e7ecd56bd2
such, the commit message back to the master SVN repository is fairly long. = ORTE Job-Level Output Messages = Add two new interfaces that should be used for all new code throughout the ORTE and OMPI layers (we already make the search-and-replace on the existing ORTE / OMPI layers): * orte_output(): (and corresponding friends ORTE_OUTPUT, orte_output_verbose, etc.) This function sends the output directly to the HNP for processing as part of a job-specific output channel. It supports all the same outputs as opal_output() (syslog, file, stdout, stderr), but for stdout/stderr, the output is sent to the HNP for processing and output. More on this below. * orte_show_help(): This function is a drop-in-replacement for opal_show_help(), with two differences in functionality: 1. the rendered text help message output is sent to the HNP for display (rather than outputting directly into the process' stderr stream) 1. the HNP detects duplicate help messages and does not display them (so that you don't see the same error message N times, once from each of your N MPI processes); instead, it counts "new" instances of the help message and displays a message every ~5 seconds when there are new ones ("I got X new copies of the help message...") opal_show_help and opal_output still exist, but they only output in the current process. The intent for the new orte_* functions is that they can apply job-level intelligence to the output. As such, we recommend that all new ORTE and OMPI code use the new orte_* functions, not thei opal_* functions. === New code === For ORTE and OMPI programmers, here's what you need to do differently in new code: * Do not include opal/util/show_help.h or opal/util/output.h. Instead, include orte/util/output.h (this one header file has declarations for both the orte_output() series of functions and orte_show_help()). * Effectively s/opal_output/orte_output/gi throughout your code. Note that orte_output_open() takes a slightly different argument list (as a way to pass data to the filtering stream -- see below), so you if explicitly call opal_output_open(), you'll need to slightly adapt to the new signature of orte_output_open(). * Literally s/opal_show_help/orte_show_help/. The function signature is identical. === Notes === * orte_output'ing to stream 0 will do similar to what opal_output'ing did, so leaving a hard-coded "0" as the first argument is safe. * For systems that do not use ORTE's RML or the HNP, the effect of orte_output_* and orte_show_help will be identical to their opal counterparts (the additional information passed to orte_output_open() will be lost!). Indeed, the orte_* functions simply become trivial wrappers to their opal_* counterparts. Note that we have not tested this; the code is simple but it is quite possible that we mucked something up. = Filter Framework = Messages sent view the new orte_* functions described above and messages output via the IOF on the HNP will now optionally be passed through a new "filter" framework before being output to stdout/stderr. The "filter" OPAL MCA framework is intended to allow preprocessing to messages before they are sent to their final destinations. The first component that was written in the filter framework was to create an XML stream, segregating all the messages into different XML tags, etc. This will allow 3rd party tools to read the stdout/stderr from the HNP and be able to know exactly what each text message is (e.g., a help message, another OMPI infrastructure message, stdout from the user process, stderr from the user process, etc.). Filtering is not active by default. Filter components must be specifically requested, such as: {{{ $ mpirun --mca filter xml ... }}} There can only be one filter component active. = New MCA Parameters = The new functionality described above introduces two new MCA parameters: * '''orte_base_help_aggregate''': Defaults to 1 (true), meaning that help messages will be aggregated, as described above. If set to 0, all help messages will be displayed, even if they are duplicates (i.e., the original behavior). * '''orte_base_show_output_recursions''': An MCA parameter to help debug one of the known issues, described below. It is likely that this MCA parameter will disappear before v1.3 final. = Known Issues = * The XML filter component is not complete. The current output from this component is preliminary and not real XML. A bit more work needs to be done to configure.m4 search for an appropriate XML library/link it in/use it at run time. * There are possible recursion loops in the orte_output() and orte_show_help() functions -- e.g., if RML send calls orte_output() or orte_show_help(). We have some ideas how to fix these, but figured that it was ok to commit before feature freeze with known issues. The code currently contains sub-optimal workarounds so that this will not be a problem, but it would be good to actually solve the problem rather than have hackish workarounds before v1.3 final. This commit was SVN r18434.
834 строки
36 KiB
C
834 строки
36 KiB
C
/*
|
|
* Copyright (c) 2004-2005 The Trustees of Indiana University and Indiana
|
|
* University Research and Technology
|
|
* Corporation. All rights reserved.
|
|
* Copyright (c) 2004-2006 The University of Tennessee and The University
|
|
* of Tennessee Research Foundation. All rights
|
|
* reserved.
|
|
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
|
|
* University of Stuttgart. All rights reserved.
|
|
* Copyright (c) 2004-2005 The Regents of the University of California.
|
|
* All rights reserved.
