1
1
openmpi/ompi/mca/coll/base/coll_base_util.c
George Bosilca 16b49dc5b3 A complete overhaul of the HAN code.
Among many other things:
- Fix an imbalance bug in MPI_allgather
- Accept more human readable configuration files. We can now specify
  the collective by name instead of a magic number, and the component
  we want to use also by name.
- Add the capability to have optional arguments in the collective
  communication configuration file. Right now the capability exists
  for segment lengths, but is yet to be connected with the algorithms.
- Redo the initialization of all HAN collectives.

Cleanup the fallback collective support.
- In case the module is unable to deliver the expected result, it will fallback
  executing the collective operation on another collective component. This change
  make the support for this fallback simpler to use.
- Implement a fallback allowing a HAN module to remove itself as
  potential active collective module, and instead fallback to the
  next module in line.
- Completely disable the HAN modules on error. From the moment an error is
  encountered they remove themselves from the communicator, and in case some
  other modules calls them simply behave as a pass-through.

Communicator: provide ompi_comm_split_with_info to split and provide info at the same time
Add ompi_comm_coll_preference info key to control collective component selection

COLL HAN: use info keys instead of component-level variable to communicate topology level between abstraction layers
- The info value is a comma-separated list of entries, which are chosen with
  decreasing priorities. This overrides the priority of the component,
  unless the component has disqualified itself.
  An entry prefixed with ^ starts the ignore-list. Any entry following this
  character will be ingnored during the collective component selection for the
  communicator.
  Example: "sm,libnbc,^han,adapt" gives sm the highest preference, followed
  by libnbc. The components han and adapt are ignored in the selection process.
- Allocate a temporary buffer for all lower-level leaders (length 2 segments)
- Fix the handling of MPI_IN_PLACE for gather and scatter.

COLL HAN: Fix topology handling
 - HAN should not rely on node names to determine the ordering of ranks.
   Instead, use the node leaders as identifiers and short-cut if the
   node-leaders agree that ranks are consecutive. Also, error out if
   the rank distribution is imbalanced for now.

Signed-off-by: Xi Luo <xluo12@vols.utk.edu>
Signed-off-by: Joseph Schuchart <schuchart@icl.utk.edu>
Signed-off-by: George Bosilca <bosilca@icl.utk.edu>
2020-10-25 18:13:16 -04:00

561 строка
18 KiB
C

/*
* Copyright (c) 2004-2005 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2020 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2014-2019 Research Organization for Information Science
* and Technology (RIST). All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "ompi_config.h"
#include "mpi.h"
#include "ompi/constants.h"
#include "ompi/datatype/ompi_datatype.h"
#include "ompi/communicator/communicator.h"
#include "ompi/mca/coll/base/coll_tags.h"
#include "ompi/mca/coll/base/coll_base_functions.h"
#include "ompi/mca/topo/base/base.h"
#include "ompi/mca/pml/pml.h"
#include "coll_base_util.h"
#include "coll_base_functions.h"
#include <ctype.h>
int ompi_coll_base_sendrecv_actual( const void* sendbuf, size_t scount,
ompi_datatype_t* sdatatype,
int dest, int stag,
void* recvbuf, size_t rcount,
ompi_datatype_t* rdatatype,
int source, int rtag,
struct ompi_communicator_t* comm,
ompi_status_public_t* status )
{ /* post receive first, then send, then wait... should be fast (I hope) */
int err, line = 0;
size_t rtypesize, stypesize;
ompi_request_t *req = MPI_REQUEST_NULL;
ompi_status_public_t rstatus;
/* post new irecv */
ompi_datatype_type_size(rdatatype, &rtypesize);
err = MCA_PML_CALL(irecv( recvbuf, rcount, rdatatype, source, rtag,
comm, &req));
if (err != MPI_SUCCESS) { line = __LINE__; goto error_handler; }
/* send data to children */
ompi_datatype_type_size(sdatatype, &stypesize);
err = MCA_PML_CALL(send( sendbuf, scount, sdatatype, dest, stag,
MCA_PML_BASE_SEND_STANDARD, comm));
if (err != MPI_SUCCESS) { line = __LINE__; goto error_handler; }
err = ompi_request_wait( &req, &rstatus);
if (err != MPI_SUCCESS) { line = __LINE__; goto error_handler; }
if (MPI_STATUS_IGNORE != status) {
*status = rstatus;
}
return (MPI_SUCCESS);
error_handler:
/* Error discovered during the posting of the irecv or send,
* and no status is available.
