afae924e29
This commit fixes one warning that should have caused coll/ml to segfault on reduce. The fix should be correct but we will continue to investigate. cmr=v1.7.5:ticket=trac:4158 This commit was SVN r30477. The following Trac tickets were found above: Ticket 4158 --> https://svn.open-mpi.org/trac/ompi/ticket/4158
527 строки
22 KiB
C
527 строки
22 KiB
C
/* -*- Mode: C; c-basic-offset:4 ; indent-tabs-mode:nil -*- */
|
|
/*
|
|
* Copyright (c) 2009-2012 Oak Ridge National Laboratory. All rights reserved.
|
|
* Copyright (c) 2009-2012 Mellanox Technologies. All rights reserved.
|
|
* $COPYRIGHT$
|
|
*
|
|
* Additional copyrights may follow
|
|
*
|
|
* $HEADER$
|
|
*/
|
|
/** @file */
|
|
|
|
#include "ompi_config.h"
|
|
|
|
#include "ompi/constants.h"
|
|
#include "opal/threads/mutex.h"
|
|
#include "ompi/communicator/communicator.h"
|
|
#include "ompi/mca/coll/coll.h"
|
|
#include "ompi/mca/bcol/bcol.h"
|
|
#include "opal/sys/atomic.h"
|
|
#include "ompi/mca/coll/ml/coll_ml.h"
|
|
#include "ompi/mca/coll/ml/coll_ml_allocation.h"
|
|
#include "ompi/mca/coll/ml/coll_ml_inlines.h"
|
|
#define REDUCE_SMALL_MESSAGE_THRESHOLD 2048
|
|
|
|
static int mca_coll_ml_reduce_unpack(mca_coll_ml_collective_operation_progress_t *coll_op)
|
|
{
|
|
int ret;
|
|
/* need to put in more */
|
|
int count = coll_op->variable_fn_params.count;
|
|
ompi_datatype_t *dtype = coll_op->variable_fn_params.dtype;
|
|
|
|
void *dest = (void *)((uintptr_t)coll_op->full_message.dest_user_addr +
|
|
(uintptr_t)coll_op->fragment_data.offset_into_user_buffer);
|
|
void *src = (void *)((uintptr_t)coll_op->fragment_data.buffer_desc->data_addr +
|
|
(size_t)coll_op->variable_fn_params.rbuf_offset);
|
|
|
|
ret = ompi_datatype_copy_content_same_ddt(dtype, (int32_t) count, (char *) dest,
|
|
(char *) src);
|
|
if (ret < 0) {
|
|
return OMPI_ERROR;
|
|
}
|
|
|
|
if (coll_op->variable_fn_params.root_flag) {
|
|
ML_VERBOSE(1,("In reduce unpack %d",
|
|
*(int *)((unsigned char*) src)));
|
|
}
|
|
|
|
ML_VERBOSE(10, ("sbuf addr %p, sbuf offset %d, sbuf val %lf, rbuf addr %p, rbuf offset %d, rbuf val %lf.",
|
|
coll_op->variable_fn_params.sbuf, coll_op->variable_fn_params.sbuf_offset,
|
|
*(double *) ((unsigned char *) coll_op->variable_fn_params.sbuf +
|
|
(size_t) coll_op->variable_fn_params.sbuf_offset),
|
|
coll_op->variable_fn_params.rbuf, coll_op->variable_fn_params.rbuf_offset,
|
|
*(double *) ((unsigned char *) coll_op->variable_fn_params.rbuf +
|
|
(size_t) coll_op->variable_fn_params.rbuf_offset)));
|
|
|
|
return OMPI_SUCCESS;
|
|
}
|
|
|
|
|
|
static int
|
|
mca_coll_ml_reduce_task_setup (mca_coll_ml_collective_operation_progress_t *coll_op)
|
|
{
|
|
int fn_idx, h_level, next_h_level, my_index;
|
|
mca_sbgp_base_module_t *sbgp;
|
|
mca_coll_ml_topology_t *topo = coll_op->coll_schedule->topo_info;
|
|
|
|
fn_idx = coll_op->sequential_routine.current_active_bcol_fn;
|
|
h_level = coll_op->coll_schedule->component_functions[fn_idx].h_level;
|
|
next_h_level = (fn_idx < coll_op->coll_schedule->n_fns - 1) ?
