1
1
openmpi/ompi/mca/btl/elan/btl_elan.c
Rainer Keller d81443cc5a - On the way to get the BTLs split out and lessen dependency on orte:
Often, orte/util/show_help.h is included, although no functionality
   is required -- instead, most often opal_output.h, or               
   orte/mca/rml/rml_types.h                                           
   Please see orte_show_help_replacement.sh commited next.            

 - Local compilation (Linux/x86_64) w/ -Wimplicit-function-declaration
   actually showed two *missing* #include "orte/util/show_help.h"     
   in orte/mca/odls/base/odls_base_default_fns.c and                  
   in orte/tools/orte-top/orte-top.c                                  
   Manually added these.                                              

   Let's have MTT the last word.

This commit was SVN r20557.
2009-02-14 02:26:12 +00:00

666 строки
24 KiB
C

/*
* Copyright (c) 2004-2008 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "ompi_config.h"
#include "opal/util/if.h"
#include "opal/util/output.h"
#include "ompi/mca/pml/pml.h"
#include "ompi/mca/btl/btl.h"
#include "ompi/communicator/communicator.h"
#include "btl_elan.h"
#include "btl_elan_frag.h"
#include "btl_elan_proc.h"
#include "btl_elan_endpoint.h"
#include "ompi/datatype/convertor.h"
#include "ompi/mca/btl/base/base.h"
#include "ompi/runtime/ompi_module_exchange.h"
#include "opal/class/opal_hash_table.h"
#include "stdio.h"
#include "elan/elan.h"
#include "opal/util/os_path.h"
#include "opal/util/opal_environ.h"
#include "orte/util/proc_info.h"
/**
*
*/
extern char** environ;
/**
* Reduce function that compute the MAX over an array of integers.
*/
static void __reduce_max_fn( void *vin, void* vinout, int* count, void* handle )
{
int *in = (int*)vin, *inout = (int*)vinout;
int i;
for( i = 0; i < (*count); i++ ) {
if( in[i] > inout[i] ) inout[i] = in[i];
}
}
/**
* PML->BTL notification of change in the process list.
*
* @param btl (IN)
* @param nprocs (IN) Number of processes
* @param procs (IN) Set of processes
* @param peers (OUT) Set of (optional) peer addressing info.
* @param peers (IN/OUT) Set of processes that are reachable via this BTL.
* @return OMPI_SUCCESS or error status on failure.
*
*/
static int mca_btl_elan_add_procs( struct mca_btl_base_module_t* btl,
size_t nprocs,
struct ompi_proc_t **ompi_procs,
struct mca_btl_base_endpoint_t** peers,
ompi_bitmap_t* reachable )
{
mca_btl_elan_module_t* elan_btl = (mca_btl_elan_module_t*)btl;
int i, j, rc;
char* filename;
FILE* file;
ELAN_BASE* base;
filename = opal_os_path( false, orte_process_info.proc_session_dir, "ELAN_ID", NULL );
file = fopen( filename, "w" );
fprintf( file, "%s %d\n", ompi_proc_local_proc->proc_hostname, elan_btl->elan_position );
for(i = 0; i < (int)nprocs; i++) {
struct ompi_proc_t* ompi_proc = ompi_procs[i];
mca_btl_elan_proc_t* elan_proc;
mca_btl_base_endpoint_t* elan_endpoint;
/* Don't use Elan for local communications */
if( ompi_proc_local_proc == ompi_proc )
continue;
if(NULL == (elan_proc = mca_btl_elan_proc_create(ompi_proc))) {
return OMPI_ERR_OUT_OF_RESOURCE;
}
elan_endpoint = OBJ_NEW(mca_btl_elan_endpoint_t);
if(NULL == elan_endpoint) {
return OMPI_ERR_OUT_OF_RESOURCE;
}
elan_endpoint->endpoint_btl = elan_btl;
OPAL_THREAD_LOCK(&elan_proc->proc_lock);
rc = mca_btl_elan_proc_insert(elan_proc, elan_endpoint);
OPAL_THREAD_UNLOCK(&elan_proc->proc_lock);
if( OMPI_SUCCESS != rc ) {
OBJ_RELEASE(elan_endpoint);
OBJ_RELEASE(elan_proc);
continue;
}
