bffcc3bca0
Cisco wrote a bipartite graph solver to properly solve interface pair selection for usNIC. Using the reachable framework, the TCP BTL (and possibly the runtime network code) can use the graph solver to make more optimal pair selection. Jeff was happy to have the code more broadly used, but didn't have time to do the move, hence this commit. There are a couple of minor changes to the code compared to the usNIC version. Obviously, the functions have been renamed to match naming convention for their new home. Since it's easier to write unit tests for util/ code, the unit tests have been made first class tests run at "make check" time. This last bit required moving some of the definitions into a new header, bipartite_graph_internal.h, so that they could be included in both the library code and the test code. Signed-off-by: Brian Barrett <bbarrett@amazon.com>
1113 строки
37 KiB
C
1113 строки
37 KiB
C
/*
|
|
* Copyright (c) 2014 Cisco Systems, Inc. All rights reserved.
|
|
* $COPYRIGHT$
|
|
*
|
|
* Additional copyrights may follow
|
|
*
|
|
* $HEADER$
|
|
*/
|
|
|
|
#include "opal_config.h"
|
|
|
|
#include <stdlib.h>
|
|
#include <sys/time.h>
|
|
|
|
#include "opal/constants.h"
|
|
#include "opal/class/opal_list.h"
|
|
#include "opal/class/opal_pointer_array.h"
|
|
#include "opal/util/bipartite_graph.h"
|
|
#include "opal/util/bipartite_graph_internal.h"
|
|
|
|
# define test_out(...) fprintf(stderr, __VA_ARGS__)
|
|
# define check(a) \
|
|
do { \
|
|
if (!(a)) { \
|
|
test_out("%s:%d: check failed, '%s'\n", __func__, __LINE__, #a); \
|
|
return 1; \
|
|
} \
|
|
} while (0)
|
|
# define check_str_eq(a,b) \
|
|
do { \
|
|
const char *a_ = (a); \
|
|
const char *b_ = (b); \
|
|
if (0 != strcmp(a_,b_)) { \
|
|
test_out("%s:%d: check failed, \"%s\" != \"%s\"\n", \
|
|
__func__, __LINE__, a_, b_); \
|
|
return 1; \
|
|
} \
|
|
} while (0)
|
|
# define check_int_eq(got, expected) \
|
|
do { \
|
|
if ((got) != (expected)) { \
|
|
test_out("%s:%d: check failed, \"%s\" != \"%s\", got %d\n", \
|
|
__func__, __LINE__, #got, #expected, (got)); \
|
|
return 1; \
|
|
} \
|
|
} while (0)
|
|
/* just use check_int_eq for now, no public error code to string routine
|
|
* exists (opal_err2str is static) */
|
|
# define check_err_code(got, expected) \
|
|
check_int_eq(got, expected)
|
|
# define check_msg(a, msg) \
|
|
do { \
|
|
if (!(a)) { \
|
|
test_out("%s:%d: check failed, \"%s\" (%s)\n", \
|
|
__func__, __LINE__, #a, (msg)); \
|
|
return 1; \
|
|
} \
|
|
} while (0)
|
|
|
|
#define check_graph_is_consistent(g) \
|
|
do { \
|
|
check(opal_bp_graph_order(g) <= opal_pointer_array_get_size(&g->vertices)); \
|
|
check(g->source_idx >= -1 || g->source_idx < opal_bp_graph_order(g)); \
|
|
check(g->sink_idx >= -1 || g->sink_idx < opal_bp_graph_order(g)); \
|
|
} while (0)
|
|
|
|
#define check_has_in_out_degree(g, u, expected_indegree, expected_outdegree) \
|
|
do { \
|
|
check_int_eq(opal_bp_graph_indegree(g, (u)), expected_indegree); \
|
|
check_int_eq(opal_bp_graph_outdegree(g, (u)), expected_outdegree); \
|
|
} while (0)
|
|
|
|
/* Check the given path for sanity and that it does not have a cycle. Uses
|
|
* the "racing pointers" approach for cycle checking. */
|
|
#define check_path_cycle(n, source, sink, pred) \
|
|
do { \
|
|
int i_, j_; \
|
|
check_int_eq(pred[source], -1); \
|
|
for (i_ = 0; i_ < n; ++i_) { \
|
|
check(pred[i_] >= -1); \
|
|
check(pred[i_] < n); \
|
|
} \
|
|
i_ = (sink); \
|
|
j_ = pred[(sink)]; \
|
|
while (i_ != -1 && j_ != -1) { \
|
|
check_msg(i_ != j_, "CYCLE DETECTED"); \
|
|
i_ = pred[i_]; \
|
|
j_ = pred[j_]; \
|
|
if (j_ != -1) { \
|
|
j_ = pred[j_]; \
|
|
} \
|
|
} \
|
|
} while (0)
|
|
|
|
static int v_cleanup_count = 0;
|
|
static int e_cleanup_count = 0;
|
|
|
|
static void v_cleanup(void *v_data)
|
|
{
|
|
++v_cleanup_count;
|
|
}
|
|
|
|
static void e_cleanup(void *e_data)
|
|
{
|
|
++e_cleanup_count;
|
|
}
|
|
|
|
/* a utility function for comparing integer pairs, useful for sorting the edge
|
|