|
|
coll_op->coll_schedule->component_functions[fn_idx+1].h_level : -1;
|
|
sbgp = topo->component_pairs[h_level].subgroup_module;
|
|
my_index = sbgp->my_index;
|
|
|
|
if (coll_op->variable_fn_params.root_flag) {
|
|
ML_VERBOSE(1,("In task completion Data in receiver buffer %d ",
|
|
*(int *)((unsigned char*) coll_op->variable_fn_params.rbuf +
|
|
coll_op->variable_fn_params.rbuf_offset)));
|
|
}
|
|
|
|
/* determine the root for this level of the hierarchy */
|
|
if (coll_op->coll_schedule->topo_info->route_vector[coll_op->global_root].level == next_h_level ||
|
|
coll_op->global_root == sbgp->group_list[my_index]) {
|
|
/* I am the global root or I will be talking to the global root in the next round. */
|
|
coll_op->variable_fn_params.root = my_index;
|
|
} else if (coll_op->coll_schedule->topo_info->route_vector[coll_op->global_root].level == h_level) {
|
|
/* the root is in this level of my hierarchy */
|
|
coll_op->variable_fn_params.root = coll_op->coll_schedule->topo_info->route_vector[coll_op->global_root].rank;
|
|
} else {
|
|
coll_op->variable_fn_params.root = 0;
|
|
}
|
|
|
|
/* Set the route vector for this root */
|
|
coll_op->variable_fn_params.root_route =
|
|
&coll_op->coll_schedule->topo_info->route_vector[sbgp->group_list[coll_op->variable_fn_params.root]];
|
|
|
|
/* Am I the root of this hierarchy? */
|
|
coll_op->variable_fn_params.root_flag = (my_index == coll_op->variable_fn_params.root);
|
|
|
|
/* For hierarchy switch btw source and destination buffer
|
|
* No need to make this switch for the first call ..
|
|
* */
|
|
if (0 < fn_idx) {
|
|
int tmp_offset = coll_op->variable_fn_params.sbuf_offset;
|
|
coll_op->variable_fn_params.sbuf_offset =
|
|
coll_op->variable_fn_params.rbuf_offset;
|
|
coll_op->variable_fn_params.rbuf_offset = tmp_offset;
|
|
}
|
|
|
|
return OMPI_SUCCESS;
|
|
}
|
|
|
|
static int mca_coll_ml_reduce_frag_progress(mca_coll_ml_collective_operation_progress_t *coll_op)
|
|
{
|
|
/* local variables */
|
|
void *buf;
|
|
|
|
size_t dt_size;
|
|
int ret, frag_len, count;
|
|
|
|
ptrdiff_t lb, extent;
|
|
|
|
ml_payload_buffer_desc_t *src_buffer_desc;
|
|
mca_coll_ml_collective_operation_progress_t *new_op;
|
|
|
|
mca_coll_ml_module_t *ml_module = OP_ML_MODULE(coll_op);
|
|
|
|
ret = ompi_datatype_get_extent(coll_op->variable_fn_params.dtype, &lb, &extent);
|
|
if (ret < 0) {
|
|
return OMPI_ERROR;
|
|
}
|
|
|
|
dt_size = (size_t) extent;
|
|
|
|
/* Keep the pipeline filled with fragments */
|
|
while (coll_op->fragment_data.message_descriptor->n_active <
|
|
coll_op->fragment_data.message_descriptor->pipeline_depth) {
|
|
/* If an active fragment happens to have completed the collective during
|
|
* a hop into the progress engine, then don't launch a new fragment,
|
|
* instead break and return.
|
|
*/
|
|
if (coll_op->fragment_data.message_descriptor->n_bytes_scheduled
|
|
== coll_op->fragment_data.message_descriptor->n_bytes_total) {
|
|
break;
|
|
}
|
|
|
|
/* Get an ml buffer */
|
|
src_buffer_desc = mca_coll_ml_alloc_buffer(OP_ML_MODULE(coll_op));
|
|
if (NULL == src_buffer_desc) {
|
|
/* If there exist outstanding fragments, then break out
|
|
* and let an active fragment deal with this later,
|
|
* there are no buffers available.