for( j = 0; j < (int)elan_proc->proc_rail_count; j++ ) {
fprintf( file, "%s %d\n", ompi_proc->proc_hostname,
elan_proc->position_id_array[j] );
}
ompi_bitmap_set_bit(reachable, i);
peers[i] = elan_endpoint;
}
fclose(file);
/* Set the environment before firing up the Elan library */
opal_setenv( "LIBELAN_MACHINES_FILE", filename, true, &environ );
opal_setenv( "MPIRUN_ELANIDMAP_FILE", mca_btl_elan_component.elanidmap_file,
false, &environ );
base = elan_baseInit(0);
if( NULL == base )
return OMPI_ERR_OUT_OF_RESOURCE;
if( NULL == base->state ) {
mca_btl_base_error_no_nics( "ELAN", "Quadrics" );
return OMPI_ERR_OUT_OF_RESOURCE;
}
elan_btl->base = base;
elan_btl->elan_vp = base->state->vp;
{
unsigned int* vp_array = (unsigned int*)calloc( nprocs, sizeof(unsigned int) );
/* Set my position in the array with the Elan vp */
vp_array[(int)ompi_proc_local_proc->proc_name.vpid] = elan_btl->elan_vp;
/* Do a reduce with the previously defined MAX function. The outcome will be
* that at each process vpid index we will have their Elan vp. With this Elan
* vp we can therefore communicate with the process.
*/
elan_reduce( base->allGroup, vp_array, vp_array, sizeof(unsigned int), (int)nprocs,
__reduce_max_fn, NULL, 0, 0,
ELAN_REDUCE_COMMUTE | ELAN_RESULT_ALL | base->group_flags, 0);
for(i = 0; i < (int)nprocs; i++) {
if(NULL == peers[i])
continue;
peers[i]->elan_vp = vp_array[(int)ompi_procs[i]->proc_name.vpid];
}
free(vp_array);
}
/* Create the tport global queue */
if( (elan_btl->tport_queue = elan_gallocQueue(base, base->allGroup)) == NULL ) {
return OMPI_ERR_OUT_OF_RESOURCE;
}
/* Create and initialize the tport */
if( !(elan_btl->tport = elan_tportInit(base->state,
elan_btl->tport_queue,
mca_btl_elan_component.elan_max_posted_recv,
base->tport_smallmsg,
mca_btl_elan_module.super.btl_eager_limit,
base->tport_stripemsg,
ELAN_POLL_EVENT,
base->retryCount,
&base->shm_key,
base->shm_fifodepth,
base->shm_fragsize,
0))) {
return OMPI_ERR_OUT_OF_RESOURCE;
}
/* Create the receive queue */
if( (elan_btl->global_queue = elan_gallocQueue(base, base->allGroup)) == NULL ) {
return OMPI_ERR_OUT_OF_RESOURCE;
}
mca_btl_elan_component.queue_max_size = elan_queueMaxSlotSize( base->state )
- sizeof(mca_btl_elan_hdr_t);
elan_btl->rx_queue =
elan_queueRxInit( base->state, /* ELAN_STATE *state */
elan_btl->global_queue, /* ELAN_QUEUE *queue */
mca_btl_elan_component.elan_max_posted_recv, /* int nSlots */
(int)mca_btl_elan_component.queue_max_size, /* int slotSize */
ELAN_RAIL_ALL, /* int rail */
0 ); /* ELAN_FLAGS flags */
elan_btl->tx_queue =
elan_queueTxInit( base->state, /* ELAN_STATE *state */
elan_btl->global_queue, /* ELAN_QUEUE *q */
ELAN_RAIL_ALL, /* int rail */
0 ); /* ELAN_FLAGS flags */
for( i = 0; i < mca_btl_elan_component.elan_max_posted_recv; i++ ) {
mca_btl_elan_frag_t* frag;
MCA_BTL_ELAN_FRAG_ALLOC_EAGER(frag, rc );
if( OPAL_UNLIKELY(NULL == frag) ) {
return OMPI_ERROR;
}
frag->segment.seg_addr.pval = (void*)(frag + 1);
frag->base.des_dst = &(frag->segment);
frag->base.des_dst_cnt = 1;
frag->base.des_src = NULL;
frag->base.des_src_cnt = 0;
frag->type = MCA_BTL_ELAN_HDR_TYPE_RECV;
frag->elan_event = elan_tportRxStart( elan_btl->tport,
ELAN_TPORT_RXBUF | ELAN_TPORT_RXANY,
0, 0, 0, 0,
frag->segment.seg_addr.pval,
mca_btl_elan_module.super.btl_eager_limit );
opal_list_append( &(elan_btl->recv_list), (opal_list_item_t*)frag );
}
/* enable the network */
elan_enable_network( elan_btl->base->state );
return OMPI_SUCCESS;
}
/**
* PML->BTL notification of change in the process list.