* list returned by opal_bp_graph_solve_bipartite_assignment */
|
|
static int cmp_int_pair(const void *a, const void *b)
|
|
{
|
|
int *ia = (int *)a;
|
|
int *ib = (int *)b;
|
|
|
|
if (ia[0] < ib[0]) {
|
|
return -1;
|
|
}
|
|
else if (ia[0] > ib[0]) {
|
|
return 1;
|
|
}
|
|
else { /* ia[0] == ib[0] */
|
|
if (ia[1] < ib[1]) {
|
|
return -1;
|
|
}
|
|
else if (ia[1] > ib[1]) {
|
|
return 1;
|
|
}
|
|
else {
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Simple time function so that we don't have to deal with the
|
|
complexity of finding mpi.h to use MPI_Wtime */
|
|
static double gettime(void)
|
|
{
|
|
double wtime;
|
|
struct timeval tv;
|
|
gettimeofday(&tv, NULL);
|
|
wtime = tv.tv_sec;
|
|
wtime += (double)tv.tv_usec / 1000000.0;
|
|
|
|
return wtime;
|
|
}
|
|
|
|
static int test_graph_create(void *ctx)
|
|
{
|
|
opal_bp_graph_t *g;
|
|
int i;
|
|
int err;
|
|
int user_data;
|
|
int index;
|
|
|
|
/* TEST CASE: check zero-vertex case */
|
|
g = NULL;
|
|
err = opal_bp_graph_create(NULL, NULL, &g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check(g != NULL);
|
|
check(opal_bp_graph_order(g) == 0);
|
|
check_graph_is_consistent(g);
|
|
err = opal_bp_graph_free(g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
/* TEST CASE: check nonzero-vertex case with no cleanup routines */
|
|
g = NULL;
|
|
err = opal_bp_graph_create(NULL, NULL, &g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check(g != NULL);
|
|
check_graph_is_consistent(g);
|
|
for (i = 0; i < 4; ++i) {
|
|
index = -1;
|
|
err = opal_bp_graph_add_vertex(g, &user_data, &index);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check(index == i);
|
|
}
|
|
check(opal_bp_graph_order(g) == 4);
|
|
check_graph_is_consistent(g);
|
|
err = opal_bp_graph_free(g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
/* TEST CASE: make sure cleanup routines are invoked properly */
|
|
g = NULL;
|
|
v_cleanup_count = 0;
|
|
e_cleanup_count = 0;
|
|
err = opal_bp_graph_create(&v_cleanup, &e_cleanup, &g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check(g != NULL);
|
|
check_graph_is_consistent(g);
|
|
for (i = 0; i < 5; ++i) {
|
|
err = opal_bp_graph_add_vertex(g, &user_data, &index);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check(index == i);
|
|
}
|
|
check(opal_bp_graph_order(g) == 5);
|
|
check_graph_is_consistent(g);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/0, /*v=*/3, /*cost=*/1,
|
|
/*capacity=*/2, &user_data);
|
|
check_graph_is_consistent(g);
|
|
check(v_cleanup_count == 0);
|
|
check(e_cleanup_count == 0);
|
|
err = opal_bp_graph_free(g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check(v_cleanup_count == 5);
|
|
check(e_cleanup_count == 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int test_graph_clone(void *ctx)
|
|
{
|
|
opal_bp_graph_t *g, *gx;
|
|
int i;
|
|
int err;
|
|
int user_data;
|
|
int index;
|
|
|
|
/* TEST CASE: make sure that simple cloning works fine */
|
|
g = NULL;
|
|
v_cleanup_count = 0;
|
|
e_cleanup_count = 0;
|
|
err = opal_bp_graph_create(&v_cleanup, &e_cleanup, &g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check(g != NULL);
|
|
check_graph_is_consistent(g);
|
|
|
|
/* add 5 edges */
|
|
for (i = 0; i < 5; ++i) {
|
|
err = opal_bp_graph_add_vertex(g, &user_data, &index);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
}
|
|
check(opal_bp_graph_order(g) == 5);
|
|
check_graph_is_consistent(g);
|
|
|
|
/* and two edges */
|
|
err = opal_bp_graph_add_edge(g, /*u=*/0, /*v=*/3, /*cost=*/1,
|
|
/*capacity=*/2, &user_data);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check_graph_is_consistent(g);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/3, /*v=*/1, /*cost=*/2,
|
|
/*capacity=*/100, &user_data);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check_graph_is_consistent(g);
|
|
|
|
/* now clone it and ensure that we get the same kind of graph */
|
|
gx = NULL;
|
|
err = opal_bp_graph_clone(g, /*copy_user_data=*/false, &gx);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check(gx != NULL);
