9b19e3fef0
This commit was SVN r9171.
348 строки
13 KiB
C
348 строки
13 KiB
C
/*
|
|
* Copyright (c) 2004-2006 The Trustees of Indiana University and Indiana
|
|
* University Research and Technology
|
|
* Corporation. All rights reserved.
|
|
* Copyright (c) 2004-2005 The University of Tennessee and The University
|
|
* of Tennessee Research Foundation. All rights
|
|
* reserved.
|
|
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
|
|
* University of Stuttgart. All rights reserved.
|
|
* Copyright (c) 2004-2005 The Regents of the University of California.
|
|
* All rights reserved.
|
|
* $COPYRIGHT$
|
|
*
|
|
* Additional copyrights may follow
|
|
*
|
|
* $HEADER$
|
|
*/
|
|
|
|
#include "ompi_config.h"
|
|
|
|
#ifdef HAVE_ARPA_INET_H
|
|
#include <arpa/inet.h>
|
|
#endif
|
|
#ifdef HAVE_NETINET_IN_H
|
|
#include <netinet/in.h>
|
|
#endif
|
|
|
|
#include "orte/class/orte_proc_table.h"
|
|
#include "ompi/mca/btl/base/btl_base_error.h"
|
|
#include "ompi/mca/pml/base/pml_base_module_exchange.h"
|
|
#include "ompi/datatype/dt_arch.h"
|
|
|
|
#include "btl_tcp.h"
|
|
#include "btl_tcp_proc.h"
|
|
|
|
static void mca_btl_tcp_proc_construct(mca_btl_tcp_proc_t* proc);
|
|
static void mca_btl_tcp_proc_destruct(mca_btl_tcp_proc_t* proc);
|
|
static bool is_private_ipv4(struct in_addr *in);
|
|
|
|
|
|
OBJ_CLASS_INSTANCE(
|
|
mca_btl_tcp_proc_t,
|
|
opal_list_item_t,
|
|
mca_btl_tcp_proc_construct,
|
|
mca_btl_tcp_proc_destruct);
|
|
|
|
|
|
void mca_btl_tcp_proc_construct(mca_btl_tcp_proc_t* proc)
|
|
{
|
|
proc->proc_ompi = 0;
|
|
proc->proc_addrs = NULL;
|
|
proc->proc_addr_count = 0;
|
|
proc->proc_endpoints = NULL;
|
|
proc->proc_endpoint_count = 0;
|
|
OBJ_CONSTRUCT(&proc->proc_lock, opal_mutex_t);
|
|
}
|
|
|
|
/*
|
|
* Cleanup ib proc instance
|
|
*/
|
|
|
|
void mca_btl_tcp_proc_destruct(mca_btl_tcp_proc_t* proc)
|
|
{
|
|
/* remove from list of all proc instances */
|
|
OPAL_THREAD_LOCK(&mca_btl_tcp_component.tcp_lock);
|
|
orte_hash_table_remove_proc(&mca_btl_tcp_component.tcp_procs, &proc->proc_name);
|
|
OPAL_THREAD_UNLOCK(&mca_btl_tcp_component.tcp_lock);
|
|
|
|
/* release resources */
|
|
if(NULL != proc->proc_endpoints) {
|
|
free(proc->proc_endpoints);
|
|
OBJ_DESTRUCT(&proc->proc_lock);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Check to see if an IPv4 struct in_addr is public or private. We
|
|
* can only do IPv4 here because some of the TCP BTL endpoint structs
|
|
* only hold the struct in_addr, not the upper-level sin_family that
|
|
* would indicate if the address is IPv6.
|
|
*/
|
|
static bool is_private_ipv4(struct in_addr *in)
|
|
{
|
|
/* There are definitely ways to do this more efficiently, but
|
|
since this is not performance-critical code, it seems better to
|
|
use clear code (vs. clever code) */
|
|
|
|
uint32_t addr = ntohl((uint32_t) in->s_addr);
|
|
unsigned int a = (addr & 0xff000000) >> 24;
|
|
unsigned int b = (addr & 0x00ff0000) >> 16;
|
|
|
|
return ((10 == a) ||
|
|
(192 == a && 168 == b) ||
|
|
(172 == a && 16 == b)) ? true : false;
|
|
}
|
|
|
|
|
|
/*
|
|
* Create a TCP process structure. There is a one-to-one correspondence
|
|
* between a ompi_proc_t and a mca_btl_tcp_proc_t instance. We cache
|
|
* additional data (specifically the list of mca_btl_tcp_endpoint_t instances,
|
|
* and published addresses) associated w/ a given destination on this
|
|
* datastructure.