|
|
*/
|
|
if (0 < coll_op->fragment_data.message_descriptor->n_active) {
|
|
return OMPI_SUCCESS;
|
|
} else {
|
|
/* It is useless to call progress from here, since
|
|
* ml progress can't be executed as result ml memsync
|
|
* call will not be completed and no memory will be
|
|
* recycled. So we put the element on the list, and we will
|
|
* progress it later when memsync will recycle some memory*/
|
|
|
|
/* The fragment is already on list and
|
|
* the we still have no ml resources
|
|
* Return busy */
|
|
if (coll_op->pending & REQ_OUT_OF_MEMORY) {
|
|
ML_VERBOSE(10,("Out of resources %p", coll_op));
|
|
return OMPI_ERR_TEMP_OUT_OF_RESOURCE;
|
|
}
|
|
|
|
coll_op->pending |= REQ_OUT_OF_MEMORY;
|
|
opal_list_append(&((OP_ML_MODULE(coll_op))->waiting_for_memory_list),
|
|
(opal_list_item_t *)coll_op);
|
|
ML_VERBOSE(10,("Out of resources %p adding to pending queue", coll_op));
|
|
return OMPI_ERR_TEMP_OUT_OF_RESOURCE;
|
|
}
|
|
}
|
|
|
|
/* Get a new collective descriptor and initialize it */
|
|
new_op = mca_coll_ml_alloc_op_prog_single_frag_dag(ml_module,
|
|
ml_module->coll_ml_reduce_functions[ML_SMALL_DATA_REDUCE],
|
|
coll_op->fragment_data.message_descriptor->src_user_addr,
|
|
coll_op->fragment_data.message_descriptor->dest_user_addr,
|
|
coll_op->fragment_data.message_descriptor->n_bytes_total,
|
|
coll_op->fragment_data.message_descriptor->n_bytes_scheduled);
|
|
|
|
ML_VERBOSE(1,(" In Reduce fragment progress %d %d ",
|
|
coll_op->fragment_data.message_descriptor->n_bytes_total,
|
|
coll_op->fragment_data.message_descriptor->n_bytes_scheduled));
|
|
MCA_COLL_IBOFFLOAD_SET_ML_BUFFER_INFO(new_op,
|
|
src_buffer_desc->buffer_index, src_buffer_desc);
|
|
|
|
new_op->fragment_data.current_coll_op = coll_op->fragment_data.current_coll_op;
|
|
new_op->fragment_data.message_descriptor = coll_op->fragment_data.message_descriptor;
|
|
|
|
/* set the task setup callback */
|
|
new_op->sequential_routine.seq_task_setup = mca_coll_ml_reduce_task_setup;
|
|
/* We need this address for pointer arithmetic in memcpy */
|
|
buf = (void*)coll_op->fragment_data.message_descriptor->src_user_addr;
|
|
/* calculate the number of data types in this packet */
|
|
count = (coll_op->fragment_data.message_descriptor->n_bytes_total -
|
|
coll_op->fragment_data.message_descriptor->n_bytes_scheduled <
|
|
((size_t) OP_ML_MODULE(coll_op)->small_message_thresholds[BCOL_REDUCE]/4 )?