*
* @param btl (IN) BTL instance
* @param nproc (IN) Number of processes.
* @param procs (IN) Set of processes.
* @param peers (IN) Set of peer data structures.
* @return Status indicating if cleanup was successful
*
*/
static int mca_btl_elan_del_procs( struct mca_btl_base_module_t* btl,
size_t nprocs,
struct ompi_proc_t **procs,
struct mca_btl_base_endpoint_t ** endpoints )
{
return OMPI_SUCCESS;
}
/**
* Allocate a descriptor with a segment of the requested size.
* Note that the BTL layer may choose to return a smaller size
* if it cannot support the request.
*
* @param btl (IN) BTL module
* @param size (IN) Request segment size.
*/
static mca_btl_base_descriptor_t*
mca_btl_elan_alloc( struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* peer,
uint8_t order,
size_t size,
uint32_t flags )
{
mca_btl_elan_frag_t* frag = NULL;
ptrdiff_t hdr_skip = 0;
int rc;
if( size <= btl->btl_eager_limit ) {
MCA_BTL_ELAN_FRAG_ALLOC_EAGER(frag, rc);
if( size <= mca_btl_elan_component.queue_max_size ) { /* This will be going over the queue */
hdr_skip = sizeof(mca_btl_elan_hdr_t);
}
} else if( size <= btl->btl_max_send_size ) {
MCA_BTL_ELAN_FRAG_ALLOC_MAX(frag, rc);
}
if( OPAL_UNLIKELY(NULL == frag) ) {
return NULL;
}
frag->segment.seg_addr.pval = (void*)((char*)(frag + 1) + hdr_skip);
frag->segment.seg_len = size;
frag->base.des_src = &(frag->segment);
frag->base.des_src_cnt = 1;
frag->base.des_dst = NULL;
frag->base.des_dst_cnt = 0;
frag->base.des_flags = flags;
frag->btl = (mca_btl_elan_module_t*)btl;
frag->endpoint = peer;
frag->base.order = MCA_BTL_NO_ORDER;
return (mca_btl_base_descriptor_t*)frag;
}
/**
* Return a segment allocated by this BTL.
*
* @param btl (IN) BTL module
* @param descriptor (IN) Allocated descriptor.
*/
static int mca_btl_elan_free( struct mca_btl_base_module_t* btl,
mca_btl_base_descriptor_t* des )
{
mca_btl_elan_frag_t* frag = (mca_btl_elan_frag_t*)des;
MCA_BTL_ELAN_FRAG_RETURN(frag);
return OMPI_SUCCESS;
}
/**
* Prepare a descriptor for send/rdma using the supplied
* convertor. If the convertor references data that is contigous,
* the descriptor may simply point to the user buffer. Otherwise,
* this routine is responsible for allocating buffer space and
* packing if required.