|
|
|
|
/* double check that cleanups still happen as expected after cloning */
|
|
err = opal_bp_graph_free(gx);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check(v_cleanup_count == 0);
|
|
check(e_cleanup_count == 0);
|
|
err = opal_bp_graph_free(g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check(v_cleanup_count == 5);
|
|
check(e_cleanup_count == 2);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int test_graph_accessors(void *ctx)
|
|
{
|
|
opal_bp_graph_t *g;
|
|
int i;
|
|
int err;
|
|
|
|
/* TEST CASE: check _indegree/_outdegree/_order work correctly */
|
|
err = opal_bp_graph_create(NULL, NULL, &g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check(g != NULL);
|
|
|
|
for (i = 0; i < 4; ++i) {
|
|
err = opal_bp_graph_add_vertex(g, NULL, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
check(opal_bp_graph_indegree(g, i) == 0);
|
|
check(opal_bp_graph_outdegree(g, i) == 0);
|
|
}
|
|
|
|
check(opal_bp_graph_order(g) == 4);
|
|
|
|
err = opal_bp_graph_add_edge(g, /*u=*/0, /*v=*/2, /*cost=*/2,
|
|
/*capacity=*/1, NULL);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/0, /*v=*/1, /*cost=*/2,
|
|
/*capacity=*/1, NULL);
|
|
|
|
check(opal_bp_graph_indegree(g, 0) == 0);
|
|
check(opal_bp_graph_outdegree(g, 0) == 2);
|
|
check(opal_bp_graph_indegree(g, 1) == 1);
|
|
check(opal_bp_graph_outdegree(g, 1) == 0);
|
|
check(opal_bp_graph_indegree(g, 2) == 1);
|
|
check(opal_bp_graph_outdegree(g, 2) == 0);
|
|
check(opal_bp_graph_indegree(g, 3) == 0);
|
|
check(opal_bp_graph_outdegree(g, 3) == 0);
|
|
|
|
err = opal_bp_graph_free(g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int test_graph_assignment_solver(void *ctx)
|
|
{
|
|
opal_bp_graph_t *g;
|
|
int i;
|
|
int err;
|
|
int nme;
|
|
int *me;
|
|
int iter;
|
|
double start, end;
|
|
|
|
/* TEST CASE: check that simple cases are solved correctly
|
|
*
|
|
* 0 --> 2
|
|
* 1 --> 3
|
|
*/
|
|
err = opal_bp_graph_create(NULL, NULL, &g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check(g != NULL);
|
|
|
|
for (i = 0; i < 4; ++i) {
|
|
err = opal_bp_graph_add_vertex(g, NULL, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
}
|
|
|
|
err = opal_bp_graph_add_edge(g, /*u=*/0, /*v=*/2, /*cost=*/10,
|
|
/*capacity=*/1, NULL);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/1, /*v=*/3, /*cost=*/2,
|
|
/*capacity=*/1, NULL);
|
|
|
|
me = NULL;
|
|
err = opal_bp_graph_solve_bipartite_assignment(g,
|
|
&nme,
|
|
&me);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check_int_eq(nme, 2);
|
|
check(me != NULL);
|
|
qsort(me, nme, 2*sizeof(int), &cmp_int_pair);
|
|
check(me[0] == 0 && me[1] == 2);
|
|
check(me[2] == 1 && me[3] == 3);
|
|
|
|
err = opal_bp_graph_free(g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
|
|
/* TEST CASE: left side has more vertices than the right side
|
|
*
|
|
* 0 --> 3
|
|
* 1 --> 4
|
|
* 2 --> 4
|
|
*/
|
|
err = opal_bp_graph_create(NULL, NULL, &g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check(g != NULL);
|
|
|
|
for (i = 0; i < 5; ++i) {
|
|
err = opal_bp_graph_add_vertex(g, NULL, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
}
|
|
|
|
err = opal_bp_graph_add_edge(g, /*u=*/0, /*v=*/3, /*cost=*/10,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/1, /*v=*/4, /*cost=*/2,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/2, /*v=*/4, /*cost=*/1,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
me = NULL;
|
|
err = opal_bp_graph_solve_bipartite_assignment(g,
|
|
&nme,
|
|
&me);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check_int_eq(nme, 2);
|
|
check(me != NULL);
|
|
qsort(me, nme, 2*sizeof(int), &cmp_int_pair);
|
|
check(me[0] == 0 && me[1] == 3);
|
|
check(me[2] == 2 && me[3] == 4);
|
|
free(me);
|
|
|
|
err = opal_bp_graph_free(g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
|
|
/* test Christian's case:
|
|
* 0 --> 2
|
|
* 0 --> 3
|
|
* 1 --> 3
|
|
*
|
|
* make sure that 0-->2 & 1-->3 get chosen.
