1
1
openmpi/ompi/mca/coll/sm2/coll_sm2_allreduce.c
Rich Graham df35223603 add selection logic for barrier and reduce.
This commit was SVN r18215.
2008-04-19 22:40:04 +00:00

1825 строки
62 KiB
C

/*
* Copyright (c) 2007-2008 UT-Battelle, LLC
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
/** @file */
#include "ompi_config.h"
#include "ompi/constants.h"
#include "coll_sm2.h"
#include "ompi/op/op.h"
#include "ompi/datatype/datatype.h"
#include "ompi/communicator/communicator.h"
/* debug
#include "opal/sys/timer.h"
extern uint64_t timers[7];
end debug */
/**
* Shared memory blocking allreduce.
*/
static
int mca_coll_sm2_allreduce_intra_fanin_fanout(void *sbuf, void *rbuf, int count,
struct ompi_datatype_t *dtype,
struct ompi_op_t *op,
struct ompi_communicator_t *comm,
struct mca_coll_base_module_1_1_0_t *module)
{
/* local variables */
int rc=OMPI_SUCCESS,n_dts_per_buffer,n_data_segments,stripe_number;
int my_rank, child_rank, child, n_parents, n_children;
int my_fanin_parent,count_processed,count_this_stripe;
int my_fanout_parent;
size_t message_extent,dt_extent,ctl_size,len_data_buffer;
long long tag;
volatile char * my_data_pointer;
volatile char * child_data_pointer;
volatile char * parent_data_pointer;
mca_coll_sm2_nb_request_process_shared_mem_t *my_ctl_pointer;
volatile mca_coll_sm2_nb_request_process_shared_mem_t * child_ctl_pointer;
volatile mca_coll_sm2_nb_request_process_shared_mem_t * parent_ctl_pointer;
mca_coll_sm2_module_t *sm_module;
tree_node_t *my_reduction_node, *my_fanout_read_tree;
sm_work_buffer_t *sm_buffer_desc;
sm_module=(mca_coll_sm2_module_t *) module;
/* get size of data needed - same layout as user data, so that
* we can apply the reudction routines directly on these buffers
*/
rc=ompi_ddt_type_extent(dtype, &dt_extent);
if( OMPI_SUCCESS != rc ) {
goto Error;
}
message_extent=dt_extent*count;
/* lenght of control and data regions */
ctl_size=sm_module->ctl_memory_per_proc_per_segment;
len_data_buffer=sm_module->data_memory_per_proc_per_segment;
/* number of data types copies that the scratch buffer can hold */
n_dts_per_buffer=((int) len_data_buffer)/dt_extent;
if ( 0 == n_dts_per_buffer ) {
rc=OMPI_ERROR;
goto Error;
}
/* compute number of stripes needed to process this collective */
n_data_segments=(count+n_dts_per_buffer -1 ) / n_dts_per_buffer ;
/* get my node for the reduction tree */
my_rank=ompi_comm_rank(comm);
my_reduction_node=&(sm_module->reduction_tree[my_rank]);
my_fanout_read_tree=&(sm_module->fanout_read_tree[my_rank]);
n_children=my_reduction_node->n_children;
n_parents=my_reduction_node->n_parents;
my_fanin_parent=my_reduction_node->parent_rank;
my_fanout_parent=my_fanout_read_tree->parent_rank;
count_processed=0;
/* get a pointer to the shared-memory working buffer */
/* NOTE: starting with a rather synchronous approach */
for( stripe_number=0 ; stripe_number < n_data_segments ; stripe_number++ ) {
/* get unique tag for this stripe - assume only one collective
* per communicator at a given time, so no locking needed
* for atomic update of the tag */
tag=sm_module->collective_tag;
sm_module->collective_tag++;
sm_buffer_desc=alloc_sm2_shared_buffer(sm_module);
/* get number of elements to process in this stripe */
count_this_stripe=n_dts_per_buffer;
if( count_processed + count_this_stripe > count )
count_this_stripe=count-count_processed;
/* offset to data segment */
my_ctl_pointer=sm_buffer_desc->proc_memory[my_rank].control_region;
my_data_pointer=sm_buffer_desc->proc_memory[my_rank].data_segment;
/***************************
* Fan into root phase
***************************/
if( LEAF_NODE != my_reduction_node->my_node_type ) {
/* copy segment into shared buffer - ompi_op_reduce
* provids only 2 buffers, so can't add from two
* into a third buffer.
*/
rc=ompi_ddt_copy_content_same_ddt(dtype, count_this_stripe,
(char *)my_data_pointer,
(char *)((char *)sbuf+dt_extent*count_processed));
if( 0 != rc ) {
return OMPI_ERROR;
}
/*
* Wait on children, and apply op to their data
*/
for( child=0 ; child < n_children ; child++ ) {
child_rank=my_reduction_node->children_ranks[child];
child_ctl_pointer=
sm_buffer_desc->proc_memory[child_rank].control_region;
child_data_pointer=
sm_buffer_desc->proc_memory[child_rank].data_segment;
/* wait until child flag is set */
while(!
( (child_ctl_pointer->flag == tag) &
(child_ctl_pointer->index== stripe_number) ) ) {
/* Note: Actually need to make progress here */
opal_progress();
}
/* apply collective operation */
ompi_op_reduce(op,(void *)child_data_pointer,
(void *)my_data_pointer, count_this_stripe,dtype);
/* test
{
int ii,n_ints;
int *my_int=(int *)my_data_pointer;
int *child_int=(int *)child_data_pointer;
n_ints=count_this_stripe/4;
for(ii=0 ; ii < n_ints ; ii++ ) {
my_int[ii]+=child_data_pointer[ii];
}
}
end test */
/* end test */
} /* end child loop */
/* set memory barriet to make sure data is in main memory before
* the completion flgas are set.
*/
MB();
/*
* Signal parent that data is ready
*/
my_ctl_pointer->flag=tag;
my_ctl_pointer->index=stripe_number;
} else {
/* leaf node */
/* copy segment into shared buffer - later on will optimize to
* eliminate extra copies.
*/
rc=ompi_ddt_copy_content_same_ddt(dtype, count_this_stripe,
(char *)my_data_pointer,
(char *)((char *)sbuf+dt_extent*count_processed));
if( 0 != rc ) {
return OMPI_ERROR;
}
/* set memory barriet to make sure data is in main memory before
* the completion flgas are set.
*/
MB();
/*
* Signal parent that data is ready
*/
my_ctl_pointer->flag=tag;
my_ctl_pointer->index=stripe_number;
}
/***************************
* Fan out from root
***************************/
/*
* Fan out from root - let the memory copies at each
* stage help reduce memory contention.
*/
if( ROOT_NODE == my_fanout_read_tree->my_node_type ) {
/* I am the root - so copy signal children, and then
* start reading
*/
MB();
my_ctl_pointer->flag=-tag;
/* copy data to user supplied buffer */
rc=ompi_ddt_copy_content_same_ddt(dtype, count_this_stripe,
(char *)((char *)rbuf+dt_extent*count_processed),
(char *)my_data_pointer);
if( 0 != rc ) {
return OMPI_ERROR;
}
} else if( LEAF_NODE == my_fanout_read_tree->my_node_type ) {
parent_data_pointer=
sm_buffer_desc->proc_memory[my_fanout_parent].data_segment;
parent_ctl_pointer=
sm_buffer_desc->proc_memory[my_fanout_parent].control_region;
/*
* wait on Parent to signal that data is ready
*/
while(!