|
|
*/
|
|
|
|
mca_btl_tcp_proc_t* mca_btl_tcp_proc_create(ompi_proc_t* ompi_proc)
|
|
{
|
|
int rc;
|
|
size_t size;
|
|
mca_btl_tcp_proc_t* btl_proc;
|
|
|
|
OPAL_THREAD_LOCK(&mca_btl_tcp_component.tcp_lock);
|
|
btl_proc = (mca_btl_tcp_proc_t*)orte_hash_table_get_proc(
|
|
&mca_btl_tcp_component.tcp_procs, &ompi_proc->proc_name);
|
|
if(NULL != btl_proc) {
|
|
OPAL_THREAD_UNLOCK(&mca_btl_tcp_component.tcp_lock);
|
|
return btl_proc;
|
|
}
|
|
|
|
btl_proc = OBJ_NEW(mca_btl_tcp_proc_t);
|
|
if(NULL == btl_proc)
|
|
return NULL;
|
|
btl_proc->proc_ompi = ompi_proc;
|
|
btl_proc->proc_name = ompi_proc->proc_name;
|
|
|
|
/* add to hash table of all proc instance */
|
|
orte_hash_table_set_proc(
|
|
&mca_btl_tcp_component.tcp_procs,
|
|
&btl_proc->proc_name,
|
|
btl_proc);
|
|
OPAL_THREAD_UNLOCK(&mca_btl_tcp_component.tcp_lock);
|
|
|
|
/* lookup tcp parameters exported by this proc */
|
|
rc = mca_pml_base_modex_recv( &mca_btl_tcp_component.super.btl_version,
|
|
ompi_proc,
|
|
(void**)&btl_proc->proc_addrs,
|
|
&size );
|
|
if(rc != OMPI_SUCCESS) {
|
|
BTL_ERROR(("mca_base_modex_recv: failed with return value=%d", rc));
|
|
OBJ_RELEASE(btl_proc);
|
|
return NULL;
|
|
}
|
|
if(0 != (size % sizeof(mca_btl_tcp_addr_t))) {
|
|
BTL_ERROR(("mca_base_modex_recv: invalid size %d\n", size));
|
|
return NULL;
|
|
}
|
|
btl_proc->proc_addr_count = size / sizeof(mca_btl_tcp_addr_t);
|
|
|
|
/* allocate space for endpoint array - one for each exported address */
|
|
btl_proc->proc_endpoints = (mca_btl_base_endpoint_t**)
|
|
malloc(btl_proc->proc_addr_count * sizeof(mca_btl_base_endpoint_t*));
|
|
if(NULL == btl_proc->proc_endpoints) {
|
|
OBJ_RELEASE(btl_proc);
|
|
return NULL;
|
|
}
|
|
if(NULL == mca_btl_tcp_component.tcp_local && ompi_proc == ompi_proc_local())
|
|
mca_btl_tcp_component.tcp_local = btl_proc;
|
|
return btl_proc;
|
|
}
|
|
|
|
|
|
/*
|
|
* Note that this routine must be called with the lock on the process
|
|
* already held. Insert a btl instance into the proc array and assign
|
|
* it an address.