|
|
* $COPYRIGHT$
|
|
*
|
|
* Additional copyrights may follow
|
|
*
|
|
* $HEADER$
|
|
*/
|
|
|
|
#include "ompi_config.h"
|
|
|
|
#include "mpi.h"
|
|
#include "ompi/constants.h"
|
|
#include "ompi/datatype/datatype.h"
|
|
#include "ompi/communicator/communicator.h"
|
|
#include "ompi/mca/coll/coll.h"
|
|
#include "ompi/mca/coll/base/coll_tags.h"
|
|
#include "ompi/mca/pml/pml.h"
|
|
#include "coll_tuned.h"
|
|
#include "coll_tuned_topo.h"
|
|
#include "coll_tuned_util.h"
|
|
|
|
int
|
|
ompi_coll_tuned_bcast_intra_generic( void* buffer,
|
|
int original_count,
|
|
struct ompi_datatype_t* datatype,
|
|
int root,
|
|
struct ompi_communicator_t* comm,
|
|
struct mca_coll_base_module_1_1_0_t *module,
|
|
uint32_t count_by_segment,
|
|
ompi_coll_tree_t* tree )
|
|
{
|
|
int err = 0, line, i;
|
|
int rank, size;
|
|
int segindex;
|
|
int num_segments; /* Number of segments */
|
|
int sendcount; /* number of elements sent in this segment */
|
|
size_t realsegsize;
|
|
char *tmpbuf;
|
|
size_t type_size;
|
|
ptrdiff_t extent, lb;
|
|
ompi_request_t *recv_reqs[2] = {MPI_REQUEST_NULL, MPI_REQUEST_NULL};
|
|
#if !defined(COLL_TUNED_BCAST_USE_BLOCKING)
|
|
ompi_request_t **send_reqs = NULL;
|
|
#endif
|
|
int req_index;
|
|
|
|
size = ompi_comm_size(comm);
|
|
rank = ompi_comm_rank(comm);
|
|
assert( size > 1 );
|
|
|
|
ompi_ddt_get_extent (datatype, &lb, &extent);
|
|
ompi_ddt_type_size( datatype, &type_size );
|
|
num_segments = (original_count + count_by_segment - 1) / count_by_segment;
|
|
realsegsize = count_by_segment * extent;
|
|
|
|
/* Set the buffer pointers */
|
|
tmpbuf = (char *) buffer;
|
|
|
|
#if !defined(COLL_TUNED_BCAST_USE_BLOCKING)
|
|
if( tree->tree_nextsize != 0 ) {
|
|
send_reqs = (ompi_request_t**)malloc( tree->tree_nextsize *
|
|
sizeof(ompi_request_t*) );
|
|
}
|
|
#endif
|
|
|
|
/* Root code */
|
|
if( rank == root ) {
|
|
/*
|
|
For each segment:
|
|
- send segment to all children.
|
|
The last segment may have less elements than other segments.
|
|
*/
|
|
sendcount = count_by_segment;
|
|
for( segindex = 0; segindex < num_segments; segindex++ ) {
|
|
if( segindex == (num_segments - 1) ) {
|
|
sendcount = original_count - segindex * count_by_segment;
|
|
}
|
|
for( i = 0; i < tree->tree_nextsize; i++ ) {
|
|
#if defined(COLL_TUNED_BCAST_USE_BLOCKING)
|
|
err = MCA_PML_CALL(send(tmpbuf, sendcount, datatype,
|
|
tree->tree_next[i],
|
|
MCA_COLL_BASE_TAG_BCAST,
|
|
MCA_PML_BASE_SEND_STANDARD, comm));
|
|
#else
|
|
err = MCA_PML_CALL(isend(tmpbuf, sendcount, datatype,
|
|
tree->tree_next[i],
|
|
MCA_COLL_BASE_TAG_BCAST,
|
|
MCA_PML_BASE_SEND_STANDARD, comm,
|
|
&send_reqs[i]));
|
|
#endif /* COLL_TUNED_BCAST_USE_BLOCKING */
|
|
if (err != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }
|
|
}
|
|
|
|
#if !defined(COLL_TUNED_BCAST_USE_BLOCKING)
|
|
/* complete the sends before starting the next sends */
|
|
err = ompi_request_wait_all( tree->tree_nextsize, send_reqs,
|
|
MPI_STATUSES_IGNORE );
|
|
if (err != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }
|
|
#endif /* not COLL_TUNED_BCAST_USE_BLOCKING */
|
|
|
|
/* update tmp buffer */
|
|
tmpbuf += realsegsize;
|
|
|
|
}
|
|
}
|
|
|
|
/* Intermediate nodes code */
|
|
else if( tree->tree_nextsize > 0 ) {
|
|
/*
|
|
Create the pipeline.
|
|
1) Post the first receive
|
|
2) For segments 1 .. num_segments
|
|
- post new receive
|
|
- wait on the previous receive to complete
|
|
- send this data to children
|
|
3) Wait on the last segment
|
|
4) Compute number of elements in last segment.