( (parent_ctl_pointer->flag == -tag) &
(parent_ctl_pointer->index== stripe_number) ) ) {
/* Note: Actually need to make progress here */
opal_progress();
}
/* copy data to user supplied buffer */
rc=ompi_ddt_copy_content_same_ddt(dtype, count_this_stripe,
(char *)rbuf+dt_extent*count_processed,
(char *)parent_data_pointer);
if( 0 != rc ) {
return OMPI_ERROR;
}
} else {
/* interior nodes */
parent_data_pointer=
sm_buffer_desc->proc_memory[my_fanout_parent].data_segment;
parent_ctl_pointer=
sm_buffer_desc->proc_memory[my_fanout_parent].control_region;
/*
* wait on Parent to signal that data is ready
*/
while(!
( (parent_ctl_pointer->flag == -tag) &
(parent_ctl_pointer->index== stripe_number) ) ) {
/* Note: Actually need to make progress here */
opal_progress();
}
/* copy the data to my shared buffer, for access by children */
rc=ompi_ddt_copy_content_same_ddt(dtype, count_this_stripe,
(char *)my_data_pointer,(char *)parent_data_pointer);
if( 0 != rc ) {
return OMPI_ERROR;
}
/* set memory barriet to make sure data is in main memory before
* the completion flgas are set.
*/
MB();
/* signal children that they may read the result data */
my_ctl_pointer->flag=-tag;
/* copy data to user supplied buffer */
rc=ompi_ddt_copy_content_same_ddt(dtype, count_this_stripe,
(char *)rbuf+dt_extent*count_processed,
(char *)my_data_pointer);
if( 0 != rc ) {
return OMPI_ERROR;
}
}
/* "free" the shared-memory working buffer */
rc=free_sm2_shared_buffer(sm_module);
if( OMPI_SUCCESS != rc ) {
goto Error;
}
/* update the count of elements processed */
count_processed+=count_this_stripe;
}
/* return */
return rc;
Error:
return rc;
}
/*
* fanin/fanout progress function.
*/
static
int progress_fanin_fanout( void *sbuf, void *rbuf,
struct ompi_datatype_t *dtype, struct ompi_op_t *op,
mca_coll_sm2_module_allreduce_pipeline_t *reduction_desc,
int n_poll_loops, int *completed)
{
/* local variables */
int my_rank,cnt;
int rc=OMPI_SUCCESS;
int my_fanout_parent;
int child_rank,n_children,child;
int count_processed,count_this_stripe;
ptrdiff_t dt_extent;
long long tag;
volatile mca_coll_sm2_nb_request_process_shared_mem_t *my_ctl_pointer;
volatile mca_coll_sm2_nb_request_process_shared_mem_t * parent_ctl_pointer;
volatile mca_coll_sm2_nb_request_process_shared_mem_t * child_ctl_pointer;
volatile char * my_data_pointer;
volatile char * parent_data_pointer;
volatile char * child_data_pointer;
sm_work_buffer_t *sm_buffer_desc;
tree_node_t *my_reduction_node;
tree_node_t *my_fanout_read_tree;
tag=reduction_desc->tag;
sm_buffer_desc=reduction_desc->shared_buffer;
my_rank=reduction_desc->my_rank;
my_reduction_node=reduction_desc->my_reduction_node;
my_fanout_read_tree=reduction_desc->my_fanout_read_tree;
/* initialize flag indicating that segment is still active in the
* reduction
*/
*completed=0;
my_ctl_pointer=sm_buffer_desc->proc_memory[my_rank].control_region;
my_data_pointer=sm_buffer_desc->proc_memory[my_rank].data_segment;
/* figure out where to proceed */
if( FANOUT == reduction_desc->status) {
goto REDUCTION_FANOUT;
}
/*
* fan in
*/
switch (my_reduction_node->my_node_type) {
case LEAF_NODE:
/* leaf node */
/* copy segment into shared buffer - later on will optimize to
* eliminate extra copies.
*/
count_processed=reduction_desc->count_processed;
count_this_stripe=reduction_desc->count_this_stripe;
/* error conditions already checed */
ompi_ddt_type_extent(dtype, &dt_extent);
rc=ompi_ddt_copy_content_same_ddt(dtype, count_this_stripe,
(char *)my_data_pointer,
(char *)((char *)sbuf+dt_extent*count_processed));
if( 0 != rc ) {
return OMPI_ERROR;
}
/* set memory barriet to make sure data is in main memory before
* the completion flgas are set.
*/
MB();
/*
* Signal parent that data is ready
*/
my_ctl_pointer->flag=tag;
break;
default:
/* ROOT_NODE and INTERIOR_NODE */
/* copy segment into shared buffer - ompi_op_reduce
* provids only 2 buffers, so can't add from two
* into a third buffer.
*/
count_this_stripe=reduction_desc->count_this_stripe;
if( STARTED == reduction_desc->status) {
/* copy-in only the first time through */
count_processed=reduction_desc->count_processed;
/* error conditions already checed */
ompi_ddt_type_extent(dtype, &dt_extent);
rc=ompi_ddt_copy_content_same_ddt(dtype, count_this_stripe,
(char *)my_data_pointer,
(char *)((char *)sbuf+dt_extent*count_processed));
if( 0 != rc ) {
return OMPI_ERROR;
}
}
/*
* Wait on children, and apply op to their data
*/
n_children=my_reduction_node->n_children;
for( child=reduction_desc->n_child_loops_completed ;
child < n_children ; child++ ) {
child_rank=my_reduction_node->children_ranks[child];
child_ctl_pointer=
sm_buffer_desc->proc_memory[child_rank].control_region;
child_data_pointer=
sm_buffer_desc->proc_memory[child_rank].data_segment;
/* wait until child flag is set */
cnt=0;
while( child_ctl_pointer->flag != tag ) {
opal_progress();
cnt++;
if( n_poll_loops == cnt ) {
/* break out */
reduction_desc->status=FANIN;
reduction_desc->n_child_loops_completed=child;
goto RETURN;
}
}
/* apply collective operation */
count_this_stripe=reduction_desc->count_this_stripe;
ompi_op_reduce(op,(void *)child_data_pointer,
(void *)my_data_pointer, count_this_stripe,dtype);
} /* end child loop */
/* set memory barriet to make sure data is in main memory before
* the completion flgas are set.