|
|
(coll_op->fragment_data.message_descriptor->n_bytes_total -
|
|
coll_op->fragment_data.message_descriptor->n_bytes_scheduled) / dt_size :
|
|
(size_t) coll_op->variable_fn_params.count);
|
|
|
|
/* calculate the fragment length */
|
|
frag_len = count * dt_size;
|
|
|
|
ret = ompi_datatype_copy_content_same_ddt(coll_op->variable_fn_params.dtype, count,
|
|
(char *) src_buffer_desc->data_addr, (char *) ((uintptr_t) buf + (uintptr_t)
|
|
coll_op->fragment_data.message_descriptor->n_bytes_scheduled));
|
|
if (ret < 0) {
|
|
return OMPI_ERROR;
|
|
}
|
|
|
|
/* if root unpack the data */
|
|
if (ompi_comm_rank(ml_module->comm) == coll_op->global_root ) {
|
|
new_op->process_fn = mca_coll_ml_reduce_unpack;
|
|
new_op->variable_fn_params.root_flag = true;
|
|
} else {
|
|
new_op->process_fn = NULL;
|
|
new_op->variable_fn_params.root_flag = false;
|
|
}
|
|
|
|
new_op->variable_fn_params.root_route = coll_op->variable_fn_params.root_route;
|
|
|
|
/* Setup fragment specific data */
|
|
new_op->fragment_data.message_descriptor->n_bytes_scheduled += frag_len;
|
|
new_op->fragment_data.buffer_desc = src_buffer_desc;
|
|
new_op->fragment_data.fragment_size = frag_len;
|
|
(new_op->fragment_data.message_descriptor->n_active)++;
|
|
|
|
/* Set in Reduce Buffer arguments */
|
|
ML_SET_VARIABLE_PARAMS_BCAST(new_op, OP_ML_MODULE(new_op), count,
|
|
coll_op->variable_fn_params.dtype, src_buffer_desc,
|
|
0, (ml_module->payload_block->size_buffer -
|
|
ml_module->data_offset)/2, frag_len,
|
|
src_buffer_desc->data_addr);
|
|
|
|
new_op->variable_fn_params.buffer_size = frag_len;
|
|
new_op->variable_fn_params.sbuf = src_buffer_desc->data_addr;
|
|
new_op->variable_fn_params.rbuf = src_buffer_desc->data_addr;
|
|
new_op->variable_fn_params.root = coll_op->variable_fn_params.root;
|
|
new_op->global_root = coll_op->global_root;
|
|
new_op->variable_fn_params.op = coll_op->variable_fn_params.op;
|
|
new_op->variable_fn_params.hier_factor = coll_op->variable_fn_params.hier_factor;
|
|
new_op->sequential_routine.current_bcol_status = SEQ_TASK_PENDING;
|
|
MCA_COLL_ML_SET_NEW_FRAG_ORDER_INFO(new_op);
|
|
|
|
ML_VERBOSE(10,("FFFF Contig + fragmentation [0-sk, 1-lk, 3-su, 4-lu] %d %d %d\n",
|
|
new_op->variable_fn_params.buffer_size,
|
|
new_op->fragment_data.fragment_size,
|
|
new_op->fragment_data.message_descriptor->n_bytes_scheduled));
|
|
/* initialize first coll */
|
|
new_op->sequential_routine.seq_task_setup(new_op);
|
|
|
|
/* append this collective !! */
|
|
OPAL_THREAD_LOCK(&(mca_coll_ml_component.sequential_collectives_mutex));
|
|
opal_list_append(&mca_coll_ml_component.sequential_collectives,
|
|
(opal_list_item_t *)new_op);
|
|
OPAL_THREAD_UNLOCK(&(mca_coll_ml_component.sequential_collectives_mutex));
|
|
|
|
}
|
|
|
|
return OMPI_SUCCESS;
|
|
}
|
|
|
|
static inline __opal_attribute_always_inline__
|
|
int parallel_reduce_start (void *sbuf, void *rbuf, int count,
|
|
struct ompi_datatype_t *dtype, struct ompi_op_t *op,
|
|
int root,
|
|
struct ompi_communicator_t *comm,
|
|
mca_coll_ml_module_t *ml_module,