*
* @param btl (IN) BTL module
* @param endpoint (IN) BTL peer addressing
* @param convertor (IN) Data type convertor
* @param reserve (IN) Additional bytes requested by upper layer to precede user data
* @param size (IN/OUT) Number of bytes to prepare (IN), number of bytes actually prepared (OUT)
*/
static mca_btl_base_descriptor_t*
mca_btl_elan_prepare_src( struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
struct mca_mpool_base_registration_t* registration,
struct ompi_convertor_t* convertor,
uint8_t order,
size_t reserve,
size_t* size,
uint32_t flags)
{
mca_btl_elan_frag_t* frag;
struct iovec iov;
uint32_t iov_count = 1;
size_t max_data = *size, skip = 0;
int rc;
if( OPAL_UNLIKELY(max_data > UINT32_MAX) ) {
max_data = (size_t)UINT32_MAX;
}
if( 0 != reserve ) {
if( max_data + reserve <= btl->btl_eager_limit ) {
MCA_BTL_ELAN_FRAG_ALLOC_EAGER(frag, rc);
if( (max_data + reserve) <= mca_btl_elan_component.queue_max_size ) {
skip = sizeof(mca_btl_elan_hdr_t);
}
} else {
MCA_BTL_ELAN_FRAG_ALLOC_MAX(frag, rc);
if( (max_data + reserve) > btl->btl_max_send_size ) {
max_data = btl->btl_max_send_size - reserve;
}
}
if( OPAL_UNLIKELY(NULL == frag) ) {
return NULL;
}
frag->segment.seg_addr.pval = (void*)((unsigned char*)(frag + 1) + skip);
iov.iov_len = max_data;
iov.iov_base = (unsigned char*)frag->segment.seg_addr.pval + reserve;
rc = ompi_convertor_pack(convertor, &iov, &iov_count, &max_data );
*size = max_data;
if( rc < 0 ) {
MCA_BTL_ELAN_FRAG_RETURN(frag);
return NULL;
}
frag->segment.seg_len = max_data + reserve;
} else { /* this is a real RDMA operation */
MCA_BTL_ELAN_FRAG_ALLOC_USER(frag, rc);
if(OPAL_UNLIKELY(NULL == frag)) {
return NULL;
}
frag->type = MCA_BTL_ELAN_HDR_TYPE_PUT;
iov.iov_len = max_data;
iov.iov_base = NULL;
ompi_convertor_pack(convertor, &iov, &iov_count, &max_data);
*size = max_data;
frag->segment.seg_addr.pval = iov.iov_base;
frag->segment.seg_len = max_data;
}
frag->base.des_src = &(frag->segment);
frag->base.des_src_cnt = 1;
frag->base.order = MCA_BTL_NO_ORDER;
frag->base.des_dst = NULL;
frag->base.des_dst_cnt = 0;
frag->base.des_flags = flags;
return &frag->base;
}
/**
* Prepare a descriptor for send/rdma using the supplied
* convertor. If the convertor references data that is contigous,
* the descriptor may simply point to the user buffer. Otherwise,
* this routine is responsible for allocating buffer space and
* packing if required.
*
* @param btl (IN) BTL module
* @param endpoint (IN) BTL peer addressing
* @param convertor (IN) Data type convertor
* @param reserve (IN) Additional bytes requested by upper layer to precede user data
* @param size (IN/OUT) Number of bytes to prepare (IN), number of bytes actually prepared (OUT)
*/
static mca_btl_base_descriptor_t*
mca_btl_elan_prepare_dst( struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
struct mca_mpool_base_registration_t* registration,
struct ompi_convertor_t* convertor,
uint8_t order,
size_t reserve,
size_t* size,
uint32_t flags )
{
mca_btl_elan_frag_t* frag;
size_t origin, position = *size;
int rc;
if( OPAL_UNLIKELY((*size) > UINT32_MAX) ) {
*size = (size_t)UINT32_MAX;
}
MCA_BTL_ELAN_FRAG_ALLOC_USER(frag, rc);
if( OPAL_UNLIKELY(NULL == frag) ) {
return NULL;
}
ompi_convertor_get_current_pointer( convertor, (void**)&(frag->segment.seg_addr.pval) );
origin = convertor->bConverted;
position += origin;
ompi_convertor_set_position( convertor, &position );
*size = position - origin;
frag->segment.seg_len = *size;
frag->base.des_src = NULL;
frag->base.des_src_cnt = 0;
frag->base.des_flags = flags;
frag->base.des_dst = &(frag->segment);
frag->base.des_dst_cnt = 1;
frag->base.order = MCA_BTL_NO_ORDER;
return &frag->base;
}
/**
* Initiate an asynchronous send.
*
* @param btl (IN) BTL module
* @param endpoint (IN) BTL addressing information
* @param descriptor (IN) Description of the data to be transfered
* @param tag (IN) The tag value used to notify the peer.