*/
MB();
/*
* Signal parent that data is ready
*/
my_ctl_pointer->flag=tag;
}
REDUCTION_FANOUT:
my_fanout_parent=my_fanout_read_tree->parent_rank;
switch (my_reduction_node->my_node_type) {
case LEAF_NODE:
parent_data_pointer=
sm_buffer_desc->proc_memory[my_fanout_parent].data_segment;
parent_ctl_pointer=
sm_buffer_desc->proc_memory[my_fanout_parent].control_region;
/*
* wait on Parent to signal that data is ready
*/
cnt=0;
while(parent_ctl_pointer->flag != -tag) {
opal_progress();
cnt++;
if( n_poll_loops == cnt ) {
/* break out */
reduction_desc->status=FANOUT;
goto RETURN;
}
}
/* copy data to user supplied buffer */
count_processed=reduction_desc->count_processed;
count_this_stripe=reduction_desc->count_this_stripe;
/* error conditions already checed */
ompi_ddt_type_extent(dtype, &dt_extent);
rc=ompi_ddt_copy_content_same_ddt(dtype, count_this_stripe,
(char *)rbuf+dt_extent*count_processed,
(char *)parent_data_pointer);
if( 0 != rc ) {
return OMPI_ERROR;
}
break;
case INTERIOR_NODE:
/* interior nodes */
parent_data_pointer=
sm_buffer_desc->proc_memory[my_fanout_parent].data_segment;
parent_ctl_pointer=
sm_buffer_desc->proc_memory[my_fanout_parent].control_region;
/*
* wait on Parent to signal that data is ready
*/
cnt=0;
while(parent_ctl_pointer->flag != -tag) {
opal_progress();
cnt++;
if( n_poll_loops == cnt ) {
/* break out */
reduction_desc->status=FANOUT;
goto RETURN;
}
}
/* copy the data to my shared buffer, for access by children */
count_this_stripe=reduction_desc->count_this_stripe;
rc=ompi_ddt_copy_content_same_ddt(dtype, count_this_stripe,
(char *)my_data_pointer,(char *)parent_data_pointer);
if( 0 != rc ) {
return OMPI_ERROR;
}
/* set memory barriet to make sure data is in main memory before
* the completion flgas are set.
*/
MB();
/* signal children that they may read the result data */
my_ctl_pointer->flag=-tag;
/* copy data to user supplied buffer */
count_processed=reduction_desc->count_processed;
count_this_stripe=reduction_desc->count_this_stripe;
/* error conditions already checed */
ompi_ddt_type_extent(dtype, &dt_extent);
rc=ompi_ddt_copy_content_same_ddt(dtype, count_this_stripe,
(char *)rbuf+dt_extent*count_processed,
(char *)my_data_pointer);
if( 0 != rc ) {
return OMPI_ERROR;
}
break;
case ROOT_NODE:
/* I am the root - so copy signal children, and then
* start reading
*/
MB();
my_ctl_pointer->flag=-tag;
/* copy data to user supplied buffer */
count_processed=reduction_desc->count_processed;
count_this_stripe=reduction_desc->count_this_stripe;
/* error conditions already checed */
ompi_ddt_type_extent(dtype, &dt_extent);
rc=ompi_ddt_copy_content_same_ddt(dtype, count_this_stripe,
(char *)((char *)rbuf+dt_extent*count_processed),
(char *)my_data_pointer);
if( 0 != rc ) {
return OMPI_ERROR;
}
}
/* completed processing the data in this stripe */
*completed=1;
/* mark the descriptor as available */
reduction_desc->status=BUFFER_AVAILABLE;
/* return */
RETURN:
return OMPI_SUCCESS;
}
/**
* Shared memory blocking allreduce - pipeline algorithm.
*/
#define depth_pipeline 2
static
int mca_coll_sm2_allreduce_intra_fanin_fanout_pipeline
(void *sbuf, void *rbuf, int count, struct ompi_datatype_t *dtype,
struct ompi_op_t *op, struct ompi_communicator_t *comm,
struct mca_coll_base_module_1_1_0_t *module)
{
/* local variables */
int i,buffer_index,stripe_number,my_rank,n_completed,completed;
int count_processed,count_this_stripe;
mca_coll_sm2_module_allreduce_pipeline_t working_buffers[depth_pipeline];
int rc=OMPI_SUCCESS;
long long tag;
tree_node_t *my_reduction_node, *my_fanout_read_tree;
mca_coll_sm2_module_t *sm_module;
int n_dts_per_buffer,n_data_segments;
size_t len_data_buffer;
ptrdiff_t dt_extent;
sm_module=(mca_coll_sm2_module_t *) module;
/* get size of data needed - same layout as user data, so that
* we can apply the reudction routines directly on these buffers
*/
rc=ompi_ddt_type_extent(dtype, &dt_extent);
if( OMPI_SUCCESS != rc ) {
goto Error;
}
/* lenght of control and data regions */
len_data_buffer=sm_module->data_memory_per_proc_per_segment;
/* number of data types copies that the scratch buffer can hold */
n_dts_per_buffer=((int) len_data_buffer)/dt_extent;
if ( 0 == n_dts_per_buffer ) {
rc=OMPI_ERROR;
goto Error;
}
/* compute number of stripes needed to process this collective */
n_data_segments=(count+n_dts_per_buffer -1 ) / n_dts_per_buffer ;
/* get my node for the reduction tree */
my_rank=ompi_comm_rank(comm);
my_reduction_node=&(sm_module->reduction_tree[my_rank]);
my_fanout_read_tree=&(sm_module->fanout_read_tree[my_rank]);
count_processed=0;
/* get the working data segments */
/* NOTE: need to check at communicator creation that we have enough
* temporary buffes for this
*/
for(i=0 ; i < depth_pipeline ; i++ ) {
/*
working_buffers[i].shared_buffer=alloc_sm2_shared_buffer(sm_module);
*/
working_buffers[i].status=BUFFER_AVAILABLE;
working_buffers[i].my_rank=my_rank;
working_buffers[i].my_reduction_node=my_reduction_node;
working_buffers[i].my_fanout_read_tree=my_fanout_read_tree;
}
n_completed=0;
buffer_index=-1;
/* loop over data segments */
for( stripe_number=0 ; stripe_number < n_data_segments ; stripe_number++ ) {
/*
* allocate working buffer
*/
/* get working_buffers index - this needs to be deterministic,
* as each process is getting this pointer on it's own, so all
* need to point to the same data structure
*/
buffer_index++;
/* wrap around */
if( buffer_index == depth_pipeline){
buffer_index=0;
}
/* wait for buffer to become available */
while ( working_buffers[buffer_index].status != BUFFER_AVAILABLE ) {
/* loop over working buffers, and progress the reduction */
for( i=0 ; i < depth_pipeline ; i++ ) {
if( working_buffers[i].status != BUFFER_AVAILABLE ){
rc=progress_fanin_fanout( sbuf, rbuf, dtype, op,
&(working_buffers[i]),
sm_module->n_poll_loops, &completed);
if( OMPI_SUCCESS != rc ) {
goto Error;
}
/* update the number of completed segments */
if( completed ) {
n_completed+=completed;
/* release of resources may be our of order, but allocation
* is ordered, and only after the pipleline tracker
* (working_buffers[]) indicates that it is complete, so
* resources will not be re-used too early
*/
rc=free_sm2_shared_buffer(sm_module);
}
}
}
/* overall ompi progress */
opal_progress();
}
/* initialize working buffer for this stripe */
working_buffers[buffer_index].shared_buffer=
alloc_sm2_shared_buffer(sm_module);