*/
OPAL_OUTPUT ((ompi_coll_base_framework.framework_output, "%s:%d: Error %d occurred\n",
__FILE__, line, err));
(void)line; // silence compiler warning
if (MPI_STATUS_IGNORE != status) {
status->MPI_ERROR = err;
}
return (err);
}
/*
* ompi_mirror_perm: Returns mirror permutation of nbits low-order bits
* of x [*].
* [*] Warren Jr., Henry S. Hacker's Delight (2ed). 2013.
* Chapter 7. Rearranging Bits and Bytes.
*/
unsigned int ompi_mirror_perm(unsigned int x, int nbits)
{
x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
x = ((x >> 16) | (x << 16));
return x >> (sizeof(x) * CHAR_BIT - nbits);
}
/*
* ompi_rounddown: Rounds a number down to nearest multiple.
* rounddown(10,4) = 8, rounddown(6,3) = 6, rounddown(14,3) = 12
*/
int ompi_rounddown(int num, int factor)
{
num /= factor;
return num * factor; /* floor(num / factor) * factor */
}
static void release_objs_callback(struct ompi_coll_base_nbc_request_t *request) {
if (NULL != request->data.objs.objs[0]) {
OBJ_RELEASE(request->data.objs.objs[0]);
request->data.objs.objs[0] = NULL;
}
if (NULL != request->data.objs.objs[1]) {
OBJ_RELEASE(request->data.objs.objs[1]);
request->data.objs.objs[1] = NULL;
}
}
static int complete_objs_callback(struct ompi_request_t *req) {
struct ompi_coll_base_nbc_request_t *request = (ompi_coll_base_nbc_request_t *)req;
int rc = OMPI_SUCCESS;
assert (NULL != request);
if (NULL != request->cb.req_complete_cb) {
rc = request->cb.req_complete_cb(request->req_complete_cb_data);
}
release_objs_callback(request);
return rc;
}
static int free_objs_callback(struct ompi_request_t **rptr) {
struct ompi_coll_base_nbc_request_t *request = *(ompi_coll_base_nbc_request_t **)rptr;
int rc = OMPI_SUCCESS;
if (NULL != request->cb.req_free) {
rc = request->cb.req_free(rptr);
}
release_objs_callback(request);
return rc;
}
int ompi_coll_base_retain_op( ompi_request_t *req, ompi_op_t *op,
ompi_datatype_t *type) {
ompi_coll_base_nbc_request_t *request = (ompi_coll_base_nbc_request_t *)req;
bool retain = false;
if (REQUEST_COMPLETE(req)) {
return OMPI_SUCCESS;
}
if (!ompi_op_is_intrinsic(op)) {
OBJ_RETAIN(op);
request->data.op.op = op;
retain = true;
}
if (!ompi_datatype_is_predefined(type)) {
OBJ_RETAIN(type);
request->data.op.datatype = type;
retain = true;
}
if (OPAL_UNLIKELY(retain)) {
/* We need to consider two cases :
* - non blocking collectives:
* the objects can be released when MPI_Wait() completes
* and we use the req_complete_cb callback
* - persistent non blocking collectives:
* the objects can only be released when the request is freed
* (e.g. MPI_Request_free() completes) and we use req_free callback
*/
if (req->req_persistent) {
request->cb.req_free = req->req_free;
req->req_free = free_objs_callback;
} else {
request->cb.req_complete_cb = req->req_complete_cb;
request->req_complete_cb_data = req->req_complete_cb_data;
req->req_complete_cb = complete_objs_callback;
req->req_complete_cb_data = request;
}
}
return OMPI_SUCCESS;
}
int ompi_coll_base_retain_datatypes( ompi_request_t *req, ompi_datatype_t *stype,
ompi_datatype_t *rtype) {
ompi_coll_base_nbc_request_t *request = (ompi_coll_base_nbc_request_t *)req;
bool retain = false;
if (REQUEST_COMPLETE(req)) {