|
|
ompi_request_t **req,
|
|
int small_data_reduce,
|
|
int large_data_reduce) {
|
|
ptrdiff_t lb, extent;
|
|
size_t pack_len, dt_size;
|
|
ml_payload_buffer_desc_t *src_buffer_desc = NULL;
|
|
mca_coll_ml_collective_operation_progress_t * coll_op = NULL;
|
|
bool contiguous = ompi_datatype_is_contiguous_memory_layout(dtype, count);
|
|
mca_coll_ml_component_t *cm = &mca_coll_ml_component;
|
|
int ret, n_fragments = 1, frag_len,
|
|
pipeline_depth, n_dts_per_frag, rank;
|
|
|
|
if (MPI_IN_PLACE == sbuf) {
|
|
sbuf = rbuf;
|
|
}
|
|
|
|
ret = ompi_datatype_get_extent(dtype, &lb, &extent);
|
|
if (ret < 0) {
|
|
return OMPI_ERROR;
|
|
}
|
|
|
|
rank = ompi_comm_rank (comm);
|
|
|
|
dt_size = (size_t) extent;
|
|
pack_len = count * dt_size;
|
|
|
|
/* We use a separate recieve and send buffer so only half the buffer is usable. */
|
|
if (pack_len < (size_t) ml_module->small_message_thresholds[BCOL_REDUCE] / 4) {
|
|
/* The len of the message can not be larger than ML buffer size */
|
|
assert(pack_len <= ml_module->payload_block->size_buffer);
|
|
|
|
src_buffer_desc = mca_coll_ml_alloc_buffer(ml_module);
|
|
|
|
ML_VERBOSE(10,("Using small data reduce (threshold = %d)",
|
|
REDUCE_SMALL_MESSAGE_THRESHOLD));
|
|
while (NULL == src_buffer_desc) {
|
|
opal_progress();
|
|
src_buffer_desc = mca_coll_ml_alloc_buffer(ml_module);
|
|
}
|
|
|
|
coll_op = mca_coll_ml_alloc_op_prog_single_frag_dag(ml_module,
|
|
ml_module->coll_ml_reduce_functions[small_data_reduce],
|
|
sbuf, rbuf, pack_len, 0);
|
|
|
|
MCA_COLL_IBOFFLOAD_SET_ML_BUFFER_INFO(coll_op,
|
|
src_buffer_desc->buffer_index, src_buffer_desc);
|
|
|
|
coll_op->variable_fn_params.rbuf = src_buffer_desc->data_addr;
|
|
coll_op->variable_fn_params.sbuf = src_buffer_desc->data_addr;
|
|
coll_op->variable_fn_params.buffer_index = src_buffer_desc->buffer_index;
|
|
coll_op->variable_fn_params.src_desc = src_buffer_desc;
|
|
coll_op->variable_fn_params.count = count;
|
|
|
|
ret = ompi_datatype_copy_content_same_ddt(dtype, count,
|
|
(void *) (uintptr_t) src_buffer_desc->data_addr, (char *) sbuf);
|
|
if (ret < 0){
|
|
return OMPI_ERROR;
|
|
}
|
|
|
|
} else if (cm->enable_fragmentation || !contiguous) {
|
|
ML_VERBOSE(1,("Using Fragmented Reduce "));
|
|
|
|
/* fragment the data */
|
|
/* check for retarded application programming decisions */
|
|
if (dt_size > (size_t) ml_module->small_message_thresholds[BCOL_REDUCE] / 4) {
|
|
ML_ERROR(("Sorry, but we don't support datatypes that large"));
|
|
return OMPI_ERROR;
|
|
}
|
|
|
|
/* calculate the number of data types that can fit per ml-buffer */
|
|
n_dts_per_frag = ml_module->small_message_thresholds[BCOL_REDUCE] / (4 * dt_size);
|
|
|
|
/* calculate the number of fragments */
|
|
n_fragments = (count + n_dts_per_frag - 1) / n_dts_per_frag; /* round up */
|
|
|
|
/* calculate the actual pipeline depth */
|
|
pipeline_depth = n_fragments < cm->pipeline_depth ? n_fragments : cm->pipeline_depth;
|
|
|
|
/* calculate the fragment size */
|
|
frag_len = n_dts_per_frag * dt_size;
|
|
|
|
