1
1
openmpi/opal/mca/btl/ofi/btl_ofi_endpoint.c
Thananon Patinyasakdikul dae3c9447c btl/ofi: add scalable endpoint support.
This commit add support for scalable endpoint to enhance multithreaded
application performance. The BTL will detect the support from ofi
provider and will fallback to normal usage of scalable endpoint is not
supported.

NEW MCA parameters:
- mca_btl_ofi_disable_sep: force the btl to not use scalable endpoint.
- mca_btl_ofi_num_contexts_per_module: number of communication context
  to create (should be the same as number of thread).

Signed-off-by: Thananon Patinyasakdikul <thananon.patinyasakdikul@intel.com>
2018-06-14 15:44:29 -07:00

343 строки
10 KiB
C

/* -*- Mode: C; c-basic-offset:4 ; indent-tabs-mode:nil -*- */
/*
* Copyright (c) 2014-2018 Los Alamos National Security, LLC. All rights
* reserved.
* Copyright (c) 2018 Intel, Inc, All rights reserved
*
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "btl_ofi.h"
#include "btl_ofi_endpoint.h"
#include "opal/util/proc.h"
#if OPAL_HAVE_THREAD_LOCAL
opal_thread_local mca_btl_ofi_context_t *my_context = NULL;
#endif /* OPAL_HAVE_THREAD_LOCAL */
static void mca_btl_ofi_endpoint_construct (mca_btl_ofi_endpoint_t *endpoint)
{
endpoint->peer_addr = 0;
OBJ_CONSTRUCT(&endpoint->ep_lock, opal_mutex_t);
}
static void mca_btl_ofi_endpoint_destruct (mca_btl_ofi_endpoint_t *endpoint)
{
endpoint->peer_addr = 0;
/* set to null, we will free ofi endpoint in module */
endpoint->ofi_endpoint = NULL;
OBJ_DESTRUCT(&endpoint->ep_lock);
}
OBJ_CLASS_INSTANCE(mca_btl_ofi_endpoint_t, opal_list_item_t,
mca_btl_ofi_endpoint_construct,
mca_btl_ofi_endpoint_destruct);
mca_btl_base_endpoint_t *mca_btl_ofi_endpoint_create (opal_proc_t *proc, struct fid_ep *ep)
{
mca_btl_ofi_endpoint_t *endpoint = OBJ_NEW(mca_btl_ofi_endpoint_t);
if (OPAL_UNLIKELY(NULL == endpoint)) {
return NULL;
}
endpoint->ep_proc = proc;
endpoint->ofi_endpoint = ep;
return (mca_btl_base_endpoint_t *) endpoint;
}
int ofi_comp_list_init(opal_free_list_t *comp_list)
{
int rc;
OBJ_CONSTRUCT(comp_list, opal_free_list_t);
rc = opal_free_list_init(comp_list,
sizeof(mca_btl_ofi_completion_t),
opal_cache_line_size,
OBJ_CLASS(mca_btl_ofi_completion_t),
0,
0,
128,
-1,
128,
NULL,
0,
NULL,
NULL,
NULL);
if (rc != OPAL_SUCCESS) {
BTL_VERBOSE(("cannot allocate completion freelist"));
}
return rc;
}
/* mca_btl_ofi_context_alloc_normal()
*
* This function will allocate an ofi_context, map the endpoint to tx/rx context,
* bind CQ,AV to the endpoint and initialize all the structure.
* USE WITH NORMAL ENDPOINT ONLY */
mca_btl_ofi_context_t *mca_btl_ofi_context_alloc_normal(struct fi_info *info,
struct fid_domain *domain,
struct fid_ep *ep,
struct fid_av *av)
{
int rc;
uint32_t cq_flags = FI_TRANSMIT;
char *linux_device_name = info->domain_attr->name;
struct fi_cq_attr cq_attr = {0};
mca_btl_ofi_context_t *context;
context = (mca_btl_ofi_context_t*) calloc(1, sizeof(*context));
if (NULL == context) {
BTL_VERBOSE(("cannot allocate context"));
return NULL;
}
/* Don't really need to check, just avoiding compiler warning because
* BTL_VERBOSE is a no op in performance build and the compiler will
* complain about unused variable. */
if (NULL == linux_device_name) {
BTL_VERBOSE(("linux device name is NULL. This shouldn't happen."));
goto single_fail;
}
cq_attr.format = FI_CQ_FORMAT_CONTEXT;
cq_attr.wait_obj = FI_WAIT_NONE;
rc = fi_cq_open(domain, &cq_attr, &context->cq, NULL);
if (0 != rc) {
BTL_VERBOSE(("%s failed fi_cq_open with err=%s",
linux_device_name,
fi_strerror(-rc)
));
goto single_fail;
}
rc = fi_ep_bind(ep, (fid_t)av, 0);
if (0 != rc) {
BTL_VERBOSE(("%s failed fi_ep_bind with err=%s",
linux_device_name,
fi_strerror(-rc)
));
goto single_fail;
}
rc = fi_ep_bind(ep, (fid_t)context->cq, cq_flags);
if (0 != rc) {
BTL_VERBOSE(("%s failed fi_scalable_ep_bind with err=%s",
linux_device_name,
fi_strerror(-rc)
));
goto single_fail;
}
rc = ofi_comp_list_init(&context->comp_list);
if (rc != OPAL_SUCCESS) {
goto single_fail;
}
context->tx_ctx = ep;
context->rx_ctx = ep;
context->context_id = 0;
return context;
single_fail:
mca_btl_ofi_context_finalize(context, false);
return NULL;
}
/* mca_btl_ofi_context_alloc_scalable()
*
* This function allocate communication contexts and return the pointer
* to the first btl context. It also take care of all the bindings needed.