working_buffers[buffer_index].status=STARTED;
working_buffers[buffer_index].n_child_loops_completed=0;
count_processed=stripe_number*n_dts_per_buffer;
count_this_stripe=n_dts_per_buffer;
if( count_processed + count_this_stripe > count )
count_this_stripe=count-count_processed;
working_buffers[buffer_index].count_this_stripe=count_this_stripe;
working_buffers[buffer_index].count_processed=count_processed;
tag=sm_module->collective_tag;
sm_module->collective_tag++;
working_buffers[buffer_index].tag=tag;
/* progress this stripe */
rc=progress_fanin_fanout( sbuf, rbuf, dtype, op,
&(working_buffers[buffer_index]),
sm_module->n_poll_loops, &completed);
if( OMPI_SUCCESS != rc ) {
goto Error;
}
/* update the number of completed segments */
if( completed ) {
n_completed+=completed;
/* release of resources may be our of order, but allocation
* is ordered, and only after the pipleline tracker
* (working_buffers[]) indicates that it is complete, so
* resources will not be re-used too early
*/
rc=free_sm2_shared_buffer(sm_module);
}
}
/* progress remaining data stripes */
while( n_completed < n_data_segments ) {
for( i=0 ; i < depth_pipeline ; i++ ) {
if( working_buffers[i].status != BUFFER_AVAILABLE ){
rc=progress_fanin_fanout( sbuf, rbuf, dtype, op,
&(working_buffers[i]),
sm_module->n_poll_loops, &completed);
if( OMPI_SUCCESS != rc ) {
goto Error;
}
/* update the number of completed segments */
if( completed ) {
n_completed+=completed;
/* release of resources may be our of order, but allocation
* is ordered, and only after the pipleline tracker
* (working_buffers[]) indicates that it is complete, so
* resources will not be re-used too early
*/
rc=free_sm2_shared_buffer(sm_module);
}
}
}
}
/* free work buffers */
/*
for(i=0 ; i < depth_pipeline ; i++ ) {
rc=free_sm2_shared_buffer(sm_module);
}
*/
/* return */
return rc;
Error:
/* free work buffers */
/*
for(i=0 ; i < depth_pipeline ; i++ ) {
rc=free_sm2_shared_buffer(sm_module);
}
*/
return rc;
}
#undef depth_pipeline
/**
* Shared memory blocking allreduce.
*/
static
int mca_coll_sm2_allreduce_intra_recursive_doubling(void *sbuf, void *rbuf,
int count, struct ompi_datatype_t *dtype,
struct ompi_op_t *op, struct ompi_communicator_t *comm,
struct mca_coll_base_module_1_1_0_t *module)
{
/* local variables */
int rc=OMPI_SUCCESS,n_dts_per_buffer,n_data_segments,stripe_number;
int pair_rank,exchange,extra_rank;
int index_read,index_write;
pair_exchange_node_t *my_exchange_node;
int my_rank,count_processed,count_this_stripe;
size_t message_extent,ctl_size,len_data_buffer;
ptrdiff_t dt_extent;
long long tag, base_tag;
sm_work_buffer_t *sm_buffer_desc;
volatile char * my_tmp_data_buffer[2];
volatile char * my_write_pointer;
volatile char * my_read_pointer;
volatile char * extra_rank_write_data_pointer;
volatile char * extra_rank_read_data_pointer;
volatile char * partner_read_pointer;
mca_coll_sm2_nb_request_process_shared_mem_t *my_ctl_pointer;
volatile mca_coll_sm2_nb_request_process_shared_mem_t *
partner_ctl_pointer;
volatile mca_coll_sm2_nb_request_process_shared_mem_t *
extra_ctl_pointer;
mca_coll_sm2_module_t *sm_module;
/* debug
opal_timer_t t0,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10;
end debug */
sm_module=(mca_coll_sm2_module_t *) module;
/* get size of data needed - same layout as user data, so that
* we can apply the reudction routines directly on these buffers
*/
rc=ompi_ddt_type_extent(dtype, &dt_extent);
if( OMPI_SUCCESS != rc ) {
goto Error;
}
message_extent=dt_extent*count;
/* lenght of control and data regions */
ctl_size=sm_module->ctl_memory_per_proc_per_segment;
len_data_buffer=sm_module->data_memory_per_proc_per_segment;
/* number of data types copies that the scratch buffer can hold */
n_dts_per_buffer=((int) len_data_buffer)/dt_extent;
if ( 0 == n_dts_per_buffer ) {
rc=OMPI_ERROR;
goto Error;
}
/* need a read and a write buffer for a pair-wise exchange of data */
n_dts_per_buffer/=2;
len_data_buffer=n_dts_per_buffer*dt_extent;
/* compute number of stripes needed to process this collective */
n_data_segments=(count+n_dts_per_buffer -1 ) / n_dts_per_buffer ;
/* get my node for the reduction tree */
my_exchange_node=&(sm_module->recursive_doubling_tree);
my_rank=ompi_comm_rank(comm);
count_processed=0;
/* debug
t0=opal_sys_timer_get_cycles();
end debug */
sm_buffer_desc=alloc_sm2_shared_buffer(sm_module);
/* debug
t1=opal_sys_timer_get_cycles();
timers[0]+=(t1-t0);
end debug */
/* get a pointer to the shared-memory working buffer */
/* NOTE: starting with a rather synchronous approach */
for( stripe_number=0 ; stripe_number < n_data_segments ; stripe_number++ ) {
/* get number of elements to process in this stripe */
/* debug
t2=opal_sys_timer_get_cycles();
end debug */
count_this_stripe=n_dts_per_buffer;
if( count_processed + count_this_stripe > count )
count_this_stripe=count-count_processed;
/* get unique set of tags for this stripe.
* Assume only one collective
* per communicator at a given time, so no locking needed
* for atomic update of the tag */
base_tag=sm_module->collective_tag;
sm_module->collective_tag+=my_exchange_node->n_tags;
/* get pointers to my work buffers */
my_ctl_pointer=sm_buffer_desc->proc_memory[my_rank].control_region;
my_write_pointer=sm_buffer_desc->proc_memory[my_rank].data_segment;
my_read_pointer=my_write_pointer+len_data_buffer;
my_tmp_data_buffer[0]=my_write_pointer;
my_tmp_data_buffer[1]=my_read_pointer;
/* copy data into the write buffer */
rc=ompi_ddt_copy_content_same_ddt(dtype, count_this_stripe,
(char *)my_write_pointer,
(char *)((char *)sbuf+dt_extent*count_processed));
if( 0 != rc ) {
return OMPI_ERROR;
}
/* debug
t3=opal_sys_timer_get_cycles();
timers[1]+=(t3-t2);
end debug */
/* copy data in from the "extra" source, if need be */
tag=base_tag;
if(0 < my_exchange_node->n_extra_sources) {
if ( EXCHANGE_NODE == my_exchange_node->node_type ) {
extra_rank=my_exchange_node->rank_extra_source;
extra_ctl_pointer=
sm_buffer_desc->proc_memory[extra_rank].control_region;
extra_rank_write_data_pointer=
sm_buffer_desc->proc_memory[extra_rank].data_segment;
/* wait until remote data is read */
while( extra_ctl_pointer->flag < tag ) {
opal_progress();
}
/* apply collective operation */
ompi_op_reduce(op,(void *)extra_rank_write_data_pointer,
(void *)my_write_pointer, count_this_stripe,dtype);
} else {
/* set memory barriet to make sure data is in main memory before
* the completion flgas are set.