|
|
5) Send the last segment to children
|
|
*/
|
|
req_index = 0;
|
|
MCA_PML_CALL(irecv(tmpbuf, count_by_segment, datatype,
|
|
tree->tree_prev, MCA_COLL_BASE_TAG_BCAST,
|
|
comm, &recv_reqs[req_index]));
|
|
if (err != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }
|
|
|
|
for( segindex = 1; segindex < num_segments; segindex++ ) {
|
|
|
|
req_index = req_index ^ 0x1;
|
|
|
|
/* post new irecv */
|
|
MCA_PML_CALL(irecv( tmpbuf + realsegsize, count_by_segment,
|
|
datatype, tree->tree_prev,
|
|
MCA_COLL_BASE_TAG_BCAST,
|
|
comm, &recv_reqs[req_index]));
|
|
if (err != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }
|
|
|
|
/* wait for and forward the previous segment to children */
|
|
err = ompi_request_wait( &recv_reqs[req_index ^ 0x1],
|
|
MPI_STATUSES_IGNORE );
|
|
if (err != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }
|
|
|
|
for( i = 0; i < tree->tree_nextsize; i++ ) {
|
|
#if defined(COLL_TUNED_BCAST_USE_BLOCKING)
|
|
err = MCA_PML_CALL(send(tmpbuf, count_by_segment, datatype,
|
|
tree->tree_next[i],
|
|
MCA_COLL_BASE_TAG_BCAST,
|
|
MCA_PML_BASE_SEND_STANDARD, comm));
|
|
#else
|
|
err = MCA_PML_CALL(isend(tmpbuf, count_by_segment, datatype,
|
|
tree->tree_next[i],
|
|
MCA_COLL_BASE_TAG_BCAST,
|
|
MCA_PML_BASE_SEND_STANDARD, comm,
|
|
&send_reqs[i]));
|
|
#endif /* COLL_TUNED_BCAST_USE_BLOCKING */
|
|
if (err != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }
|
|
}
|
|
|
|
#if !defined(COLL_TUNED_BCAST_USE_BLOCKING)
|
|
/* complete the sends before starting the next iteration */
|
|
err = ompi_request_wait_all( tree->tree_nextsize, send_reqs,
|
|
MPI_STATUSES_IGNORE );
|
|
if (err != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }
|
|
#endif /* COLL_TUNED_BCAST_USE_BLOCKING */
|
|
|
|
/* Update the receive buffer */
|
|
tmpbuf += realsegsize;
|
|
|
|
}
|
|
|
|
/* Process the last segment */
|
|
err = ompi_request_wait( &recv_reqs[req_index], MPI_STATUSES_IGNORE );
|
|
if (err != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }
|
|
sendcount = original_count - (num_segments - 1) * count_by_segment;
|
|
for( i = 0; i < tree->tree_nextsize; i++ ) {
|
|
#if defined(COLL_TUNED_BCAST_USE_BLOCKING)
|
|
err = MCA_PML_CALL(send(tmpbuf, sendcount, datatype,
|
|
tree->tree_next[i],
|
|
MCA_COLL_BASE_TAG_BCAST,
|
|
MCA_PML_BASE_SEND_STANDARD, comm));
|
|
#else
|
|
err = MCA_PML_CALL(isend(tmpbuf, sendcount, datatype,
|
|
tree->tree_next[i],
|
|
MCA_COLL_BASE_TAG_BCAST,
|
|
MCA_PML_BASE_SEND_STANDARD, comm,
|
|
&send_reqs[i]));
|
|
#endif /* COLL_TUNED_BCAST_USE_BLOCKING */
|
|
if (err != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }
|
|
}
|
|
|
|
#if !defined(COLL_TUNED_BCAST_USE_BLOCKING)
|
|
err = ompi_request_wait_all( tree->tree_nextsize, send_reqs,
|
|
MPI_STATUSES_IGNORE );
|
|
if (err != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }
|
|
#endif /* COLL_TUNED_BCAST_USE_BLOCKING */
|
|
}
|
|
|
|
/* Leaf nodes */
|
|
else {
|
|
/*
|
|
Receive all segments from parent in a loop:
|
|
1) post irecv for the first segment
|
|
2) for segments 1 .. num_segments
|
|
- post irecv for the next segment
|
|
- wait on the previous segment to arrive
|
|
3) wait for the last segment
|
|
*/
|
|
req_index = 0;
|
|
err = MCA_PML_CALL(irecv(tmpbuf, count_by_segment, datatype,
|
|
tree->tree_prev, MCA_COLL_BASE_TAG_BCAST,
|
|
comm, &recv_reqs[req_index]));
|
|
if (err != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }
|
|
|
|
for( segindex = 1; segindex < num_segments; segindex++ ) {
|
|
req_index = req_index ^ 0x1;
|
|
tmpbuf += realsegsize;
|
|
/* post receive for the next segment */
|
|
err = MCA_PML_CALL(irecv(tmpbuf, count_by_segment, datatype,
|
|
tree->tree_prev, MCA_COLL_BASE_TAG_BCAST,
|
|
comm, &recv_reqs[req_index]));
|
|
if (err != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }
|
|
/* wait on the previous segment */
|
|
err = ompi_request_wait( &recv_reqs[req_index ^ 0x1],
|
|
MPI_STATUS_IGNORE );
|
|
if (err != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }
|
|
}
|
|
|
|
err = ompi_request_wait( &recv_reqs[req_index], MPI_STATUS_IGNORE );
|
|
if (err != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }
|
|
}
|
|
|
|
#if !defined(COLL_TUNED_BCAST_USE_BLOCKING)
|
|
if( NULL != send_reqs ) free(send_reqs);
|
|
#endif
|
|
|
|
return (MPI_SUCCESS);
|
|
|
|
error_hndl:
|
|
ORTE_OUTPUT( (ompi_coll_tuned_stream,"%s:%4d\tError occurred %d, rank %2d",
|
|
__FILE__, line, err, rank) );
|
|
#if !defined(COLL_TUNED_BCAST_USE_BLOCKING)
|
|
if( NULL != send_reqs ) free(send_reqs);
|
|
#endif
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
ompi_coll_tuned_bcast_intra_bintree ( void* buffer,
|
|
int count,
|
|
struct ompi_datatype_t* datatype,
|
|
int root,
|
|
struct ompi_communicator_t* comm,
|
|
struct mca_coll_base_module_1_1_0_t *module,
|
|
uint32_t segsize )
|
|
{
|
|
int segcount = count;
|
|
size_t typelng;
|
|
mca_coll_tuned_module_t *tuned_module = (mca_coll_tuned_module_t*) module;
|
|
mca_coll_tuned_comm_t *data = tuned_module->tuned_data;
|
|
|
|
COLL_TUNED_UPDATE_BINTREE( comm, tuned_module, root );
|
|
|
|
/**
|
|
* Determine number of elements sent per operation.