|
|
*/
|
|
err = opal_bp_graph_create(NULL, NULL, &g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check(g != NULL);
|
|
|
|
for (i = 0; i < 4; ++i) {
|
|
err = opal_bp_graph_add_vertex(g, NULL, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
}
|
|
|
|
err = opal_bp_graph_add_edge(g, /*u=*/0, /*v=*/2, /*cost=*/10,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/0, /*v=*/3, /*cost=*/1,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/1, /*v=*/3, /*cost=*/5,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
me = NULL;
|
|
err = opal_bp_graph_solve_bipartite_assignment(g,
|
|
&nme,
|
|
&me);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check_int_eq(nme, 2);
|
|
check(me != NULL);
|
|
qsort(me, nme, 2*sizeof(int), &cmp_int_pair);
|
|
check(me[0] == 0 && me[1] == 2);
|
|
check(me[2] == 1 && me[3] == 3);
|
|
free(me);
|
|
|
|
err = opal_bp_graph_free(g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
/* Also need to do this version of it to be safe:
|
|
* 0 --> 2
|
|
* 1 --> 2
|
|
* 1 --> 3
|
|
*
|
|
* Should choose 0-->2 & 1-->3 here too.
|
|
*/
|
|
err = opal_bp_graph_create(NULL, NULL, &g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check(g != NULL);
|
|
|
|
for (i = 0; i < 4; ++i) {
|
|
err = opal_bp_graph_add_vertex(g, NULL, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
}
|
|
|
|
err = opal_bp_graph_add_edge(g, /*u=*/0, /*v=*/2, /*cost=*/10,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/1, /*v=*/2, /*cost=*/1,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/1, /*v=*/3, /*cost=*/5,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
me = NULL;
|
|
err = opal_bp_graph_solve_bipartite_assignment(g,
|
|
&nme,
|
|
&me);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check_int_eq(nme, 2);
|
|
check(me != NULL);
|
|
qsort(me, nme, 2*sizeof(int), &cmp_int_pair);
|
|
check(me[0] == 0 && me[1] == 2);
|
|
check(me[2] == 1 && me[3] == 3);
|
|
free(me);
|
|
|
|
err = opal_bp_graph_free(g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
/* TEST CASE: test Christian's case with negative weights:
|
|
* 0 --> 2
|
|
* 0 --> 3
|
|
* 1 --> 3
|
|
*
|
|
* make sure that 0-->2 & 1-->3 get chosen.
|
|
*/
|
|
err = opal_bp_graph_create(NULL, NULL, &g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check(g != NULL);
|
|
|
|
for (i = 0; i < 4; ++i) {
|
|
err = opal_bp_graph_add_vertex(g, NULL, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
}
|
|
|
|
err = opal_bp_graph_add_edge(g, /*u=*/0, /*v=*/2, /*cost=*/-1,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/0, /*v=*/3, /*cost=*/-10,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/1, /*v=*/3, /*cost=*/-5,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
me = NULL;
|
|
err = opal_bp_graph_solve_bipartite_assignment(g,
|
|
&nme,
|
|
&me);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check_int_eq(nme, 2);
|
|
check(me != NULL);
|
|
qsort(me, nme, 2*sizeof(int), &cmp_int_pair);
|
|
check(me[0] == 0 && me[1] == 2);
|
|
check(me[2] == 1 && me[3] == 3);
|
|
free(me);
|
|
|
|
err = opal_bp_graph_free(g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
|
|
/* TEST CASE: add some disconnected vertices
|
|
* 0 --> 2
|
|
* 0 --> 3
|
|
* 1 --> 3
|
|
* x --> 4
|
|
*
|
|
* make sure that 0-->2 & 1-->3 get chosen.
|
|
*/
|
|
err = opal_bp_graph_create(NULL, NULL, &g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check(g != NULL);
|
|
|
|
for (i = 0; i < 5; ++i) {
|
|
err = opal_bp_graph_add_vertex(g, NULL, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
}
|
|
|
|
err = opal_bp_graph_add_edge(g, /*u=*/0, /*v=*/2, /*cost=*/-1,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/0, /*v=*/3, /*cost=*/-10,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/1, /*v=*/3, /*cost=*/-5,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
me = NULL;
|
|
err = opal_bp_graph_solve_bipartite_assignment(g,
|
|
&nme,
|
|
&me);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check_int_eq(nme, 2);
|
|
check(me != NULL);
|
|
qsort(me, nme, 2*sizeof(int), &cmp_int_pair);
|
|
check(me[0] == 0 && me[1] == 2);
|
|
check(me[2] == 1 && me[3] == 3);
|
|
free(me);
|
|
|
|
err = opal_bp_graph_free(g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
/* TEST CASE: sample UDP graph from bldsb005 + bldsb007
|
|
* 0 --> 2 (cost -4294967296)
|
|
* 1 --> 2 (cost -4294967296)
|
|
* 0 --> 3 (cost -4294967296)
|
|
* 1 --> 3 (cost -4294967296)
|
|
*
|
|
* Make sure that either (0-->2 && 1-->3) or (0-->3 && 1-->2) get chosen.