return OMPI_SUCCESS;
}
if (NULL != stype && !ompi_datatype_is_predefined(stype)) {
OBJ_RETAIN(stype);
request->data.types.stype = stype;
retain = true;
}
if (NULL != rtype && !ompi_datatype_is_predefined(rtype)) {
OBJ_RETAIN(rtype);
request->data.types.rtype = rtype;
retain = true;
}
if (OPAL_UNLIKELY(retain)) {
if (req->req_persistent) {
request->cb.req_free = req->req_free;
req->req_free = free_objs_callback;
} else {
request->cb.req_complete_cb = req->req_complete_cb;
request->req_complete_cb_data = req->req_complete_cb_data;
req->req_complete_cb = complete_objs_callback;
req->req_complete_cb_data = request;
}
}
return OMPI_SUCCESS;
}
static void release_vecs_callback(ompi_coll_base_nbc_request_t *request) {
ompi_communicator_t *comm = request->super.req_mpi_object.comm;
int scount, rcount;
if (OMPI_COMM_IS_TOPO(comm)) {
(void)mca_topo_base_neighbor_count (comm, &rcount, &scount);
} else {
scount = rcount = OMPI_COMM_IS_INTER(comm)?ompi_comm_remote_size(comm):ompi_comm_size(comm);
}
if (NULL != request->data.vecs.stypes) {
for (int i=0; i<scount; i++) {
if (NULL != request->data.vecs.stypes[i]) {
OMPI_DATATYPE_RELEASE(request->data.vecs.stypes[i]);
}
}
request->data.vecs.stypes = NULL;
}
if (NULL != request->data.vecs.rtypes) {
for (int i=0; i<rcount; i++) {
if (NULL != request->data.vecs.rtypes[i]) {
OMPI_DATATYPE_RELEASE(request->data.vecs.rtypes[i]);
}
}
request->data.vecs.rtypes = NULL;
}
}
static int complete_vecs_callback(struct ompi_request_t *req) {
ompi_coll_base_nbc_request_t *request = (ompi_coll_base_nbc_request_t *)req;
int rc = OMPI_SUCCESS;
assert (NULL != request);
if (NULL != request->cb.req_complete_cb) {
rc = request->cb.req_complete_cb(request->req_complete_cb_data);
}
release_vecs_callback(request);
return rc;
}
static int free_vecs_callback(struct ompi_request_t **rptr) {
struct ompi_coll_base_nbc_request_t *request = *(ompi_coll_base_nbc_request_t **)rptr;
int rc = OMPI_SUCCESS;
if (NULL != request->cb.req_free) {
rc = request->cb.req_free(rptr);
}
release_vecs_callback(request);
return rc;
}
int ompi_coll_base_retain_datatypes_w( ompi_request_t *req,
ompi_datatype_t * const stypes[], ompi_datatype_t * const rtypes[]) {
ompi_coll_base_nbc_request_t *request = (ompi_coll_base_nbc_request_t *)req;
bool retain = false;
ompi_communicator_t *comm = request->super.req_mpi_object.comm;
int scount, rcount;
if (REQUEST_COMPLETE(req)) {
return OMPI_SUCCESS;
}
if (OMPI_COMM_IS_TOPO(comm)) {
(void)mca_topo_base_neighbor_count (comm, &rcount, &scount);
} else {
scount = rcount = OMPI_COMM_IS_INTER(comm)?ompi_comm_remote_size(comm):ompi_comm_size(comm);
}
for (int i=0; i<scount; i++) {
if (NULL != stypes && NULL != stypes[i] && !ompi_datatype_is_predefined(stypes[i])) {
OBJ_RETAIN(stypes[i]);
retain = true;
}
}
for (int i=0; i<rcount; i++) {
if (NULL != rtypes && NULL != rtypes[i] && !ompi_datatype_is_predefined(rtypes[i])) {
OBJ_RETAIN(rtypes[i]);
retain = true;
}
}
if (OPAL_UNLIKELY(retain)) {
request->data.vecs.stypes = (ompi_datatype_t **) stypes;
request->data.vecs.rtypes = (ompi_datatype_t **) rtypes;
if (req->req_persistent) {
request->cb.req_free = req->req_free;
req->req_free = free_vecs_callback;