|
|
*/
|
|
ompi_ddt_type_size( datatype, &typelng );
|
|
COLL_TUNED_COMPUTED_SEGCOUNT( segsize, typelng, segcount );
|
|
|
|
ORTE_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:bcast_intra_binary rank %d ss %5d typelng %lu segcount %d",
|
|
ompi_comm_rank(comm), segsize, (unsigned long)typelng, segcount));
|
|
|
|
return ompi_coll_tuned_bcast_intra_generic( buffer, count, datatype, root, comm, module,
|
|
segcount, data->cached_bintree );
|
|
}
|
|
|
|
int
|
|
ompi_coll_tuned_bcast_intra_pipeline( void* buffer,
|
|
int count,
|
|
struct ompi_datatype_t* datatype,
|
|
int root,
|
|
struct ompi_communicator_t* comm,
|
|
struct mca_coll_base_module_1_1_0_t *module,
|
|
uint32_t segsize )
|
|
{
|
|
int segcount = count;
|
|
size_t typelng;
|
|
mca_coll_tuned_module_t *tuned_module = (mca_coll_tuned_module_t*) module;
|
|
mca_coll_tuned_comm_t *data = tuned_module->tuned_data;
|
|
|
|
COLL_TUNED_UPDATE_PIPELINE( comm, tuned_module, root );
|
|
|
|
/**
|
|
* Determine number of elements sent per operation.
|
|
*/
|
|
ompi_ddt_type_size( datatype, &typelng );
|
|
COLL_TUNED_COMPUTED_SEGCOUNT( segsize, typelng, segcount );
|
|
|
|
ORTE_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:bcast_intra_pipeline rank %d ss %5d typelng %lu segcount %d",
|
|
ompi_comm_rank(comm), segsize, (unsigned long)typelng, segcount));
|
|
|
|
return ompi_coll_tuned_bcast_intra_generic( buffer, count, datatype, root, comm, module,
|
|
segcount, data->cached_pipeline );
|
|
}
|
|
|
|
int
|
|
ompi_coll_tuned_bcast_intra_chain( void* buffer,
|
|
int count,
|
|
struct ompi_datatype_t* datatype,
|
|
int root,
|
|
struct ompi_communicator_t* comm,
|
|
struct mca_coll_base_module_1_1_0_t *module,
|
|
uint32_t segsize, int32_t chains )
|
|
{
|
|
int segcount = count;
|
|
size_t typelng;
|
|
mca_coll_tuned_module_t *tuned_module = (mca_coll_tuned_module_t*) module;
|
|
mca_coll_tuned_comm_t *data = tuned_module->tuned_data;
|
|
|
|
COLL_TUNED_UPDATE_CHAIN( comm, tuned_module, root, chains );
|
|
|
|
/**
|
|
* Determine number of elements sent per operation.
|
|
*/
|
|
ompi_ddt_type_size( datatype, &typelng );
|
|
COLL_TUNED_COMPUTED_SEGCOUNT( segsize, typelng, segcount );
|
|
|
|
ORTE_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:bcast_intra_chain rank %d fo %d ss %5d typelng %lu segcount %d",
|
|
ompi_comm_rank(comm), chains, segsize, (unsigned long)typelng, segcount));
|
|
|
|
return ompi_coll_tuned_bcast_intra_generic( buffer, count, datatype, root, comm, module,
|
|
segcount, data->cached_chain );
|
|
}
|
|
|
|
int
|
|
ompi_coll_tuned_bcast_intra_binomial( void* buffer,
|
|
int count,
|
|
struct ompi_datatype_t* datatype,
|
|
int root,
|
|
struct ompi_communicator_t* comm,
|
|
struct mca_coll_base_module_1_1_0_t *module,
|
|
uint32_t segsize )
|
|
{
|
|
int segcount = count;
|
|
size_t typelng;
|
|
mca_coll_tuned_module_t *tuned_module = (mca_coll_tuned_module_t*) module;
|
|
mca_coll_tuned_comm_t *data = tuned_module->tuned_data;
|
|
|
|
COLL_TUNED_UPDATE_BMTREE( comm, tuned_module, root );
|
|
|
|
/**
|
|
* Determine number of elements sent per operation.