|
|
*/
|
|
err = opal_bp_graph_create(NULL, NULL, &g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check(g != NULL);
|
|
|
|
for (i = 0; i < 4; ++i) {
|
|
err = opal_bp_graph_add_vertex(g, NULL, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
}
|
|
|
|
err = opal_bp_graph_add_edge(g, /*u=*/0, /*v=*/2, /*cost=*/-4294967296,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/1, /*v=*/2, /*cost=*/-4294967296,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/0, /*v=*/3, /*cost=*/-4294967296,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/1, /*v=*/3, /*cost=*/-4294967296,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
me = NULL;
|
|
err = opal_bp_graph_solve_bipartite_assignment(g,
|
|
&nme,
|
|
&me);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check_int_eq(nme, 2);
|
|
check(me != NULL);
|
|
qsort(me, nme, 2*sizeof(int), &cmp_int_pair);
|
|
if (me[1] == 2) {
|
|
check(me[0] == 0 && me[1] == 2);
|
|
check(me[2] == 1 && me[3] == 3);
|
|
} else {
|
|
check(me[0] == 0 && me[1] == 3);
|
|
check(me[2] == 1 && me[3] == 2);
|
|
}
|
|
free(me);
|
|
|
|
err = opal_bp_graph_free(g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
|
|
/* TEST CASE: check that simple cases are solved correctly
|
|
*
|
|
* 0 --> 2
|
|
* 1 --> 2
|
|
*/
|
|
err = opal_bp_graph_create(NULL, NULL, &g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check(g != NULL);
|
|
|
|
for (i = 0; i < 3; ++i) {
|
|
err = opal_bp_graph_add_vertex(g, NULL, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
}
|
|
|
|
err = opal_bp_graph_add_edge(g, /*u=*/0, /*v=*/2, /*cost=*/-100,
|
|
/*capacity=*/1, NULL);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/1, /*v=*/2, /*cost=*/-100,
|
|
/*capacity=*/1, NULL);
|
|
|
|
me = NULL;
|
|
err = opal_bp_graph_solve_bipartite_assignment(g,
|
|
&nme,
|
|
&me);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check_int_eq(nme, 1);
|
|
check(me != NULL);
|
|
qsort(me, nme, 2*sizeof(int), &cmp_int_pair);
|
|
check((me[0] == 0 || me[0] == 1) && me[1] == 2);
|
|
|
|
err = opal_bp_graph_free(g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
|
|
/* TEST CASE: performance sanity check
|
|
*
|
|
* Construct this graph and ensure that it doesn't take too long on a large
|
|
* cluster (1000 nodes).
|
|
* 0 --> 3
|
|
* 1 --> 4
|
|
* 2 --> 4
|
|
*/
|
|
#define NUM_ITER (10000)
|
|
start = gettime();
|
|
for (iter = 0; iter < NUM_ITER; ++iter) {
|
|
err = opal_bp_graph_create(NULL, NULL, &g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check(g != NULL);
|
|
|
|
for (i = 0; i < 5; ++i) {
|
|
err = opal_bp_graph_add_vertex(g, NULL, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
}
|
|
|
|
err = opal_bp_graph_add_edge(g, /*u=*/0, /*v=*/3, /*cost=*/10,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/1, /*v=*/4, /*cost=*/2,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/2, /*v=*/4, /*cost=*/1,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
me = NULL;
|
|
err = opal_bp_graph_solve_bipartite_assignment(g,
|
|
&nme,
|
|
&me);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check_int_eq(nme, 2);
|
|
check(me != NULL);
|
|
qsort(me, nme, 2*sizeof(int), &cmp_int_pair);
|
|
check(me[0] == 0 && me[1] == 3);
|
|
check(me[2] == 2 && me[3] == 4);
|
|
free(me);
|
|
|
|
err = opal_bp_graph_free(g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
}
|
|
end = gettime();
|
|
/* ensure that this operation on a 1000 node cluster will take less than one second */
|
|
check(((end - start) / NUM_ITER) < 0.001);
|
|
#if 0
|
|
fprintf(stderr, "timing for %d iterations is %f seconds (%f s/iter)\n",
|
|
NUM_ITER, end - start, (end - start) / NUM_ITER);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int test_graph_bellman_ford(void *ctx)
|
|
{
|
|
opal_bp_graph_t *g;
|
|
int i;
|
|
int err;
|
|
bool path_found;
|
|
int *pred;
|
|
|
|
/* TEST CASE: check that simple cases are solved correctly
|
|
* -> 0 --> 2
|
|
* / \
|
|
* 4 --> 5
|
|
* \ /
|
|
* -> 1 --> 3 /
|
|
*
|
|