*/
static int mca_btl_elan_send( struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
struct mca_btl_base_descriptor_t* descriptor,
mca_btl_base_tag_t tag )
{
mca_btl_elan_module_t* elan_btl = (mca_btl_elan_module_t*) btl;
mca_btl_elan_frag_t* frag = (mca_btl_elan_frag_t*)descriptor;
mca_btl_elan_hdr_t* elan_hdr = (mca_btl_elan_hdr_t*)(frag+1);
int send_len;
frag->btl = elan_btl;
frag->endpoint = endpoint;
frag->tag = tag;
frag->type = MCA_BTL_ELAN_HDR_TYPE_SEND;
if( frag->segment.seg_len <= mca_btl_elan_component.queue_max_size ) {
elan_hdr->tag = (int)tag;
elan_hdr->length = (int)frag->segment.seg_len;
send_len = frag->segment.seg_len + sizeof(mca_btl_elan_hdr_t);
frag->elan_event = elan_queueTx( elan_btl->tx_queue,
endpoint->elan_vp,
(void*)elan_hdr,
send_len, ELAN_RAIL_ALL );
if( OPAL_UNLIKELY(NULL == frag->elan_event) ) {
opal_output( 0, "elan_queueTx failed for destination %d\n", endpoint->elan_vp );
return OMPI_ERROR;
}
} else {
frag->elan_event = elan_tportTxStart( elan_btl->tport, 0, endpoint->elan_vp,
elan_btl->elan_vp, frag->tag,
(void*)elan_hdr, frag->segment.seg_len );
if( OPAL_UNLIKELY(NULL == frag->elan_event) ) {
opal_output( 0, "elan_tportTxStart failed for destination %d\n", endpoint->elan_vp );
return OMPI_ERROR;
}
}
if( elan_poll( frag->elan_event, 0 ) ) {
int btl_ownership = (frag->base.des_flags & MCA_BTL_DES_FLAGS_BTL_OWNERSHIP );
frag->base.des_cbfunc( &(elan_btl->super), frag->endpoint,
&(frag->base), OMPI_SUCCESS );
if( btl_ownership ) {
MCA_BTL_ELAN_FRAG_RETURN(frag);
}
return OMPI_SUCCESS;
}
/* Add the fragment to the pending send list */
OPAL_THREAD_LOCK( &elan_btl->elan_lock );
opal_list_append( &(elan_btl->send_list), (opal_list_item_t*)frag );
OPAL_THREAD_UNLOCK( &elan_btl->elan_lock );
return OMPI_ERR_RESOURCE_BUSY;
}
/**
* Initiate an asynchronous put.
*
* @param btl (IN) BTL module
* @param endpoint (IN) BTL addressing information
* @param descriptor (IN) Description of the data to be transferred
*/
static int mca_btl_elan_put( mca_btl_base_module_t* btl,
mca_btl_base_endpoint_t* endpoint,
mca_btl_base_descriptor_t* des )
{
mca_btl_elan_module_t* elan_btl = (mca_btl_elan_module_t*) btl;
mca_btl_elan_frag_t* frag = (mca_btl_elan_frag_t*) des;
int peer = endpoint->elan_vp;
mca_btl_base_segment_t* src = des->des_src;
mca_btl_base_segment_t* dst = des->des_dst;
unsigned char* src_addr = (unsigned char*)src->seg_addr.pval;
size_t src_len = src->seg_len;
unsigned char* dst_addr = (unsigned char*)ompi_ptr_ltop(dst->seg_addr.lval);
frag->endpoint = endpoint;
frag->btl = elan_btl;
frag->type = MCA_BTL_ELAN_HDR_TYPE_PUT;
frag->elan_event = elan_put(elan_btl->base->state, src_addr, dst_addr, src_len, peer);
/* Add the fragment to the pending RDMA list */
OPAL_THREAD_LOCK( &elan_btl->elan_lock );
opal_list_append( &(elan_btl->rdma_list), (opal_list_item_t*)frag );
OPAL_THREAD_UNLOCK( &elan_btl->elan_lock );
return OMPI_SUCCESS;
}
/**
* Initiate an asynchronous get.