*/
MB();
/*
* Signal parent that data is ready
*/
my_ctl_pointer->flag=tag;
}
}
MB();
/*
* Signal parent that data is ready
*/
tag=base_tag+1;
my_ctl_pointer->flag=tag;
/* loop over data exchanges */
for(exchange=0 ; exchange < my_exchange_node->n_exchanges ; exchange++) {
/* debug
t4=opal_sys_timer_get_cycles();
end debug */
index_read=(exchange&1);
index_write=((exchange+1)&1);
my_write_pointer=my_tmp_data_buffer[index_write];
my_read_pointer=my_tmp_data_buffer[index_read];
/* is the remote data read */
pair_rank=my_exchange_node->rank_exchanges[exchange];
partner_ctl_pointer=
sm_buffer_desc->proc_memory[pair_rank].control_region;
partner_read_pointer=
sm_buffer_desc->proc_memory[pair_rank].data_segment;
if( 1 == index_read ) {
partner_read_pointer+=len_data_buffer;
}
/* wait until remote data is read */
while( partner_ctl_pointer->flag < tag ) {
opal_progress();
}
/* debug
t5=opal_sys_timer_get_cycles();
timers[2]+=(t5-t4);
end debug */
/* reduce data into my write buffer */
/* apply collective operation */
/*
ompi_op_reduce(op,(void *)partner_read_pointer,
(void *)my_write_pointer, count_this_stripe,dtype);
*/
/* test */
ompi_3buff_op_reduce(op,my_read_pointer,partner_read_pointer,
my_write_pointer,count_this_stripe,dtype);
/*
{
int ii,n_ints;
int * restrict my_read=(int *)my_read_pointer;
int * restrict my_write=(int *)my_write_pointer;
int * restrict exchange_read=(int *)partner_read_pointer;
n_ints=count_this_stripe;
for(ii=0 ; ii < n_ints ; ii++ ) {
my_write[ii]=my_read[ii]+exchange_read[ii];
}
}
*/
/* debug
t6=opal_sys_timer_get_cycles();
timers[3]+=(t6-t5);
end debug */
/* end test */
/* signal that I am done reading my peer's data */
tag++;
MB();
my_ctl_pointer->flag=tag;
/* wait for my peer to finish - other wise buffers may be
* reused too early */
while( partner_ctl_pointer->flag < tag ) {
opal_progress();
}
/* debug
t7=opal_sys_timer_get_cycles();
timers[4]+=(t7-t6);
end debug */
}
/* copy data in from the "extra" source, if need be */
if(0 < my_exchange_node->n_extra_sources) {
tag=base_tag+my_exchange_node->n_tags-1;
if ( EXTRA_NODE == my_exchange_node->node_type ) {
extra_rank=my_exchange_node->rank_extra_source;
extra_ctl_pointer=
sm_buffer_desc->proc_memory[extra_rank].control_region;
extra_rank_read_data_pointer=
sm_buffer_desc->proc_memory[extra_rank].data_segment;
index_read=(my_exchange_node->log_2&1);
if( index_read ) {
extra_rank_read_data_pointer+=len_data_buffer;
}
/* wait until remote data is read */
while(! ( extra_ctl_pointer->flag == tag ) ) {
opal_progress();
}
/* write the data into my read buffer */
rc=ompi_ddt_copy_content_same_ddt(dtype, count_this_stripe,
(char *)my_write_pointer,
(char *)extra_rank_read_data_pointer);
if( 0 != rc ) {
return OMPI_ERROR;
}
/* signal that I am done */
my_ctl_pointer->flag=tag;
} else {
tag=base_tag+my_exchange_node->n_tags-1;
/* set memory barriet to make sure data is in main memory before
* the completion flgas are set.
*/
MB();
/*
* Signal parent that data is ready
*/
my_ctl_pointer->flag=tag;
/* wait until child is done to move on - this buffer will
* be reused for the next stripe, so don't want to move
* on too quick.
*/
extra_rank=my_exchange_node->rank_extra_source;
extra_ctl_pointer=
sm_buffer_desc->proc_memory[extra_rank].control_region;
/* wait until remote data is read */
while( extra_ctl_pointer->flag < tag ) {
opal_progress();
}
}
}
/* debug
t8=opal_sys_timer_get_cycles();
end debug */
/* copy data into the destination buffer */
rc=ompi_ddt_copy_content_same_ddt(dtype, count_this_stripe,
(char *)((char *)rbuf+dt_extent*count_processed),
(char *)my_write_pointer);
if( 0 != rc ) {
return OMPI_ERROR;
}
/* update the count of elements processed */
count_processed+=count_this_stripe;
}
/* debug
t9=opal_sys_timer_get_cycles();
timers[5]+=(t9-t8);
end debug */
/* "free" the shared-memory working buffer */
rc=free_sm2_shared_buffer(sm_module);
if( OMPI_SUCCESS != rc ) {
goto Error;
}
/* debug
t10=opal_sys_timer_get_cycles();
timers[6]+=(t10-t9);
end debug */
/* return */
return rc;
Error:
return rc;
}
/**
* Shared memory blocking allreduce.