* should yield the path 5,1,3,6 (see costs in code below)
|
|
*/
|
|
err = opal_bp_graph_create(NULL, NULL, &g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check(g != NULL);
|
|
|
|
for (i = 0; i < 6; ++i) {
|
|
err = opal_bp_graph_add_vertex(g, NULL, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
}
|
|
|
|
err = opal_bp_graph_add_edge(g, /*u=*/0, /*v=*/2, /*cost=*/10,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/1, /*v=*/3, /*cost=*/2,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/4, /*v=*/0, /*cost=*/0,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/4, /*v=*/1, /*cost=*/0,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/2, /*v=*/5, /*cost=*/0,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/3, /*v=*/5, /*cost=*/0,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
pred = malloc(6*sizeof(*pred));
|
|
check(pred != NULL);
|
|
path_found = opal_bp_graph_bellman_ford(g, /*source=*/4, /*target=*/5, pred);
|
|
check(path_found);
|
|
check_path_cycle(6, /*source=*/4, /*target=*/5, pred);
|
|
check_int_eq(pred[5], 3);
|
|
check_int_eq(pred[3], 1);
|
|
check_int_eq(pred[1], 4);
|
|
free(pred);
|
|
|
|
err = opal_bp_graph_free(g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
|
|
/* TEST CASE: left side has more vertices than the right side, then
|
|
* convert to a flow network
|
|
*
|
|
* 0 --> 3
|
|
* 1 --> 4
|
|
* 2 --> 4
|
|
*/
|
|
err = opal_bp_graph_create(NULL, NULL, &g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check(g != NULL);
|
|
|
|
for (i = 0; i < 5; ++i) {
|
|
err = opal_bp_graph_add_vertex(g, NULL, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
}
|
|
|
|
err = opal_bp_graph_add_edge(g, /*u=*/0, /*v=*/3, /*cost=*/10,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/1, /*v=*/4, /*cost=*/2,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/2, /*v=*/4, /*cost=*/1,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
err = opal_bp_graph_bipartite_to_flow(g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
pred = malloc(7*sizeof(*pred));
|
|
check(pred != NULL);
|
|
path_found = opal_bp_graph_bellman_ford(g, /*source=*/5, /*target=*/6, pred);
|
|
check(path_found);
|
|
check_int_eq(g->source_idx, 5);
|
|
check_int_eq(g->sink_idx, 6);
|
|
check_path_cycle(7, /*source=*/5, /*target=*/6, pred);
|
|
check_int_eq(pred[6], 4);
|
|
check_int_eq(pred[4], 2);
|
|
check_int_eq(pred[2], 5);
|
|
free(pred);
|
|
|
|
err = opal_bp_graph_free(g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
/* TEST CASE: same as previous, but with very large cost values (try to
|
|
* catch incorrect integer conversions)
|
|
*
|
|
* 0 --> 3
|
|
* 1 --> 4
|
|
* 2 --> 4
|
|
*/
|
|
err = opal_bp_graph_create(NULL, NULL, &g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check(g != NULL);
|
|
|
|
for (i = 0; i < 5; ++i) {
|
|
err = opal_bp_graph_add_vertex(g, NULL, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
}
|
|
|
|
err = opal_bp_graph_add_edge(g, /*u=*/0, /*v=*/3, /*cost=*/INT32_MAX+10LL,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/1, /*v=*/4, /*cost=*/INT32_MAX+2LL,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/2, /*v=*/4, /*cost=*/INT32_MAX+1LL,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
err = opal_bp_graph_bipartite_to_flow(g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
pred = malloc(7*sizeof(*pred));
|
|
check(pred != NULL);
|
|
path_found = opal_bp_graph_bellman_ford(g, /*source=*/5, /*target=*/6, pred);
|
|
check(path_found);
|
|
check_int_eq(g->source_idx, 5);
|
|
check_int_eq(g->sink_idx, 6);
|
|
check_path_cycle(7, /*source=*/5, /*target=*/6, pred);
|
|
check_int_eq(pred[6], 4);
|
|
check_int_eq(pred[4], 2);
|
|
check_int_eq(pred[2], 5);
|
|
free(pred);
|
|
|
|
err = opal_bp_graph_free(g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
/* TEST CASE: left side has more vertices than the right side, then
|
|
* convert to a flow network. Negative costs are used, but should not
|
|
* result in a negative cycle.