*
* @param btl (IN) BTL module
* @param endpoint (IN) BTL addressing information
* @param descriptor (IN) Description of the data to be transferred
*
*/
static int mca_btl_elan_get( mca_btl_base_module_t* btl,
mca_btl_base_endpoint_t* endpoint,
mca_btl_base_descriptor_t* des )
{
mca_btl_elan_module_t* elan_btl = (mca_btl_elan_module_t*) btl;
mca_btl_elan_frag_t* frag = (mca_btl_elan_frag_t*) des;
int peer = endpoint->elan_vp;
mca_btl_base_segment_t* src = des->des_src;
mca_btl_base_segment_t* dst = des->des_dst;
unsigned char* src_addr = (unsigned char*)src->seg_addr.pval;
size_t src_len = src->seg_len;
unsigned char* dst_addr = (unsigned char*)dst->seg_addr.lval;
frag->endpoint = endpoint;
frag->btl = elan_btl;
frag->type = MCA_BTL_ELAN_HDR_TYPE_GET;
opal_output( 0, "elan_get( remote %p, local %p, length %d, peer %d )\n",
(void*)src_addr, (void*)dst_addr, (int)src_len, peer );
frag->elan_event = elan_get(elan_btl->base->state, src_addr, dst_addr, src_len, peer);
/* Add the fragment to the pending RDMA list */
OPAL_THREAD_LOCK( &elan_btl->elan_lock );
opal_list_append( &(elan_btl->rdma_list), (opal_list_item_t*)frag );
OPAL_THREAD_UNLOCK( &elan_btl->elan_lock );
return OMPI_SUCCESS;
}
int mca_btl_elan_finalize( struct mca_btl_base_module_t* btl )
{
mca_btl_elan_module_t* elan_btl = (mca_btl_elan_module_t*) btl;
int i, num_btls;
/* First find the correct BTL in the list attached to the component */
num_btls = mca_btl_elan_component.elan_num_btls;
for( i = 0; i < num_btls; i++ ) {
if( elan_btl == mca_btl_elan_component.elan_btls[i] ) {
/* disable the network */
elan_disable_network( elan_btl->base->state );
/* Remove it from the list attached to the component */
if( i == (num_btls-1) ) {
mca_btl_elan_component.elan_btls[i] = NULL;
} else {
mca_btl_elan_component.elan_btls[i] = mca_btl_elan_component.elan_btls[num_btls-1];
}
mca_btl_elan_component.elan_num_btls--;
/* Cancel all posted receives */
/* Release the internal structures */
OBJ_DESTRUCT(&elan_btl->recv_list);
OBJ_DESTRUCT(&elan_btl->send_list);
OBJ_DESTRUCT(&elan_btl->rdma_list);
OBJ_DESTRUCT(&elan_btl->elan_lock);
/* The BTL is clean, remove it */
free(elan_btl);
return OMPI_SUCCESS;
}
}
/* This BTL is not present in the list attached to the communicator */
return OMPI_ERROR;
}
int mca_btl_elan_ft_event(int state)
{
if(OPAL_CRS_CHECKPOINT == state) {
;
}
else if(OPAL_CRS_CONTINUE == state) {
;
}
else if(OPAL_CRS_RESTART == state) {
;
}
else if(OPAL_CRS_TERM == state ) {
;
}
else {
;
}
return OMPI_SUCCESS;
}
static void mca_btl_elan_dump( struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
int verbose )
{
}
static int
mca_btl_elan_register_error( struct mca_btl_base_module_t* btl,
mca_btl_base_module_error_cb_fn_t cbfunc )
{
return OMPI_SUCCESS;
}
mca_btl_elan_module_t mca_btl_elan_module = {
{
&mca_btl_elan_component.super,
0, /* max size of first fragment */
0, /* min send fragment size */
0, /* max send fragment size */
0, /* btl_rdma_pipeline_offset */
0, /* btl_rdma_pipeline_frag_size */
0, /* btl_min_rdma_pipeline_size */
0, /* exclusivity */
0, /* latency */
0, /* bandwidth */
0, /* flags */
mca_btl_elan_add_procs,
mca_btl_elan_del_procs,
NULL, /* btl_register */
mca_btl_elan_finalize,
mca_btl_elan_alloc,
mca_btl_elan_free,
mca_btl_elan_prepare_src,
mca_btl_elan_prepare_dst,
mca_btl_elan_send,
NULL, /* send immediate */
mca_btl_elan_put,
mca_btl_elan_get,
mca_btl_elan_dump,
NULL, /* mpool */
mca_btl_elan_register_error, /* register error cb */
mca_btl_elan_ft_event /* mca_btl_elan_ft_event*/
}
};