} else {
request->cb.req_complete_cb = req->req_complete_cb;
request->req_complete_cb_data = req->req_complete_cb_data;
req->req_complete_cb = complete_vecs_callback;
req->req_complete_cb_data = request;
}
}
return OMPI_SUCCESS;
}
static void nbc_req_cons(ompi_coll_base_nbc_request_t *req)
{
req->cb.req_complete_cb = NULL;
req->req_complete_cb_data = NULL;
req->data.objs.objs[0] = NULL;
req->data.objs.objs[1] = NULL;
}
OBJ_CLASS_INSTANCE(ompi_coll_base_nbc_request_t, ompi_request_t, nbc_req_cons, NULL);
/* File reading functions */
static void skiptonewline (FILE *fptr, int *fileline)
{
char val;
int rc;
do {
rc = fread(&val, 1, 1, fptr);
if (0 == rc) {
return;
}
if ('\n' == val) {
(*fileline)++;
return;
}
} while (1);
}
int ompi_coll_base_file_getnext_long(FILE *fptr, int *fileline, long* val)
{
char trash;
int rc;
do {
rc = fscanf(fptr, "%li", val);
if (rc == EOF) {
return -1;
}
if (1 == rc) {
return 0;
}
/* in all other cases, skip to the end of the token */
rc = fread(&trash, sizeof(char), 1, fptr);
if (rc == EOF) {
return -1;
}
if ('\n' == trash) (*fileline)++;
if ('#' == trash) {
skiptonewline (fptr, fileline);
}
} while (1);
}
int ompi_coll_base_file_getnext_string(FILE *fptr, int *fileline, char** val)
{
char trash, token[32];
int rc;
*val = NULL; /* security in case we fail */
do {
rc = fscanf(fptr, "%32s", token);
if (rc == EOF) {
return -1;
}
if (1 == rc) {
if( '#' == token[0] ) {
skiptonewline(fptr, fileline);
continue;
}
*val = (char*)malloc(strlen(token) + 1);
strcpy(*val, token);
return 0;
}
/* in all other cases, skip to the end of the token */
rc = fread(&trash, sizeof(char), 1, fptr);
if (rc == EOF) {
return -1;
}
if ('\n' == trash) (*fileline)++;
if ('#' == trash) {
skiptonewline (fptr, fileline);
}
} while (1);
}
int ompi_coll_base_file_getnext_size_t(FILE *fptr, int *fileline, size_t* val)
{
char trash;
int rc;
do {
rc = fscanf(fptr, "%" PRIsize_t, val);
if (rc == EOF) {
return -1;
}
if (1 == rc) {
return 0;
}
/* in all other cases, skip to the end of the token */
rc = fread(&trash, sizeof(char), 1, fptr);
if (rc == EOF) {
return -1;
}
if ('\n' == trash) (*fileline)++;
if ('#' == trash) {
skiptonewline (fptr, fileline);
}
} while (1);
}
int ompi_coll_base_file_peek_next_char_is(FILE *fptr, int *fileline, int expected)
{
char trash;
int rc;
do {
rc = fread(&trash, sizeof(char), 1, fptr);
if (0 == rc) { /* hit the end of the file */
return -1;
}
if ('\n' == trash) {
(*fileline)++;
continue;
}
if ('#' == trash) {
skiptonewline (fptr, fileline);
continue;
}
if( trash == expected )
return 1; /* return true and eat the char */
if( isblank(trash) ) /* skip all spaces if that's not what we were looking for */
continue;
if( 0 != fseek(fptr, -1, SEEK_CUR) )
return -1;
return 0;
} while (1);
}
/**
* There are certainly simpler implementation for this function when performance
* is not a critical point. But, as this function is used during the collective
* configuration, and we can do this configurations once for each communicator,
* I would rather have a more complex but faster implementation.
* The approach here is to search for the largest common denominators, to create
* something similar to a dichotomic search.