|
|
*/
|
|
int mca_btl_tcp_proc_insert(
|
|
mca_btl_tcp_proc_t* btl_proc,
|
|
mca_btl_base_endpoint_t* btl_endpoint)
|
|
{
|
|
struct mca_btl_tcp_module_t *btl_tcp = btl_endpoint->endpoint_btl;
|
|
size_t i;
|
|
unsigned long net1;
|
|
|
|
#ifndef WORDS_BIGENDIAN
|
|
/* if we are little endian and our peer is not so lucky, then we
|
|
need to put all information sent to him in big endian (aka
|
|
Network Byte Order) and expect all information received to
|
|
be in NBO. Since big endian machines always send and receive
|
|
in NBO, we don't care so much about that case. */
|
|
if (btl_proc->proc_ompi->proc_arch & OMPI_ARCH_ISBIGENDIAN) {
|
|
btl_endpoint->endpoint_nbo = true;
|
|
}
|
|
#endif
|
|
|
|
/* insert into endpoint array */
|
|
btl_endpoint->endpoint_proc = btl_proc;
|
|
btl_proc->proc_endpoints[btl_proc->proc_endpoint_count++] = btl_endpoint;
|
|
|
|
net1 = btl_tcp->tcp_ifaddr.sin_addr.s_addr & btl_tcp->tcp_ifmask.sin_addr.s_addr;
|
|
|
|
/*
|
|
* Look through the proc instance for an address that is on the
|
|
* directly attached network. If we don't find one, pick the first
|
|
* unused address.
|
|
*/
|
|
for(i=0; i<btl_proc->proc_addr_count; i++) {
|
|
mca_btl_tcp_addr_t* endpoint_addr = btl_proc->proc_addrs + i;
|
|
unsigned long net2 = endpoint_addr->addr_inet.s_addr & btl_tcp->tcp_ifmask.sin_addr.s_addr;
|
|
if(endpoint_addr->addr_inuse != 0)
|
|
continue;
|
|
if(net1 == net2) {
|
|
btl_endpoint->endpoint_addr = endpoint_addr;
|
|
break;
|
|
} else if(btl_endpoint->endpoint_addr != 0) {
|
|
btl_endpoint->endpoint_addr = endpoint_addr;
|
|
}
|
|
}
|
|
|
|
/* Make sure there is a common interface */
|
|
if( NULL != btl_endpoint->endpoint_addr ) {
|
|
btl_endpoint->endpoint_addr->addr_inuse++;
|
|
return OMPI_SUCCESS;
|
|
}
|
|
|
|
/* There was no common interface. So what do we do? For the
|
|
moment, we'll do enough to cover 2 common cases:
|
|
|
|
1. Running MPI processes on two computers that are not on the
|
|
same subnet, but still have routable addresses to each
|
|
other. In this case, the above subnet matching will fail,
|
|
but since the addresses are routable, the
|
|
OS/networking/routers will make it all work ok. So we need
|
|
to make this function *not* return OMPI_ERR_UNREACH.
|
|
|
|
2. Running MPI processes on a typical cluster configuration
|
|
where a head node has 2 TCP NICs (one public IP address one
|
|
private IP address) and all the back-end compute nodes have
|
|
only private IP addresses. In this scenario, the MPI
|
|
process on the head node will have 2 TCP BTL modules (one
|
|
for the public, one for the private). The module with the
|
|
private IP address will match the subnet and all will work
|
|
fine. The module with the public IP address will not match
|
|
anything and fall through to here -- we want it to return
|
|
OMPI_ERR_UNREACH so that that module will effectively have
|
|
no peers that it can communicate with.
|
|
|
|
To support these two scenarios, do the following:
|
|
|
|
- if my address is private (10., 192.168., or 172.16.), return
|
|
UNREACH.
|
|
- if my address is public, return the first public address from
|
|
my peer (and hope for the best), or UNREACH if there are none
|
|
available.
|
|
|
|
This does not cover some other scenarios that we'll likely need
|
|
to support in the future, such as:
|
|
|
|
- Flat neighborhood networks -- where all the IP's in question
|
|
are private, the subnet masking won't necessarily match, but
|
|
they're routable to each other.
|
|
- Really large, private TCP-based clusters, such as a 1024 node
|
|
TCP-based cluster. Depending on how the subnet masks are set
|
|
by the admins, there may be a subnet mask that effectively
|
|
spans the entire cluster, or (for example) subnet masks may
|
|
be set such that only nodes on the same switches are on the
|
|
same subnet. This latter scenario will not be supported
|
|
by the above cases.