*/
static
int mca_coll_sm2_allreduce_intra_reducescatter_allgather(void *sbuf, void *rbuf,
int count, struct ompi_datatype_t *dtype,
struct ompi_op_t *op, struct ompi_communicator_t *comm,
struct mca_coll_base_module_1_1_0_t *module)
{
/* local varibles */
int i,rc=OMPI_SUCCESS,n_dts_per_buffer,n_data_segments,stripe_number;
int pair_rank,exchange,extra_rank,n_proc_data,tmp;
int starting_proc;
int n_elements_per_proc, n_residual_elements;
int cnt_offset,n_copy;
pair_exchange_node_t *my_exchange_node;
int my_rank,comm_size,count_processed,count_this_stripe;
int count_this_exchange;
int done_copy_tag,ok_to_copy_tag;
size_t len_data_buffer;
ptrdiff_t dt_extent;
long long tag, base_tag;
sm_work_buffer_t *sm_buffer_desc;
volatile char * extra_rank_write_data_pointer;
volatile char * extra_rank_read_data_pointer;
volatile char * partner_base_pointer;
volatile char * my_pointer;
volatile char * my_base_pointer;
volatile char * partner_pointer;
volatile char * source_pointer;
mca_coll_sm2_nb_request_process_shared_mem_t *my_ctl_pointer;
volatile mca_coll_sm2_nb_request_process_shared_mem_t *
partner_ctl_pointer;
volatile mca_coll_sm2_nb_request_process_shared_mem_t *
extra_ctl_pointer;
volatile mca_coll_sm2_nb_request_process_shared_mem_t *
source_ctl_pointer;
mca_coll_sm2_module_t *sm_module;
sm_module=(mca_coll_sm2_module_t *) module;
/* get size of data needed - same layout as user data, so that
* we can apply the reudction routines directly on these buffers
*/
rc=ompi_ddt_type_extent(dtype, &dt_extent);
if( OMPI_SUCCESS != rc ) {
goto Error;
}
/* lenght of control and data regions */
len_data_buffer=sm_module->data_memory_per_proc_per_segment;
/* number of data types copies that the scratch buffer can hold */
n_dts_per_buffer=((int) len_data_buffer)/dt_extent;
if ( 0 == n_dts_per_buffer ) {
rc=OMPI_ERROR;
goto Error;
}
len_data_buffer=n_dts_per_buffer*dt_extent;
/* compute number of stripes needed to process this collective */
n_data_segments=(count+n_dts_per_buffer -1 ) / n_dts_per_buffer ;
/* get my node for the reduction tree */
my_exchange_node=&(sm_module->recursive_doubling_tree);
my_rank=ompi_comm_rank(comm);
comm_size=ompi_comm_size(comm);
/* get access to shared memory working buffer */
sm_buffer_desc=alloc_sm2_shared_buffer(sm_module);
my_ctl_pointer=sm_buffer_desc->proc_memory[my_rank].control_region;
my_base_pointer=sm_buffer_desc->proc_memory[my_rank].data_segment;
count_processed=0;
for( stripe_number=0 ; stripe_number < n_data_segments ; stripe_number++ ) {
/* get number of elements to process in this stripe */
/* debug
t2=opal_sys_timer_get_cycles();
end debug */
count_this_stripe=n_dts_per_buffer;
if( count_processed + count_this_stripe > count )
count_this_stripe=count-count_processed;
/* compute the number of elements "owned" by each process */
n_elements_per_proc=(count_this_stripe/my_exchange_node->n_largest_pow_2);
n_residual_elements=count_this_stripe-
n_elements_per_proc*my_exchange_node->n_largest_pow_2;
for(i=0 ; i < my_exchange_node->n_largest_pow_2 ; i++ ) {
sm_module->scratch_space[i]=n_elements_per_proc;
if( i < n_residual_elements) {
sm_module->scratch_space[i]++;
}
}
/* debug
fprintf(stderr," my_rank %d element list count_this_stripe %d : ",my_rank,count_this_stripe);
for(i=0 ; i < comm_size ; i++ ) {
fprintf(stderr," %d ",sm_module->scratch_space[i]);
}
fprintf(stderr," \n");
fflush(stderr);
end debug */
/* get unique set of tags for this stripe.
* Assume only one collective
* per communicator at a given time, so no locking needed
* for atomic update of the tag */
base_tag=sm_module->collective_tag;
/* log_2 tags for recursive doubling, one for the non-power of 2
* initial send, 1 for first copy into shared memory, and
* one for completing the copyout.
*/
sm_module->collective_tag+=(my_exchange_node->log_2+3);
/* copy data into the write buffer */
rc=ompi_ddt_copy_content_same_ddt(dtype, count_this_stripe,
(char *)my_base_pointer,
(char *)((char *)sbuf+dt_extent*count_processed));
if( 0 != rc ) {
return OMPI_ERROR;
}
/* debug
{ int *int_tmp=(int *)my_base_pointer;
int i;
fprintf(stderr," my rank %d data in tmp :: ",my_rank);
for (i=0 ; i < count_this_stripe ; i++ ) {
fprintf(stderr," %d ",int_tmp[i]);
}
fprintf(stderr,"\n");
fflush(stderr);
}
end debug */
/* debug
t3=opal_sys_timer_get_cycles();
timers[1]+=(t3-t2);
end debug */
/* copy data in from the "extra" source, if need be */
tag=base_tag;
if(0 < my_exchange_node->n_extra_sources) {
if ( EXCHANGE_NODE == my_exchange_node->node_type ) {
extra_rank=my_exchange_node->rank_extra_source;
extra_ctl_pointer=
sm_buffer_desc->proc_memory[extra_rank].control_region;
extra_rank_write_data_pointer=
sm_buffer_desc->proc_memory[extra_rank].data_segment;
/* wait until remote data is read */
while( extra_ctl_pointer->flag < tag ) {
opal_progress();
}
/* apply collective operation */
ompi_op_reduce(op,(void *)extra_rank_write_data_pointer,
(void *)my_base_pointer, count_this_stripe,dtype);
} else {
/* set memory barriet to make sure data is in main memory before
* the completion flgas are set.
*/
MB();
/*
* Signal parent that data is ready
*/
my_ctl_pointer->flag=tag;
}
}
MB();
/*
* reduce-scatter
*/
/*
* Signal parent that data is ready
*/
tag=base_tag+1;
my_ctl_pointer->flag=tag;
/*
* loop over data exchanges
*/
/* set the number of procs whos's data I will manipulate - this starts
* at the number of procs in the exchange, so a divide by two at each
* iteration will give the right number of proc for the given iteration
*/
/* debug
{ int *int_tmp=(int *)my_base_pointer;
int i;
fprintf(stderr," GGG my rank %d data in tmp :: ",my_rank);
for (i=0 ; i < count_this_stripe ; i++ ) {
fprintf(stderr," %d ",int_tmp[i]);
}
fprintf(stderr,"\n");
fflush(stderr);
}
end debug */
n_proc_data=my_exchange_node->n_largest_pow_2;
starting_proc=0;
for(exchange=my_exchange_node->n_exchanges-1;exchange>=0;exchange--) {
/* is the remote data read */
pair_rank=my_exchange_node->rank_exchanges[exchange];
partner_ctl_pointer=
sm_buffer_desc->proc_memory[pair_rank].control_region;
partner_base_pointer=
sm_buffer_desc->proc_memory[pair_rank].data_segment;
/* wait until remote data is read */
while( partner_ctl_pointer->flag < tag ) {
opal_progress();
}
/* figure out the base address to use : the lower rank gets
* the upper data, with the higher rank getting the lower half
* of the current chunk */
n_proc_data=n_proc_data/2;
if(pair_rank < my_rank ) {
starting_proc+=n_proc_data;
}
/* figure out my staring pointer */
tmp=0;
for(i=0 ; i < starting_proc ; i++ ) {
tmp+=sm_module->scratch_space[i];
}
my_pointer=my_base_pointer+tmp*dt_extent;
/* figure out partner's staring pointer */
partner_pointer=partner_base_pointer+tmp*dt_extent;
/* figure out how much to read */
tmp=0;
for(i=starting_proc ; i < starting_proc+n_proc_data ; i++ ) {
tmp+=sm_module->scratch_space[i];
}
count_this_exchange=tmp;
/* reduce data into my write buffer */
/* apply collective operation */
ompi_op_reduce(op,(void *)partner_pointer,
(void *)my_pointer, count_this_exchange,dtype);
/* debug
{ int *int_tmp=(int *)my_pointer;
int i;
fprintf(stderr," result my rank %d data in tmp :: ",my_rank);
for (i=0 ; i < count_this_exchange ; i++ ) {
fprintf(stderr," %d ",int_tmp[i]);
}
fprintf(stderr,"\n");
int_tmp=(int *)partner_pointer;
fprintf(stderr," partner data my rank %d data in tmp :: ",my_rank);
for (i=0 ; i < count_this_exchange ; i++ ) {
fprintf(stderr," %d ",int_tmp[i]);
}
fprintf(stderr,"\n");
fflush(stderr);
}
end debug */
/* signal that I am done reading my peer's data */
tag++;
MB();
my_ctl_pointer->flag=tag;
} /* end exchange loop */
/* debug
t8=opal_sys_timer_get_cycles();
end debug */
/* copy data out to final destination. Could do some sort of
* recursive doubleing in the sm, then copy to process private,
* which reduces memory contention. However, this also almost
* doubles the number of copies.