|
|
*/
|
|
ompi_ddt_type_size( datatype, &typelng );
|
|
COLL_TUNED_COMPUTED_SEGCOUNT( segsize, typelng, segcount );
|
|
|
|
ORTE_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:bcast_intra_binomial rank %d ss %5d typelng %lu segcount %d",
|
|
ompi_comm_rank(comm), segsize, (unsigned long)typelng, segcount));
|
|
|
|
return ompi_coll_tuned_bcast_intra_generic( buffer, count, datatype, root, comm, module,
|
|
segcount, data->cached_bmtree );
|
|
}
|
|
|
|
int
|
|
ompi_coll_tuned_bcast_intra_split_bintree ( void* buffer,
|
|
int count,
|
|
struct ompi_datatype_t* datatype,
|
|
int root,
|
|
struct ompi_communicator_t* comm,
|
|
struct mca_coll_base_module_1_1_0_t *module,
|
|
uint32_t segsize )
|
|
{
|
|
int err=0, line;
|
|
int rank, size;
|
|
int segindex, i, lr, pair;
|
|
int segcount[2]; /* Number of elements sent with each segment */
|
|
uint32_t counts[2];
|
|
int num_segments[2]; /* Number of segmenets */
|
|
int sendcount[2]; /* the same like segcount, except for the last segment */
|
|
size_t realsegsize[2];
|
|
char *tmpbuf[2];
|
|
size_t type_size;
|
|
ptrdiff_t type_extent, lb;
|
|
ompi_request_t *base_req, *new_req;
|
|
ompi_coll_tree_t *tree;
|
|
mca_coll_tuned_module_t *tuned_module = (mca_coll_tuned_module_t*) module;
|
|
mca_coll_tuned_comm_t *data = tuned_module->tuned_data;
|
|
|
|
size = ompi_comm_size(comm);
|
|
rank = ompi_comm_rank(comm);
|
|
|
|
ORTE_OUTPUT((ompi_coll_tuned_stream,"ompi_coll_tuned_bcast_intra_split_bintree rank %d root %d ss %5d", rank, root, segsize));
|
|
|
|
if (size == 1) {
|
|
return MPI_SUCCESS;
|
|
}
|
|
|
|
/* setup the binary tree topology. */
|
|
COLL_TUNED_UPDATE_BINTREE( comm, tuned_module, root );
|
|
tree = data->cached_bintree;
|
|
|
|
err = ompi_ddt_type_size( datatype, &type_size );
|
|
|
|
/* Determine number of segments and number of elements per segment */
|
|
counts[0] = count/2;
|
|
if (count % 2 != 0) counts[0]++;
|
|
counts[1] = count - counts[0];
|
|
if ( segsize > 0 ) {
|
|
/* Note that ompi_ddt_type_size() will never return a negative
|
|
value in typelng; it returns an int [vs. an unsigned type]
|
|
because of the MPI spec. */
|
|
if (segsize < ((uint32_t) type_size)) {
|
|
segsize = type_size; /* push segsize up to hold one type */
|
|
}
|
|
segcount[0] = segcount[1] = segsize / type_size;
|
|
num_segments[0] = counts[0]/segcount[0];
|
|
if ((counts[0] % segcount[0]) != 0) num_segments[0]++;
|
|
num_segments[1] = counts[1]/segcount[1];
|
|
if ((counts[1] % segcount[1]) != 0) num_segments[1]++;
|
|
} else {
|
|
segcount[0] = counts[0];
|
|
segcount[1] = counts[1];
|
|
num_segments[0] = num_segments[1] = 1;
|
|
}
|
|
|
|
/* if the message is too small to be split into segments */
|
|
if( (counts[0] == 0 || counts[1] == 0) ||
|
|
(segsize > counts[0] * type_size) ||
|
|
(segsize > counts[1] * type_size) ) {
|
|
/* call linear version here ! */
|
|
return (ompi_coll_tuned_bcast_intra_chain ( buffer, count, datatype,
|
|
root, comm, module,
|
|
segsize, 1 ));
|
|
}
|
|
|
|
err = ompi_ddt_get_extent (datatype, &lb, &type_extent);
|
|
|
|
/* Determine real segment size */
|
|
realsegsize[0] = segcount[0] * type_extent;
|
|
realsegsize[1] = segcount[1] * type_extent;
|
|
|
|
/* set the buffer pointers */
|
|
tmpbuf[0] = (char *) buffer;
|
|
tmpbuf[1] = (char *) buffer+counts[0] * type_extent;
|
|
|
|
/* Step 1:
|
|
Root splits the buffer in 2 and sends segmented message down the branches.
|
|
Left subtree of the tree receives first half of the buffer, while right
|
|
subtree receives the remaining message.
|
|
*/
|
|
|
|
/* determine if I am left (0) or right (1), (root is right) */
|
|
lr = ((rank + size - root)%size + 1)%2;
|
|
|
|
/* root code */
|
|
if( rank == root ) {
|
|
/* determine segment count */
|
|
sendcount[0] = segcount[0];
|
|
sendcount[1] = segcount[1];
|
|
/* for each segment */
|
|
for (segindex = 0; segindex < num_segments[0]; segindex++) {
|
|
/* for each child */
|
|
for( i = 0; i < tree->tree_nextsize && i < 2; i++ ) {
|
|
if (segindex >= num_segments[i]) { /* no more segments */
|
|
continue;
|
|
}
|
|
/* determine how many elements are being sent in this round */
|
|
if(segindex == (num_segments[i] - 1))
|
|
sendcount[i] = counts[i] - segindex*segcount[i];
|
|
/* send data */
|
|
MCA_PML_CALL(send(tmpbuf[i], sendcount[i], datatype,
|
|
tree->tree_next[i], MCA_COLL_BASE_TAG_BCAST,
|
|
MCA_PML_BASE_SEND_STANDARD, comm));
|
|
if (err != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }
|
|
/* update tmp buffer */
|
|
tmpbuf[i] += realsegsize[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* intermediate nodes code */
|
|
else if( tree->tree_nextsize > 0 ) {
|
|
/* Intermediate nodes:
|
|
* It will receive segments only from one half of the data.
|
|
* Which one is determined by whether the node belongs to the "left" or "right"
|
|
* subtree. Topoloby building function builds binary tree such that
|
|
* odd "shifted ranks" ((rank + size - root)%size) are on the left subtree,
|
|
* and even on the right subtree.
|
|
*
|
|
* Create the pipeline. We first post the first receive, then in the loop we
|
|
* post the next receive and after that wait for the previous receive to complete
|
|
* and we disseminating the data to all children.