|
|
*
|
|
* 0 --> 3
|
|
* 1 --> 4
|
|
* 2 --> 4
|
|
*/
|
|
err = opal_bp_graph_create(NULL, NULL, &g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check(g != NULL);
|
|
|
|
for (i = 0; i < 5; ++i) {
|
|
err = opal_bp_graph_add_vertex(g, NULL, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
}
|
|
|
|
err = opal_bp_graph_add_edge(g, /*u=*/0, /*v=*/3, /*cost=*/-1,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/1, /*v=*/4, /*cost=*/-2,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/2, /*v=*/4, /*cost=*/-10,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
err = opal_bp_graph_bipartite_to_flow(g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
pred = malloc(7*sizeof(*pred));
|
|
check(pred != NULL);
|
|
path_found = opal_bp_graph_bellman_ford(g, /*source=*/5, /*target=*/6, pred);
|
|
check(path_found);
|
|
check_int_eq(g->source_idx, 5);
|
|
check_int_eq(g->sink_idx, 6);
|
|
check_path_cycle(7, /*source=*/5, /*target=*/6, pred);
|
|
check_int_eq(pred[6], 4);
|
|
check_int_eq(pred[4], 2);
|
|
check_int_eq(pred[2], 5);
|
|
free(pred);
|
|
|
|
err = opal_bp_graph_free(g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int test_graph_flow_conversion(void *ctx)
|
|
{
|
|
opal_bp_graph_t *g;
|
|
int i;
|
|
int err;
|
|
|
|
/* TEST CASE: left side has more vertices than the right side, then
|
|
* convert to a flow network
|
|
*
|
|
* 0 --> 3
|
|
* 1 --> 4
|
|
* 2 --> 4
|
|
*/
|
|
err = opal_bp_graph_create(NULL, NULL, &g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check(g != NULL);
|
|
|
|
for (i = 0; i < 5; ++i) {
|
|
err = opal_bp_graph_add_vertex(g, NULL, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
}
|
|
|
|
err = opal_bp_graph_add_edge(g, /*u=*/0, /*v=*/3, /*cost=*/10,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/1, /*v=*/4, /*cost=*/2,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/2, /*v=*/4, /*cost=*/1,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
check_int_eq(opal_bp_graph_order(g), 5);
|
|
check_has_in_out_degree(g, 0, /*exp_indeg=*/0, /*exp_outdeg=*/1);
|
|
check_has_in_out_degree(g, 1, /*exp_indeg=*/0, /*exp_outdeg=*/1);
|
|
check_has_in_out_degree(g, 2, /*exp_indeg=*/0, /*exp_outdeg=*/1);
|
|
check_has_in_out_degree(g, 3, /*exp_indeg=*/1, /*exp_outdeg=*/0);
|
|
check_has_in_out_degree(g, 4, /*exp_indeg=*/2, /*exp_outdeg=*/0);
|
|
|
|
/* this should add two nodes and a bunch of edges */
|
|
err = opal_bp_graph_bipartite_to_flow(g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
check_int_eq(opal_bp_graph_order(g), 7);
|
|
check_has_in_out_degree(g, 0, /*exp_indeg=*/2, /*exp_outdeg=*/2);
|
|
check_has_in_out_degree(g, 1, /*exp_indeg=*/2, /*exp_outdeg=*/2);
|
|
check_has_in_out_degree(g, 2, /*exp_indeg=*/2, /*exp_outdeg=*/2);
|
|
check_has_in_out_degree(g, 3, /*exp_indeg=*/2, /*exp_outdeg=*/2);
|
|
check_has_in_out_degree(g, 4, /*exp_indeg=*/3, /*exp_outdeg=*/3);
|
|
check_has_in_out_degree(g, 5, /*exp_indeg=*/3, /*exp_outdeg=*/3);
|
|
check_has_in_out_degree(g, 6, /*exp_indeg=*/2, /*exp_outdeg=*/2);
|
|
|
|
err = opal_bp_graph_free(g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
|
|
/* TEST CASE: empty graph
|
|
*
|
|
* there's no reason that the code should bother to support this, it's not
|
|
* useful
|
|
*/
|
|
err = opal_bp_graph_create(NULL, NULL, &g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check(g != NULL);
|
|
check_int_eq(opal_bp_graph_order(g), 0);
|
|
err = opal_bp_graph_bipartite_to_flow(g);
|
|
check_err_code(err, OPAL_ERR_BAD_PARAM);
|
|
err = opal_bp_graph_free(g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int test_graph_param_checking(void *ctx)
|
|
{
|
|
opal_bp_graph_t *g;
|
|
int i;
|
|
int err;
|
|
|
|
err = opal_bp_graph_create(NULL, NULL, &g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
check(g != NULL);
|
|
|
|
/* try with no vertices */
|
|