*/
int mca_coll_base_name_to_colltype(const char* name)
{
if( 'n' == name[0] ) {
if( 0 == strncmp(name, "neighbor_all", 12) ) {
if( 't' != name[12] ) {
if( 0 == strncmp(name+12, "gather", 6) ) {
if('\0' == name[18]) return NEIGHBOR_ALLGATHER;
if( 'v' == name[18]) return NEIGHBOR_ALLGATHERV;
}
} else {
if( 0 == strncmp(name+12, "toall", 5) ) {
if( '\0' == name[17] ) return NEIGHBOR_ALLTOALL;
if( 'v' == name[17] ) return NEIGHBOR_ALLTOALLV;
if( 'w' == name[17] ) return NEIGHBOR_ALLTOALLW;
}
}
}
return -1;
}
if( 'a' == name[0] ) {
if( 0 != strncmp(name, "all", 3) ) {
return -1;
}
if( 't' != name[3] ) {
if( 'r' == name[3] ) {
if( 0 == strcmp(name+3, "reduce") )
return ALLREDUCE;
} else {
if( 0 == strncmp(name+3, "gather", 6) ) {
if( '\0' == name[9] ) return ALLGATHER;
if( 'v' == name[9] ) return ALLGATHERV;
}
}
} else {
if( 0 == strncmp(name+3, "toall", 5) ) {
if( '\0' == name[8] ) return ALLTOALL;
if( 'v' == name[8] ) return ALLTOALLV;
if( 'w' == name[8] ) return ALLTOALLW;
}
}
return -1;
}
if( 'r' > name[0] ) {
if( 'b' == name[0] ) {
if( 0 == strcmp(name, "barrier") )
return BARRIER;
if( 0 == strcmp(name, "bcast") )
return BCAST;
} else if( 'g'== name[0] ) {
if( 0 == strncmp(name, "gather", 6) ) {
if( '\0' == name[6] ) return GATHER;
if( 'v' == name[6] ) return GATHERV;
}
}
if( 0 == strcmp(name, "exscan") )
return EXSCAN;
return -1;
}
if( 's' > name[0] ) {
if( 0 == strncmp(name, "reduce", 6) ) {
if( '\0' == name[6] ) return REDUCE;
if( '_' == name[6] ) {
if( 0 == strncmp(name+7, "scatter", 7) ) {
if( '\0' == name[14] ) return REDUCESCATTER;
if( 0 == strcmp(name+14, "_block") ) return REDUCESCATTERBLOCK;
}
}
}
return -1;
}
if( 0 == strcmp(name, "scan") )
return SCAN;
if( 0 == strcmp(name, "scatterv") )
return SCATTERV;
if( 0 == strcmp(name, "scatter") )
return SCATTER;
return -1;
}
/* conversion table for all COLLTYPE_T values defined in ompi/mca/coll/base/coll_base_functions.h */
static const char* colltype_translation_table[] = {
[ALLGATHER] = "allgather",
[ALLGATHERV] = "allgatherv",
[ALLREDUCE] = "allreduce",
[ALLTOALL] = "alltoall",
[ALLTOALLV] = "alltoallv",
[ALLTOALLW] = "alltoallw",
[BARRIER] = "barrier",
[BCAST] = "bcast",
[EXSCAN] = "exscan",
[GATHER] = "gather",
[GATHERV] = "gatherv",
[REDUCE] = "reduce",
[REDUCESCATTER] = "reduce_scatter",
[REDUCESCATTERBLOCK] = "reduce_scatter_block",
[SCAN] = "scan",
[SCATTER] = "scatter",
[SCATTERV] = "scatterv",
[NEIGHBOR_ALLGATHER] = "neighbor_allgather",
[NEIGHBOR_ALLGATHERV] = "neighbor_allgatherv",
[NEIGHBOR_ALLTOALL] = "neighbor_alltoall",
[NEIGHBOR_ALLTOALLV] = "neighbor_alltoallv",
[NEIGHBOR_ALLTOALLW] = "neighbor_alltoallw",
[COLLCOUNT] = NULL
};
char* mca_coll_base_colltype_to_str(int collid)
{
if( (collid < 0) || (collid >= COLLCOUNT) ) {
return NULL;
}
return strdup(colltype_translation_table[collid]);
}