|
|
*/
|
|
sendcount[lr] = segcount[lr];
|
|
MCA_PML_CALL(irecv(tmpbuf[lr], sendcount[lr], datatype,
|
|
tree->tree_prev, MCA_COLL_BASE_TAG_BCAST,
|
|
comm, &base_req));
|
|
if (err != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }
|
|
|
|
for( segindex = 1; segindex < num_segments[lr]; segindex++ ) {
|
|
/* determine how many elements to expect in this round */
|
|
if( segindex == (num_segments[lr] - 1))
|
|
sendcount[lr] = counts[lr] - segindex*segcount[lr];
|
|
/* post new irecv */
|
|
MCA_PML_CALL(irecv( tmpbuf[lr] + realsegsize[lr], sendcount[lr],
|
|
datatype, tree->tree_prev, MCA_COLL_BASE_TAG_BCAST,
|
|
comm, &new_req));
|
|
if (err != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }
|
|
|
|
/* wait for and forward current segment */
|
|
err = ompi_request_wait_all( 1, &base_req, MPI_STATUSES_IGNORE );
|
|
for( i = 0; i < tree->tree_nextsize; i++ ) { /* send data to children (segcount[lr]) */
|
|
MCA_PML_CALL(send( tmpbuf[lr], segcount[lr], datatype,
|
|
tree->tree_next[i], MCA_COLL_BASE_TAG_BCAST,
|
|
MCA_PML_BASE_SEND_STANDARD, comm));
|
|
if (err != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }
|
|
} /* end of for each child */
|
|
|
|
/* upate the base request */
|
|
base_req = new_req;
|
|
/* go to the next buffer (ie. the one corresponding to the next recv) */
|
|
tmpbuf[lr] += realsegsize[lr];
|
|
} /* end of for segindex */
|
|
|
|
/* wait for the last segment and forward current segment */
|
|
err = ompi_request_wait_all( 1, &base_req, MPI_STATUSES_IGNORE );
|
|
for( i = 0; i < tree->tree_nextsize; i++ ) { /* send data to children */
|
|
MCA_PML_CALL(send(tmpbuf[lr], sendcount[lr], datatype,
|
|
tree->tree_next[i], MCA_COLL_BASE_TAG_BCAST,
|
|
MCA_PML_BASE_SEND_STANDARD, comm));
|
|
if (err != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }
|
|
} /* end of for each child */
|
|
}
|
|
|
|
/* leaf nodes */
|
|
else {
|
|
/* Just consume segments as fast as possible */
|
|
sendcount[lr] = segcount[lr];
|
|
for (segindex = 0; segindex < num_segments[lr]; segindex++) {
|
|
/* determine how many elements to expect in this round */
|
|
if (segindex == (num_segments[lr] - 1)) sendcount[lr] = counts[lr] - segindex*segcount[lr];
|
|
/* receive segments */
|
|
MCA_PML_CALL(recv(tmpbuf[lr], sendcount[lr], datatype,
|
|
tree->tree_prev, MCA_COLL_BASE_TAG_BCAST,
|
|
comm, MPI_STATUS_IGNORE));
|
|
if (err != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }
|
|
/* update the initial pointer to the buffer */
|
|
tmpbuf[lr] += realsegsize[lr];
|
|
}
|
|
}
|
|
|
|
/* reset the buffer pointers */
|
|
tmpbuf[0] = (char *) buffer;
|
|
tmpbuf[1] = (char *) buffer+counts[0] * type_extent;
|
|
|
|
/* Step 2:
|
|
Find your immediate pair (identical node in opposite subtree) and SendRecv
|
|
data buffer with them.
|
|
The tree building function ensures that
|
|
if (we are not root)
|
|
if we are in the left subtree (lr == 0) our pair is (rank+1)%size.
|
|
if we are in the right subtree (lr == 1) our pair is (rank-1)%size
|
|
If we have even number of nodes the rank (size-1) will pair up with root.
|
|
*/
|
|
if (lr == 0) {
|
|
pair = (rank+1)%size;
|
|
} else {
|
|
pair = (rank+size-1)%size;
|
|
}
|
|
|
|
if ( (size%2) != 0 && rank != root) {
|
|
|
|
err = ompi_coll_tuned_sendrecv( tmpbuf[lr], counts[lr], datatype,
|
|
pair, MCA_COLL_BASE_TAG_BCAST,
|
|
tmpbuf[(lr+1)%2], counts[(lr+1)%2], datatype,
|
|
pair, MCA_COLL_BASE_TAG_BCAST,
|
|
comm, MPI_STATUS_IGNORE, rank);
|
|
if (err != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }
|
|
} else if ( (size%2) == 0 ) {
|
|
/* root sends right buffer to the last node */
|
|
if( rank == root ) {
|
|
MCA_PML_CALL(send(tmpbuf[1], counts[1], datatype,
|
|
(root+size-1)%size, MCA_COLL_BASE_TAG_BCAST,
|
|
MCA_PML_BASE_SEND_STANDARD, comm));
|
|
if (err != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }
|
|
|
|
}
|
|
/* last node receives right buffer from the root */
|
|
else if (rank == (root+size-1)%size) {
|
|
MCA_PML_CALL(recv(tmpbuf[1], counts[1], datatype,
|
|
root, MCA_COLL_BASE_TAG_BCAST,
|
|
comm, MPI_STATUS_IGNORE));
|
|
if (err != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }
|
|
}
|
|
/* everyone else exchanges buffers */
|
|
else {
|
|
err = ompi_coll_tuned_sendrecv( tmpbuf[lr], counts[lr], datatype,
|
|
pair, MCA_COLL_BASE_TAG_BCAST,
|
|
tmpbuf[(lr+1)%2], counts[(lr+1)%2], datatype,
|
|
pair, MCA_COLL_BASE_TAG_BCAST,
|
|
comm, MPI_STATUS_IGNORE, rank);
|
|
if (err != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }
|
|
}
|
|
}
|
|
return (MPI_SUCCESS);
|
|
|
|
error_hndl:
|
|
ORTE_OUTPUT((ompi_coll_tuned_stream,"%s:%4d\tError occurred %d, rank %2d", __FILE__,line,err,rank));
|
|
return (err);
|
|
}
|
|
|
|
|
|
/*
|
|
* Linear functions are copied from the BASIC coll module
|
|
* they do not segment the message and are simple implementations
|
|
* but for some small number of nodes and/or small data sizes they
|
|
* are just as fast as tuned/tree based segmenting operations
|
|
* and as such may be selected by the decision functions
|
|
* These are copied into this module due to the way we select modules
|
|
* in V1. i.e. in V2 we will handle this differently and so will not
|
|
* have to duplicate code.