err = opal_bp_graph_add_edge(g, /*u=*/3, /*v=*/5, /*cost=*/0,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_ERR_BAD_PARAM);
|
|
|
|
for (i = 0; i < 6; ++i) {
|
|
err = opal_bp_graph_add_vertex(g, NULL, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
}
|
|
|
|
/* try u out of range */
|
|
err = opal_bp_graph_add_edge(g, /*u=*/9, /*v=*/5, /*cost=*/0,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_ERR_BAD_PARAM);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/6, /*v=*/5, /*cost=*/0,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_ERR_BAD_PARAM);
|
|
|
|
/* try v out of range */
|
|
err = opal_bp_graph_add_edge(g, /*u=*/2, /*v=*/8, /*cost=*/0,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_ERR_BAD_PARAM);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/2, /*v=*/6, /*cost=*/0,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_ERR_BAD_PARAM);
|
|
|
|
/* try adding an edge that already exists */
|
|
err = opal_bp_graph_add_edge(g, /*u=*/2, /*v=*/4, /*cost=*/0,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/2, /*v=*/4, /*cost=*/0,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_EXISTS);
|
|
|
|
/* try an edge with an out of range cost */
|
|
err = opal_bp_graph_add_edge(g, /*u=*/2, /*v=*/3, /*cost=*/INT64_MAX,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_ERR_BAD_PARAM);
|
|
err = opal_bp_graph_add_edge(g, /*u=*/2, /*v=*/3, /*cost=*/INT64_MAX-1,
|
|
/*capacity=*/1, NULL);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
err = opal_bp_graph_free(g);
|
|
check_err_code(err, OPAL_SUCCESS);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int test_graph_helper_macros(void *ctx)
|
|
{
|
|
int u, v;
|
|
int pred[6];
|
|
bool visited[6][6];
|
|
int pair1[2];
|
|
int pair2[2];
|
|
|
|
#define RESET_ARRAYS(n, pred, visited) \
|
|
do { \
|
|
for (u = 0; u < 6; ++u) { \
|
|
pred[u] = -1; \
|
|
for (v = 0; v < 6; ++v) { \
|
|
visited[u][v] = false; \
|
|
} \
|
|
} \
|
|
} while (0)
|
|
|
|
/* TEST CASE: make sure that an empty path does not cause any edges to be
|
|
* visited */
|
|
RESET_ARRAYS(6, pred, visited);
|
|
FOREACH_UV_ON_PATH(pred, 3, 5, u, v) {
|
|
visited[u][v] = true;
|
|
}
|
|
for (u = 0; u < 6; ++u) {
|
|
for (v = 0; v < 6; ++v) {
|
|
check(visited[u][v] == false);
|
|
}
|
|
}
|
|
|
|
/* TEST CASE: make sure that every edge in the given path gets visited */
|
|
RESET_ARRAYS(6, pred, visited);
|
|
pred[5] = 2;
|
|
pred[2] = 1;
|
|
pred[1] = 3;
|
|
FOREACH_UV_ON_PATH(pred, 3, 5, u, v) {
|
|
visited[u][v] = true;
|
|
}
|
|
for (u = 0; u < 6; ++u) {
|
|
for (v = 0; v < 6; ++v) {
|
|
if ((u == 2 && v == 5) ||
|
|
(u == 1 && v == 2) ||
|
|
(u == 3 && v == 1)) {
|
|
check(visited[u][v] == true);
|
|
}
|
|
else {
|
|
check(visited[u][v] == false);
|
|
}
|
|
}
|
|
}
|
|
|
|
#undef RESET_ARRAYS
|
|
|
|
/* not technically a macro, but make sure that the pair comparison function
|
|
* isn't broken (because it was in an earlier revision...) */
|
|
pair1[0] = 0; pair1[1] = 1;
|
|
pair2[0] = 0; pair2[1] = 1;
|
|
check(cmp_int_pair(&pair1[0], &pair2[0]) == 0);
|
|
|
|
pair1[0] = 1; pair1[1] = 1;
|
|
pair2[0] = 0; pair2[1] = 1;
|
|
check(cmp_int_pair(pair1, pair2) > 0);
|
|
|
|
pair1[0] = 0; pair1[1] = 1;
|
|
pair2[0] = 1; pair2[1] = 1;
|
|
check(cmp_int_pair(pair1, pair2) < 0);
|
|
|
|
pair1[0] = 1; pair1[1] = 0;
|
|
pair2[0] = 1; pair2[1] = 1;
|
|
check(cmp_int_pair(pair1, pair2) < 0);
|
|
|
|
pair1[0] = 1; pair1[1] = 1;
|
|
pair2[0] = 1; pair2[1] = 0;
|
|
check(cmp_int_pair(pair1, pair2) > 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
check(test_graph_create(NULL) == 0);
|
|
check(test_graph_clone(NULL) == 0);
|
|
check(test_graph_accessors(NULL) == 0);
|
|
check(test_graph_assignment_solver(NULL) == 0);
|
|
check(test_graph_bellman_ford(NULL) == 0);
|
|
check(test_graph_flow_conversion(NULL) == 0);
|
|
check(test_graph_param_checking(NULL) == 0);
|
|
check(test_graph_helper_macros(NULL) == 0);
|
|
|
|
return 0;
|
|
}
|