/* allocate an ml buffer */
|
|
src_buffer_desc = mca_coll_ml_alloc_buffer(ml_module);
|
|
while (NULL == src_buffer_desc) {
|
|
opal_progress();
|
|
src_buffer_desc = mca_coll_ml_alloc_buffer(ml_module);
|
|
}
|
|
|
|
coll_op = mca_coll_ml_alloc_op_prog_single_frag_dag(ml_module,
|
|
ml_module->coll_ml_reduce_functions[small_data_reduce],
|
|
sbuf,rbuf,
|
|
pack_len,
|
|
0 /* offset for first pack */);
|
|
|
|
MCA_COLL_IBOFFLOAD_SET_ML_BUFFER_INFO(coll_op,
|
|
src_buffer_desc->buffer_index, src_buffer_desc);
|
|
|
|
|
|
coll_op->variable_fn_params.sbuf = (void *) src_buffer_desc->data_addr;
|
|
coll_op->variable_fn_params.rbuf = (void *) src_buffer_desc->data_addr;
|
|
|
|
coll_op->fragment_data.message_descriptor->n_active = 1;
|
|
coll_op->full_message.n_bytes_scheduled = frag_len;
|
|
coll_op->full_message.fragment_launcher = mca_coll_ml_reduce_frag_progress;
|
|
coll_op->full_message.pipeline_depth = pipeline_depth;
|
|
coll_op->fragment_data.current_coll_op = small_data_reduce;
|
|
coll_op->fragment_data.fragment_size = frag_len;
|
|
|
|
coll_op->variable_fn_params.count = n_dts_per_frag; /* seems fishy */
|
|
coll_op->variable_fn_params.buffer_size = frag_len;
|
|
coll_op->variable_fn_params.src_desc = src_buffer_desc;
|
|
/* copy into the ml-buffer */
|
|
ret = ompi_datatype_copy_content_same_ddt(dtype, n_dts_per_frag,
|
|
(char *) src_buffer_desc->data_addr, (char *) sbuf);
|
|
if (ret < 0) {
|
|
return OMPI_ERROR;
|
|
}
|
|
} else {
|
|
ML_VERBOSE(1,("Using zero-copy ptp reduce"));
|
|
coll_op = mca_coll_ml_alloc_op_prog_single_frag_dag(ml_module,
|
|
ml_module->coll_ml_reduce_functions[large_data_reduce],
|
|
sbuf, rbuf, pack_len, 0);
|
|
|
|
coll_op->variable_fn_params.userbuf =
|
|
coll_op->variable_fn_params.sbuf = sbuf;
|
|
|
|
coll_op->variable_fn_params.rbuf = rbuf;
|
|
|
|
/* The ML buffer is used for testing. Later, when we
|
|
* switch to use knem/mmap/portals this should be replaced
|
|
* appropriately
|
|
*/
|
|
src_buffer_desc = mca_coll_ml_alloc_buffer(ml_module);
|
|
while (NULL == src_buffer_desc) {
|
|
opal_progress();
|
|
src_buffer_desc = mca_coll_ml_alloc_buffer(ml_module);
|
|
}
|
|
|
|
coll_op->variable_fn_params.buffer_index = src_buffer_desc->buffer_index;
|
|
coll_op->variable_fn_params.src_desc = src_buffer_desc;
|
|
coll_op->variable_fn_params.count = count;
|
|
}
|
|
|
|
coll_op->process_fn = (rank != root) ? NULL : mca_coll_ml_reduce_unpack;
|
|
|
|
/* Set common parts */
|
|
coll_op->fragment_data.buffer_desc = src_buffer_desc;
|
|
coll_op->variable_fn_params.dtype = dtype;
|
|
coll_op->variable_fn_params.op = op;
|
|
|
|
/* NTH: the root, root route, and root flag are set in the task setup */
|
|
|
|
/* Fill in the function arguments */
|
|
coll_op->variable_fn_params.sbuf_offset = 0;
|
|
coll_op->variable_fn_params.rbuf_offset = (ml_module->payload_block->size_buffer -
|
|
ml_module->data_offset)/2;
|
|
|
|
/* Keep track of the global root of this operation */
|
|
coll_op->global_root = root;
|
|
|
|
coll_op->variable_fn_params.sequence_num =
|
|