|
|
* GEF Oct05 after asking Jeff.
|
|
*/
|
|
|
|
/* copied function (with appropriate renaming) starts here */
|
|
|
|
/*
|
|
* bcast_lin_intra
|
|
*
|
|
* Function: - broadcast using O(N) algorithm
|
|
* Accepts: - same arguments as MPI_Bcast()
|
|
* Returns: - MPI_SUCCESS or error code
|
|
*/
|
|
int
|
|
ompi_coll_tuned_bcast_intra_basic_linear (void *buff, int count,
|
|
struct ompi_datatype_t *datatype, int root,
|
|
struct ompi_communicator_t *comm,
|
|
struct mca_coll_base_module_1_1_0_t *module)
|
|
{
|
|
int i;
|
|
int size;
|
|
int rank;
|
|
int err;
|
|
mca_coll_tuned_module_t *tuned_module = (mca_coll_tuned_module_t*) module;
|
|
mca_coll_tuned_comm_t *data = tuned_module->tuned_data;
|
|
ompi_request_t **preq;
|
|
ompi_request_t **reqs = data->mcct_reqs;
|
|
|
|
|
|
size = ompi_comm_size(comm);
|
|
rank = ompi_comm_rank(comm);
|
|
|
|
ORTE_OUTPUT((ompi_coll_tuned_stream,"ompi_coll_tuned_bcast_intra_basic_linear rank %d root %d", rank, root));
|
|
|
|
/* Non-root receive the data. */
|
|
|
|
if (rank != root) {
|
|
return MCA_PML_CALL(recv(buff, count, datatype, root,
|
|
MCA_COLL_BASE_TAG_BCAST, comm,
|
|
MPI_STATUS_IGNORE));
|
|
}
|
|
|
|
/* Root sends data to all others. */
|
|
|
|
for (i = 0, preq = reqs; i < size; ++i) {
|
|
if (i == rank) {
|
|
continue;
|
|
}
|
|
|
|
err = MCA_PML_CALL(isend_init(buff, count, datatype, i,
|
|
MCA_COLL_BASE_TAG_BCAST,
|
|
MCA_PML_BASE_SEND_STANDARD,
|
|
comm, preq++));
|
|
if (MPI_SUCCESS != err) {
|
|
return err;
|
|
}
|
|
}
|
|
--i;
|
|
|
|
/* Start your engines. This will never return an error. */
|
|
|
|
MCA_PML_CALL(start(i, reqs));
|
|
|
|
/* Wait for them all. If there's an error, note that we don't
|
|
* care what the error was -- just that there *was* an error. The
|
|
* PML will finish all requests, even if one or more of them fail.
|
|
* i.e., by the end of this call, all the requests are free-able.
|
|
* So free them anyway -- even if there was an error, and return
|
|
* the error after we free everything. */
|
|
|
|
err = ompi_request_wait_all(i, reqs, MPI_STATUSES_IGNORE);
|
|
|
|
/* Free the reqs */
|
|
|
|
ompi_coll_tuned_free_reqs(reqs, i);
|
|
|
|
/* All done */
|
|
|
|
return err;
|
|
}
|
|
|
|
|
|
/* copied function (with appropriate renaming) ends here */
|
|
|
|
/* The following are used by dynamic and forced rules */
|
|
|
|
/* publish details of each algorithm and if its forced/fixed/locked in */
|
|
/* as you add methods/algorithms you must update this and the query/map routines */
|
|
|
|
/* this routine is called by the component only */
|
|
/* this makes sure that the mca parameters are set to their initial values and perms */
|
|
/* module does not call this they call the forced_getvalues routine instead */
|
|
|
|
int ompi_coll_tuned_bcast_intra_check_forced_init (coll_tuned_force_algorithm_mca_param_indices_t *mca_param_indices)
|
|
{
|
|
int rc, max_alg = 6, requested_alg;
|
|
|
|
ompi_coll_tuned_forced_max_algorithms[BCAST] = max_alg;
|
|
|
|
rc = mca_base_param_reg_int (&mca_coll_tuned_component.super.collm_version,
|
|
"bcast_algorithm_count",
|
|
"Number of bcast algorithms available",
|
|
false, true, max_alg, NULL);
|
|
|
|
|
|
mca_param_indices->algorithm_param_index
|
|
= mca_base_param_reg_int(&mca_coll_tuned_component.super.collm_version,
|
|
"bcast_algorithm",
|
|
"Which bcast algorithm is used. Can be locked down to choice of: 0 ignore, 1 basic linear, 2 chain, 3: pipeline, 4: split binary tree, 5: binary tree, 6: binomial tree.",
|
|
false, false, 0, NULL);
|
|
mca_base_param_lookup_int(mca_param_indices->algorithm_param_index, &(requested_alg));
|
|
if( requested_alg > max_alg ) {
|
|
if( 0 == ompi_comm_rank( MPI_COMM_WORLD ) ) {
|
|
orte_output( 0, "Broadcast algorithm #%d is not available (range [0..%d]). Switching back to ignore(0)\n",
|
|
requested_alg, max_alg );
|
|
}
|
|
mca_base_param_set_int( mca_param_indices->algorithm_param_index, 0);
|
|
}
|
|
|
|
mca_param_indices->segsize_param_index
|
|
= mca_base_param_reg_int(&mca_coll_tuned_component.super.collm_version,
|
|
"bcast_algorithm_segmentsize",
|
|
"Segment size in bytes used by default for bcast algorithms. Only has meaning if algorithm is forced and supports segmenting. 0 bytes means no segmentation.",