|
|
|
|
To support these kinds of scenarios, we really need "something
|
|
better", such as allowing the user to specify a config file
|
|
indicating which subnets are reachable by which interface, etc.
|
|
*/
|
|
|
|
else {
|
|
/* If my address is private, return UNREACH */
|
|
if (is_private_ipv4(&(btl_tcp->tcp_ifaddr.sin_addr))) {
|
|
return OMPI_ERR_UNREACH;
|
|
}
|
|
|
|
/* Find the first public peer address */
|
|
for (i = 0; i < btl_proc->proc_addr_count; ++i) {
|
|
mca_btl_tcp_addr_t* endpoint_addr = btl_proc->proc_addrs + i;
|
|
if (!is_private_ipv4(&(endpoint_addr->addr_inet))) {
|
|
btl_endpoint->endpoint_addr = endpoint_addr;
|
|
btl_endpoint->endpoint_addr->addr_inuse++;
|
|
return OMPI_SUCCESS;
|
|
}
|
|
}
|
|
|
|
/* Didn't find any peer addresses that were public, so return
|
|
UNREACH */
|
|
return OMPI_ERR_UNREACH;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove an endpoint from the proc array and indicate the address is
|
|
* no longer in use.
|
|
*/
|
|
|
|
int mca_btl_tcp_proc_remove(mca_btl_tcp_proc_t* btl_proc, mca_btl_base_endpoint_t* btl_endpoint)
|
|
{
|
|
size_t i;
|
|
OPAL_THREAD_LOCK(&btl_proc->proc_lock);
|
|
for(i=0; i<btl_proc->proc_endpoint_count; i++) {
|
|
if(btl_proc->proc_endpoints[i] == btl_endpoint) {
|
|
memmove(btl_proc->proc_endpoints+i, btl_proc->proc_endpoints+i+1,
|
|
(btl_proc->proc_endpoint_count-i-1)*sizeof(mca_btl_base_endpoint_t*));
|
|
if(--btl_proc->proc_endpoint_count == 0) {
|
|
OPAL_THREAD_UNLOCK(&btl_proc->proc_lock);
|
|
OBJ_RELEASE(btl_proc);
|
|
return OMPI_SUCCESS;
|
|
}
|
|
btl_endpoint->endpoint_addr->addr_inuse--;
|
|
break;
|
|
}
|
|
}
|
|
OPAL_THREAD_UNLOCK(&btl_proc->proc_lock);
|
|
return OMPI_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Look for an existing TCP process instance based on the globally unique
|
|
* process identifier.
|
|
*/
|
|
mca_btl_tcp_proc_t* mca_btl_tcp_proc_lookup(const orte_process_name_t *name)
|
|
{
|
|
mca_btl_tcp_proc_t* proc;
|
|
OPAL_THREAD_LOCK(&mca_btl_tcp_component.tcp_lock);
|
|
proc = (mca_btl_tcp_proc_t*)orte_hash_table_get_proc(
|
|
&mca_btl_tcp_component.tcp_procs, name);
|
|
OPAL_THREAD_UNLOCK(&mca_btl_tcp_component.tcp_lock);
|
|
return proc;
|
|
}
|
|
|
|
/*
|
|
* loop through all available PTLs for one matching the source address
|
|
* of the request.
|
|
*/
|
|
bool mca_btl_tcp_proc_accept(mca_btl_tcp_proc_t* btl_proc, struct sockaddr_in* addr, int sd)
|
|
{
|
|
size_t i;
|
|
OPAL_THREAD_LOCK(&btl_proc->proc_lock);
|
|
for(i=0; i<btl_proc->proc_endpoint_count; i++) {
|
|
mca_btl_base_endpoint_t* btl_endpoint = btl_proc->proc_endpoints[i];
|
|
if(mca_btl_tcp_endpoint_accept(btl_endpoint, addr, sd)) {
|
|
OPAL_THREAD_UNLOCK(&btl_proc->proc_lock);
|
|
return true;
|
|
}
|
|
}
|
|
OPAL_THREAD_UNLOCK(&btl_proc->proc_lock);
|
|
return false;
|
|
}
|
|
|
|
|