* USE WITH SCALABLE ENDPOINT ONLY */
mca_btl_ofi_context_t *mca_btl_ofi_context_alloc_scalable(struct fi_info *info,
struct fid_domain *domain,
struct fid_ep *sep,
struct fid_av *av,
size_t num_contexts)
{
BTL_VERBOSE(("creating %zu contexts", num_contexts));
int rc;
size_t i;
char *linux_device_name = info->domain_attr->name;
struct fi_cq_attr cq_attr = {0};
struct fi_tx_attr tx_attr = {0};
struct fi_rx_attr rx_attr = {0};
mca_btl_ofi_context_t *contexts;
contexts = (mca_btl_ofi_context_t*) calloc(num_contexts, sizeof(*contexts));
if (NULL == contexts) {
BTL_VERBOSE(("cannot allocate communication contexts."));
return NULL;
}
/* Don't really need to check, just avoiding compiler warning because
* BTL_VERBOSE is a no op in performance build and the compiler will
* complain about unused variable. */
if (NULL == linux_device_name) {
BTL_VERBOSE(("linux device name is NULL. This shouldn't happen."));
goto scalable_fail;
}
/* bind AV to endpoint */
rc = fi_scalable_ep_bind(sep, (fid_t)av, 0);
if (0 != rc) {
BTL_VERBOSE(("%s failed fi_scalable_ep_bind with err=%s",
linux_device_name,
fi_strerror(-rc)
));
goto scalable_fail;
}
for (i=0; i < num_contexts; i++) {
rc = fi_tx_context(sep, i, &tx_attr, &contexts[i].tx_ctx, NULL);
if (0 != rc) {
BTL_VERBOSE(("%s failed fi_tx_context with err=%s",
linux_device_name,
fi_strerror(-rc)
));
goto scalable_fail;
}
/* We don't actually need a receiving context as we only do one-sided.
* However, sockets provider will hang if we dont have one. It is
* also nice to have equal number of tx/rx context. */
rc = fi_rx_context(sep, i, &rx_attr, &contexts[i].rx_ctx, NULL);
if (0 != rc) {
BTL_VERBOSE(("%s failed fi_rx_context with err=%s",
linux_device_name,
fi_strerror(-rc)
));
goto scalable_fail;
}
/* create CQ */
cq_attr.format = FI_CQ_FORMAT_CONTEXT;
cq_attr.wait_obj = FI_WAIT_NONE;
rc = fi_cq_open(domain, &cq_attr, &contexts[i].cq, NULL);
if (0 != rc) {
BTL_VERBOSE(("%s failed fi_cq_open with err=%s",
linux_device_name,
fi_strerror(-rc)
));
goto scalable_fail;
}
/* bind cq to transmit context */
uint32_t cq_flags = (FI_TRANSMIT);
rc = fi_ep_bind(contexts[i].tx_ctx, (fid_t)contexts[i].cq, cq_flags);
if (0 != rc) {
BTL_VERBOSE(("%s failed fi_ep_bind with err=%s",
linux_device_name,
fi_strerror(-rc)
));
goto scalable_fail;
}
/* enable the context. */
rc = fi_enable(contexts[i].tx_ctx);
if (0 != rc) {
BTL_VERBOSE(("%s failed fi_enable with err=%s",
linux_device_name,
fi_strerror(-rc)
));
goto scalable_fail;
}
rc = fi_enable(contexts[i].rx_ctx);
if (0 != rc) {
BTL_VERBOSE(("%s failed fi_enable with err=%s",
linux_device_name,
fi_strerror(-rc)
));
goto scalable_fail;
}
/* initialize completion freelist. */
rc = ofi_comp_list_init(&contexts[i].comp_list);
if (rc != OPAL_SUCCESS) {
goto scalable_fail;
}
/* assign the id */
contexts[i].context_id = i;
}
return contexts;
scalable_fail:
/* close and free */
for(i=0; i < num_contexts; i++) {
mca_btl_ofi_context_finalize(&contexts[i], true);
}
free(contexts);
return NULL;
}
void mca_btl_ofi_context_finalize(mca_btl_ofi_context_t *context, bool scalable_ep) {
/* if it is a scalable ep, we have to close all contexts. */
if (scalable_ep) {
if (NULL != context->tx_ctx) {
fi_close(&context->tx_ctx->fid);
}
if (NULL != context->rx_ctx) {
fi_close(&context->rx_ctx->fid);
}
}
if( NULL != context->cq) {
fi_close(&context->cq->fid);
}
/* Can we destruct the object that hasn't been constructed? */
OBJ_DESTRUCT(&context->comp_list);
}
/* Get a context to use for communication.
* If TLS is supported, it will use the cached endpoint.
* If not, it will invoke the normal round-robin assignment. */
mca_btl_ofi_context_t *get_ofi_context(mca_btl_ofi_module_t *btl)
{
#if OPAL_HAVE_THREAD_LOCAL
/* With TLS, we cache the context we use. */
static volatile int64_t cur_num = 0;
if (OPAL_UNLIKELY(my_context == NULL)) {
OPAL_THREAD_LOCK(&btl->module_lock);
my_context = &btl->contexts[cur_num];
cur_num = (cur_num + 1) %btl->num_contexts;
OPAL_THREAD_UNLOCK(&btl->module_lock);
}
assert (my_context);
return my_context;
#else
return get_ofi_context_rr(btl);
#endif
}
/* return the context in a round-robin. */
/* There is no need for atomics here as it might hurt the performance. */
mca_btl_ofi_context_t *get_ofi_context_rr(mca_btl_ofi_module_t *btl)
{
static volatile uint64_t rr_num = 0;
return &btl->contexts[rr_num++%btl->num_contexts];
}