|
|
false, false, 0, NULL);
|
|
|
|
mca_param_indices->tree_fanout_param_index
|
|
= mca_base_param_reg_int(&mca_coll_tuned_component.super.collm_version,
|
|
"bcast_algorithm_tree_fanout",
|
|
"Fanout for n-tree used for bcast algorithms. Only has meaning if algorithm is forced and supports n-tree topo based operation.",
|
|
false, false,
|
|
ompi_coll_tuned_init_tree_fanout, /* get system wide default */
|
|
NULL);
|
|
|
|
mca_param_indices->chain_fanout_param_index
|
|
= mca_base_param_reg_int(&mca_coll_tuned_component.super.collm_version,
|
|
"bcast_algorithm_chain_fanout",
|
|
"Fanout for chains used for bcast algorithms. Only has meaning if algorithm is forced and supports chain topo based operation.",
|
|
false, false,
|
|
ompi_coll_tuned_init_chain_fanout, /* get system wide default */
|
|
NULL);
|
|
|
|
return (MPI_SUCCESS);
|
|
}
|
|
|
|
|
|
int ompi_coll_tuned_bcast_intra_do_forced(void *buf, int count,
|
|
struct ompi_datatype_t *dtype,
|
|
int root,
|
|
struct ompi_communicator_t *comm,
|
|
struct mca_coll_base_module_1_1_0_t *module)
|
|
{
|
|
mca_coll_tuned_module_t *tuned_module = (mca_coll_tuned_module_t*) module;
|
|
mca_coll_tuned_comm_t *data = tuned_module->tuned_data;
|
|
|
|
ORTE_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:bcast_intra_do_forced algorithm %d",
|
|
data->user_forced[BCAST].algorithm));
|
|
|
|
switch (data->user_forced[BCAST].algorithm) {
|
|
case (0): return ompi_coll_tuned_bcast_intra_dec_fixed( buf, count, dtype, root, comm, module );
|
|
case (1): return ompi_coll_tuned_bcast_intra_basic_linear( buf, count, dtype, root, comm, module );
|
|
case (2): return ompi_coll_tuned_bcast_intra_chain( buf, count, dtype, root, comm, module,
|
|
data->user_forced[BCAST].segsize,
|
|
data->user_forced[BCAST].chain_fanout );
|
|
case (3): return ompi_coll_tuned_bcast_intra_pipeline( buf, count, dtype, root, comm, module,
|
|
data->user_forced[BCAST].segsize );
|
|
case (4): return ompi_coll_tuned_bcast_intra_split_bintree( buf, count, dtype, root, comm, module,
|
|
data->user_forced[BCAST].segsize );
|
|
case (5): return ompi_coll_tuned_bcast_intra_bintree( buf, count, dtype, root, comm, module,
|
|
data->user_forced[BCAST].segsize );
|
|
case (6): return ompi_coll_tuned_bcast_intra_binomial( buf, count, dtype, root, comm, module,
|
|
data->user_forced[BCAST].segsize );
|
|
default:
|
|
ORTE_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:bcast_intra_do_forced attempt to select algorithm %d when only 0-%d is valid?",
|
|
data->user_forced[BCAST].algorithm, ompi_coll_tuned_forced_max_algorithms[BCAST]));
|
|
} /* switch */
|
|
return (MPI_ERR_ARG);
|
|
}
|
|
|
|
|
|
int ompi_coll_tuned_bcast_intra_do_this(void *buf, int count,
|
|
struct ompi_datatype_t *dtype,
|
|
int root,
|
|
struct ompi_communicator_t *comm,
|
|
struct mca_coll_base_module_1_1_0_t *module,
|
|
int algorithm, int faninout, int segsize)
|
|
|
|
{
|
|
ORTE_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:bcast_intra_do_this algorithm %d topo faninout %d segsize %d",
|
|
algorithm, faninout, segsize));
|
|
|
|
switch (algorithm) {
|
|
case (0): return ompi_coll_tuned_bcast_intra_dec_fixed( buf, count, dtype, root, comm, module );
|
|
case (1): return ompi_coll_tuned_bcast_intra_basic_linear( buf, count, dtype, root, comm, module );
|
|
case (2): return ompi_coll_tuned_bcast_intra_chain( buf, count, dtype, root, comm, module, segsize, faninout );
|
|
case (3): return ompi_coll_tuned_bcast_intra_pipeline( buf, count, dtype, root, comm, module, segsize );
|
|
case (4): return ompi_coll_tuned_bcast_intra_split_bintree( buf, count, dtype, root, comm, module, segsize );
|
|
case (5): return ompi_coll_tuned_bcast_intra_bintree( buf, count, dtype, root, comm, module, segsize );
|
|
case (6): return ompi_coll_tuned_bcast_intra_binomial( buf, count, dtype, root, comm, module, segsize );
|
|
default:
|
|
ORTE_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:bcast_intra_do_this attempt to select algorithm %d when only 0-%d is valid?",
|
|
algorithm, ompi_coll_tuned_forced_max_algorithms[BCAST]));
|
|
} /* switch */
|
|
return (MPI_ERR_ARG);
|
|
}
|
|
|