx_prepare_dst,
mca_btl_mx_send,
mca_btl_mx_sendi, /* send immediate */
mca_btl_mx_put, /* put */
NULL, /* get */
mca_btl_base_dump,
NULL, /* mpool */
NULL, /* register error */
mca_btl_mx_ft_event
}
};