*/
ok_to_copy_tag=base_tag+1+my_exchange_node->log_2;
/* read from the result buffers directly to the final destinaion */
cnt_offset=0;
for(n_copy=0 ; n_copy < my_exchange_node->n_largest_pow_2 ; n_copy++ ) {
if( 0 >= sm_module->scratch_space[n_copy] )
continue;
source_ctl_pointer=
sm_buffer_desc->proc_memory[n_copy].control_region;
source_pointer=
sm_buffer_desc->proc_memory[n_copy].data_segment;
/* wait until remote data is read */
while( source_ctl_pointer->flag < ok_to_copy_tag ) {
opal_progress();
}
/* copy data into the destination buffer */
rc=ompi_ddt_copy_content_same_ddt(dtype,
sm_module->scratch_space[n_copy],
(char *)((char *)rbuf+
dt_extent*(count_processed+cnt_offset)),
(char *)((char *)source_pointer+
dt_extent*cnt_offset));
if( 0 != rc ) {
return OMPI_ERROR;
}
cnt_offset+=sm_module->scratch_space[n_copy];
}
done_copy_tag=base_tag+2+my_exchange_node->log_2;
my_ctl_pointer->flag=done_copy_tag;
/* wait for all to read the data, before re-using this buffer */
if( stripe_number < (n_data_segments-1) ) {
for(n_copy=0 ; n_copy < comm_size ; n_copy++ ) {
source_ctl_pointer=
sm_buffer_desc->proc_memory[n_copy].control_region;
while( source_ctl_pointer-> flag < done_copy_tag ) {
opal_progress();
}
}
}
/* update the count of elements processed */
count_processed+=count_this_stripe;
}
/* return */
return rc;
Error:
return rc;
}
#if 0
/* just storing various versions of the recursive doubling algorithm,
* so can compare them later on.
*/
/**
* Shared memory blocking allreduce.
*/
static
int mca_coll_sm2_allreduce_intra_recursive_doubling(void *sbuf, void *rbuf,
int count, struct ompi_datatype_t *dtype,
struct ompi_op_t *op, struct ompi_communicator_t *comm,
struct mca_coll_base_module_1_1_0_t *module)
{
/* local variables */
int rc=OMPI_SUCCESS,n_dts_per_buffer,n_data_segments,stripe_number;
int pair_rank,exchange,extra_rank;
int index_read,index_write;
pair_exchange_node_t *my_exchange_node;
int my_rank,count_processed,count_this_stripe;
size_t message_extent,dt_extent,ctl_size,len_data_buffer;
long long tag, base_tag;
sm_work_buffer_t *sm_buffer_desc;
volatile char * my_tmp_data_buffer[2];
volatile char * my_write_pointer;
volatile char * my_read_pointer;
volatile char * extra_rank_write_data_pointer;
volatile char * extra_rank_read_data_pointer;
volatile char * partner_read_pointer;
mca_coll_sm2_nb_request_process_shared_mem_t *my_ctl_pointer;
volatile mca_coll_sm2_nb_request_process_shared_mem_t *
partner_ctl_pointer;
volatile mca_coll_sm2_nb_request_process_shared_mem_t *
extra_ctl_pointer;
mca_coll_sm2_module_t *sm_module;
/* debug
opal_timer_t t0,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10;
end debug */
sm_module=(mca_coll_sm2_module_t *) module;
/* get size of data needed - same layout as user data, so that
* we can apply the reudction routines directly on these buffers
*/
rc=ompi_ddt_type_size(dtype, &dt_extent);
if( OMPI_SUCCESS != rc ) {
goto Error;
}
message_extent=dt_extent*count;
/* lenght of control and data regions */
ctl_size=sm_module->ctl_memory_per_proc_per_segment;
len_data_buffer=sm_module->data_memory_per_proc_per_segment;
/* number of data types copies that the scratch buffer can hold */
n_dts_per_buffer=((int) len_data_buffer)/dt_extent;
if ( 0 == n_dts_per_buffer ) {
rc=OMPI_ERROR;
goto Error;
}
/* need a read and a write buffer for a pair-wise exchange of data */
n_dts_per_buffer/=2;
len_data_buffer=n_dts_per_buffer*dt_extent;
/* compute number of stripes needed to process this collective */
n_data_segments=(count+n_dts_per_buffer -1 ) / n_dts_per_buffer ;
/* get my node for the reduction tree */
my_exchange_node=&(sm_module->recursive_doubling_tree);
my_rank=ompi_comm_rank(comm);
count_processed=0;
/* get a pointer to the shared-memory working buffer */
/* NOTE: starting with a rather synchronous approach */
/* debug
t0=opal_sys_timer_get_cycles();
end debug */
/* use the same set of buffers for a single reduction */
sm_buffer_desc=alloc_sm2_shared_buffer(sm_module);
/* get pointers to my work buffers */
my_ctl_pointer=sm_buffer_desc->proc_memory[my_rank].control_region;
my_write_pointer=sm_buffer_desc->proc_memory[my_rank].data_segment;
my_read_pointer=my_write_pointer+len_data_buffer;
my_tmp_data_buffer[0]=my_write_pointer;
my_tmp_data_buffer[1]=my_read_pointer;
/* debug
t1=opal_sys_timer_get_cycles();
end debug */
for( stripe_number=0 ; stripe_number < n_data_segments ; stripe_number++ ) {
/* get number of elements to process in this stripe */
count_this_stripe=n_dts_per_buffer;
if( count_processed + count_this_stripe > count )
count_this_stripe=count-count_processed;
/* get unique set of tags for this stripe.