OPAL_THREAD_ADD32(&(ml_module->collective_sequence_num), 1);
|
|
coll_op->sequential_routine.current_active_bcol_fn = 0;
|
|
/* set the task setup callback */
|
|
coll_op->sequential_routine.seq_task_setup = mca_coll_ml_reduce_task_setup;
|
|
|
|
/* Reduce requires the schedule to be fixed. If we use other (changing) schedule,
|
|
the operation might result in different result. */
|
|
coll_op->coll_schedule->component_functions = coll_op->coll_schedule->
|
|
comp_fn_arr[coll_op->coll_schedule->topo_info->route_vector[root].level];
|
|
|
|
/* Launch the collective */
|
|
ret = mca_coll_ml_launch_sequential_collective (coll_op);
|
|
if (OMPI_SUCCESS != ret) {
|
|
ML_VERBOSE(10, ("Failed to launch reduce collective"));
|
|
return ret;
|
|
}
|
|
|
|
*req = &coll_op->full_message.super;
|
|
|
|
return OMPI_SUCCESS;
|
|
}
|
|
|
|
|
|
int mca_coll_ml_reduce(void *sbuf, void *rbuf, int count,
|
|
struct ompi_datatype_t *dtype, struct ompi_op_t *op,
|
|
int root, struct ompi_communicator_t *comm,
|
|
mca_coll_base_module_t *module) {
|
|
|
|
mca_coll_ml_module_t *ml_module = (mca_coll_ml_module_t*)module;
|
|
int ret = OMPI_SUCCESS;
|
|
ompi_request_t *req;
|
|
|
|
if (OPAL_UNLIKELY(!ompi_op_is_commute(op))) {
|
|
/* coll/ml does not handle non-communative operations at this time. fallback
|
|
* on another collective module */
|
|
return ml_module->fallback.coll_reduce (sbuf, rbuf, count, dtype, op, root, comm,
|
|
ml_module->fallback.coll_reduce_module);
|
|
}
|
|
|
|
ML_VERBOSE(10,("Calling Ml Reduce "));
|
|
ret = parallel_reduce_start(sbuf, rbuf, count, dtype, op,
|
|
root, comm, (mca_coll_ml_module_t *)module,
|
|
&req, ML_SMALL_DATA_REDUCE,
|
|
ML_LARGE_DATA_REDUCE);
|
|
if (OPAL_UNLIKELY(ret != OMPI_SUCCESS)) {
|
|
ML_VERBOSE(10, ("Failed to launch"));
|
|
return ret;
|
|
}
|
|
|
|
/* Blocking reduce */
|
|
ret = ompi_request_wait(&req, MPI_STATUS_IGNORE);
|
|
|
|
ML_VERBOSE(10, ("Blocking Reduce is done"));
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
int mca_coll_ml_reduce_nb(void *sbuf, void *rbuf, int count,
|
|
struct ompi_datatype_t *dtype, struct ompi_op_t *op,
|
|
int root, struct ompi_communicator_t *comm,
|
|
ompi_request_t **req,
|
|
mca_coll_base_module_t *module) {
|
|
|
|
int ret = OMPI_SUCCESS;
|
|
mca_coll_ml_module_t *ml_module = (mca_coll_ml_module_t*)module;
|
|
|
|
if (OPAL_UNLIKELY(!ompi_op_is_commute(op))) {
|
|
/* coll/ml does not handle non-communative operations at this time. fallback
|
|
* on another collective module */
|
|
return ml_module->fallback.coll_ireduce (sbuf, rbuf, count, dtype, op, root, comm, req,
|
|
ml_module->fallback.coll_ireduce_module);
|
|
}
|
|
|
|
ML_VERBOSE(10,("Calling Ml Reduce "));
|
|
ret = parallel_reduce_start(sbuf, rbuf, count, dtype, op,
|
|
root, comm, ml_module,
|
|
req, ML_SMALL_DATA_REDUCE,
|
|
ML_LARGE_DATA_REDUCE);
|
|
if (OPAL_UNLIKELY(ret != OMPI_SUCCESS)) {
|
|
ML_VERBOSE(10, ("Failed to launch"));
|
|
return ret;
|
|
}
|
|
|
|
|
|
ML_VERBOSE(10, ("Non-blocking Reduce is done"));
|
|
|
|
return OMPI_SUCCESS;
|
|
|
|
}
|