* Assume only one collective
* per communicator at a given time, so no locking needed
* for atomic update of the tag */
base_tag=sm_module->collective_tag;
sm_module->collective_tag+=my_exchange_node->n_tags;
/* debug
t2=opal_sys_timer_get_cycles();
timers[0]+=(t2-t1);
end debug */
/* copy data into the write buffer */
rc=ompi_ddt_copy_content_same_ddt(dtype, count_this_stripe,
(char *)my_write_pointer,
(char *)((char *)sbuf+dt_extent*count_processed));
if( 0 != rc ) {
return OMPI_ERROR;
}
/* debug
t3=opal_sys_timer_get_cycles();
timers[1]+=(t3-t2);
end debug */
/* copy data in from the "extra" source, if need be */
tag=base_tag;
if(0 < my_exchange_node->n_extra_sources) {
if ( EXCHANGE_NODE == my_exchange_node->node_type ) {
extra_rank=my_exchange_node->rank_extra_source;
extra_ctl_pointer=
sm_buffer_desc->proc_memory[extra_rank].control_region;
extra_rank_write_data_pointer=
sm_buffer_desc->proc_memory[extra_rank].data_segment;
/* wait until remote data is read */
while( extra_ctl_pointer->flag < tag ) {
opal_progress();
}
/* apply collective operation */
ompi_op_reduce(op,(void *)extra_rank_write_data_pointer,
(void *)my_write_pointer, count_this_stripe,dtype);
} else {
/* set memory barriet to make sure data is in main memory before
* the completion flgas are set.
*/
MB();
/*
* Signal parent that data is ready
*/
my_ctl_pointer->flag=tag;
}
}
MB();
/*
* Signal parent that data is ready
*/
tag=base_tag+1;
my_ctl_pointer->flag=tag;
/* loop over data exchanges */
for(exchange=0 ; exchange < my_exchange_node->n_exchanges ; exchange++) {
/* debug
t4=opal_sys_timer_get_cycles();
end debug */
index_read=(exchange&1);
index_write=((exchange+1)&1);
my_write_pointer=my_tmp_data_buffer[index_write];
my_read_pointer=my_tmp_data_buffer[index_read];
/* is the remote data read */
pair_rank=my_exchange_node->rank_exchanges[exchange];
partner_ctl_pointer=
sm_buffer_desc->proc_memory[pair_rank].control_region;
partner_read_pointer=
sm_buffer_desc->proc_memory[pair_rank].data_segment;
if( 1 == index_read ) {
partner_read_pointer+=len_data_buffer;
}
/* wait until remote data is read */
while( partner_ctl_pointer->flag < tag ) {
opal_progress();
}
/* debug
t5=opal_sys_timer_get_cycles();
timers[2]+=(t5-t4);
end debug */
/* reduce data into my write buffer */
/* apply collective operation */
/*
ompi_op_reduce(op,(void *)partner_read_pointer,
(void *)my_write_pointer, count_this_stripe,dtype);
*/
/* test */
{
int ii,n_ints;
int * restrict my_read=(int *)my_read_pointer;
int * restrict my_write=(int *)my_write_pointer;
int * restrict exchange_read=(int *)partner_read_pointer;
n_ints=count_this_stripe;
for(ii=0 ; ii < n_ints ; ii++ ) {
my_write[ii]=my_read[ii]+exchange_read[ii];
}
}
/* debug
t6=opal_sys_timer_get_cycles();
timers[3]+=(t6-t5);
end debug */
/* end test */
/* signal that I am done reading my peer's data */
tag++;
MB();
my_ctl_pointer->flag=tag;
/* wait for my peer to finish - other wise buffers may be
* reused too early */
while( partner_ctl_pointer->flag < tag ) {
opal_progress();
}
/* debug
t7=opal_sys_timer_get_cycles();
timers[4]+=(t7-t6);
end debug */
}
/* copy data in from the "extra" source, if need be */
if(0 < my_exchange_node->n_extra_sources) {
tag=base_tag+my_exchange_node->n_tags-1;
if ( EXTRA_NODE == my_exchange_node->node_type ) {
extra_rank=my_exchange_node->rank_extra_source;
extra_ctl_pointer=
sm_buffer_desc->proc_memory[extra_rank].control_region;
extra_rank_read_data_pointer=
sm_buffer_desc->proc_memory[extra_rank].data_segment;
index_read=(my_exchange_node->log_2&1);
if( index_read ) {
extra_rank_read_data_pointer+=len_data_buffer;
}
/* wait until remote data is read */
while(! ( extra_ctl_pointer->flag == tag ) ) {
opal_progress();
}
/* write the data into my read buffer */
rc=ompi_ddt_copy_content_same_ddt(dtype, count_this_stripe,
(char *)my_write_pointer,
(char *)extra_rank_read_data_pointer);
if( 0 != rc ) {
return OMPI_ERROR;
}
/* signal that I am done */
my_ctl_pointer->flag=tag;
} else {
tag=base_tag+my_exchange_node->n_tags-1;
/* set memory barriet to make sure data is in main memory before
* the completion flgas are set.
*/
MB();
/*
* Signal parent that data is ready
*/
my_ctl_pointer->flag=tag;
/* wait until child is done to move on - this buffer will
* be reused for the next stripe, so don't want to move
* on too quick.
*/
extra_rank=my_exchange_node->rank_extra_source;
extra_ctl_pointer=
sm_buffer_desc->proc_memory[extra_rank].control_region;
/* wait until remote data is read */
while(! ( extra_ctl_pointer->flag < tag ) ) {
opal_progress();
}
}
}
/* debug
t8=opal_sys_timer_get_cycles();
end debug */
/* copy data into the destination buffer */
rc=ompi_ddt_copy_content_same_ddt(dtype, count_this_stripe,
(char *)((char *)rbuf+dt_extent*count_processed),
(char *)my_write_pointer);
if( 0 != rc ) {
return OMPI_ERROR;
}
/* update the count of elements processed */
count_processed+=count_this_stripe;
}
rc=free_sm2_shared_buffer(sm_module);
if( OMPI_SUCCESS != rc ) {
goto Error;
}
/* return */
return rc;
Error:
return rc;
}
#endif
/**
* Shared memory blocking allreduce.
*/
int mca_coll_sm2_allreduce_intra(void *sbuf, void *rbuf, int count,
struct ompi_datatype_t *dtype,
struct ompi_op_t *op,
struct ompi_communicator_t *comm,
struct mca_coll_base_module_1_1_0_t *module)
{
/* local variables */
int rc;
#if 0
if( 0 != (op->o_flags & OMPI_OP_FLAGS_COMMUTE)) {
/* Commutative Operation */
rc= mca_coll_sm2_allreduce_intra_recursive_doubling(sbuf, rbuf, count,
dtype, op, comm, module);
if( OMPI_SUCCESS != rc ) {
goto Error;
}
#endif
rc= mca_coll_sm2_allreduce_intra_reducescatter_allgather(sbuf, rbuf, count,
dtype, op, comm, module);
if( OMPI_SUCCESS != rc ) {
goto Error;
}
#if 0
} else {
/* Non-Commutative Operation */
#endif
#if 0
rc= mca_coll_sm2_allreduce_intra_fanin_fanout_pipeline(
sbuf, rbuf, count,dtype, op, comm, module);
if( OMPI_SUCCESS != rc ) {
goto Error;
}
/* Non-Commutative Operation */
rc= mca_coll_sm2_allreduce_intra_fanin_fanout(sbuf, rbuf, count,
dtype, op, comm, module);
if( OMPI_SUCCESS != rc ) {
goto Error;
}
}
#endif
return OMPI_SUCCESS;
Error:
return rc;
}