1
1
openmpi/opal/mca/memory/darwin7/scalable_malloc.c
2005-08-14 17:24:57 +00:00

3276 строки
124 KiB
C

/*
* Copyright (c) 1999 Apple Computer, Inc. All rights reserved.
*
* @APPLE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this
* file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_LICENSE_HEADER_END@
*/
/* Author: Bertrand Serlet, August 1999 */
/*
* Changes from original file:
* Open MPI team, August 2005
*
* - changed include files to allow building without Darwin internal
* source files
* - Added hook into deallocation algorithm to call Open MPI
* deregistration function
*
* Changes marked with Open MPI comment in source code
*/
#import "scalable_malloc.h"
#if 0 /* Open MPI */
#import <pthread_internals.h>
#endif /* #if 0 */
#import <unistd.h>
#import <libc.h>
#include <mach/vm_statistics.h>
/* Open MPI - begin changes */
#include <mach/mach_init.h>
#include <machine/byte_order.h>
#include "pthread_spinlock.h"
#include "opal/memory/memory_internal.h"
/*
* Need to convince the linker that we need this version of this file,
* rather than the stock version. This function is called by the function
* we instruct the linker to pull in first (and is in the call stack from
* MPI_Init().
*/
void opal_darwin_malloc_linker_hack()
{
/* need to do some work to keep us from getting optimized away */
}
#ifndef __PRETTY_FUNCTION__
#define __PRETTY_FUNCTION__ ""
#endif
/* Open MPI - end changes */
/********************* DEFINITIONS ************************/
#define DEBUG_MALLOC 0 // set to one to debug malloc itself
#define DEBUG_CLIENT 0 // set to one to help debug a nasty memory smasher
#if DEBUG_MALLOC
#warning DEBUG_MALLOC ENABLED
#define INLINE
#define CHECK_LOCKED(szone, fun) { \
if (__is_threaded && TRY_LOCK(szone->lock)) { \
malloc_printf("*** lock was not set %p in %s\n", szone->lock, fun); \
} \
}
#else
#define INLINE __inline__
#define CHECK_LOCKED(szone, fun) {}
#endif
#define PAGE_SIZE_FIXED 1 // flip if the page size becomes variable, one day
#if PAGE_SIZE_FIXED
#define vm_page_shift 12
#else
static unsigned vm_page_shift = 0; // guaranteed to be intialized by zone creation
#endif
typedef unsigned short msize_t; // a size in multiples of SHIFT_SMALL_QUANTUM or SHIFT_TINY_QUANTUM
typedef struct {
unsigned checksum;
void *previous;
void *next;
} free_list_t;
typedef struct {
unsigned address_and_num_pages;
// this type represents both an address and a number of pages
// the low bits are the number of pages; the high bits are the address
// note that the exact number of bits used for depends on the page size
// also, this cannot represent pointers larger than 1 << (vm_page_shift * 2)
} compact_range_t;
typedef unsigned char grain_t;
#define CHECK_REGIONS (1 << 31)
#define CHECKSUM_MAGIC 0x357B
#define MAX_RECORDER_BUFFER 256
/********************* DEFINITIONS for tiny ************************/
#define SHIFT_TINY_QUANTUM 4 // Required for AltiVec
#define TINY_QUANTUM (1 << SHIFT_TINY_QUANTUM)
#define FOLLOWING_TINY_PTR(ptr,msize) (((char *)(ptr)) + ((msize) << SHIFT_TINY_QUANTUM))
#define NUM_TINY_SLOTS 32 // number of slots for free-lists
#define SHIFT_NUM_TINY_BLOCKS 16
#define NUM_TINY_BLOCKS (1 << SHIFT_NUM_TINY_BLOCKS)
#define TINY_BLOCKS_ALIGN (SHIFT_NUM_TINY_BLOCKS + SHIFT_TINY_QUANTUM)
#define TINY_REGION_SIZE ((NUM_TINY_BLOCKS * TINY_QUANTUM + (NUM_TINY_BLOCKS >> 2) + 8 + (1 << vm_page_shift) - 1) & ~ ((1 << vm_page_shift) - 1)) // enough room for the data, followed by the bit arrays (2-bits per block) plus 2 words of padding as our bitmap operators overflow, plus rounding to the nearest page
#define TINY_FREE_SIZE(ptr) (((msize_t *)(ptr))[6])
// At the end of free blocks, we stick the size (for enabling coalescing)
#define TINY_PREVIOUS_MSIZE(ptr) ((msize_t *)(ptr))[-1]
#define TINY_REGION_ADDRESS(region) ((region) << TINY_BLOCKS_ALIGN)
#define TINY_REGION_END(region) (TINY_REGION_ADDRESS(region)+(1 << TINY_BLOCKS_ALIGN))
typedef unsigned short tiny_region_t;
#define INITIAL_NUM_TINY_REGIONS 24 // must be even for szone to be aligned
#define TINY_CACHE 1 // This governs a last-free cache of 1 that bypasses the free-list
#if ! TINY_CACHE
#warning TINY_CACHE turned off
#endif
/********************* DEFINITIONS for small ************************/
/* We store the meta bits on the side in two bytes, as follows:
- high order bit SMALL_IS_FREE is set when the block is avail (and starts here)
- when block size, expressed in SMALL_QUANTUM, is the other 15 bits
- else 0 signifies this block is in the middle of another block
*/
#define SMALL_IS_FREE (1 << 15)
#define SHIFT_SMALL_QUANTUM (SHIFT_TINY_QUANTUM + 5) // 9
#define SMALL_QUANTUM (1 << SHIFT_SMALL_QUANTUM) // 512 bytes
#define FOLLOWING_SMALL_PTR(ptr,msize) (((char *)(ptr)) + ((msize) << SHIFT_SMALL_QUANTUM))
#define NUM_SMALL_SLOTS 32 // number of slots for free-lists
#define SHIFT_NUM_SMALL_BLOCKS 14 // we can only represent up to 1<<15 for msize; but we chose to stay even below that to avoid the convention msize=0 => msize = (1<<15)
#define NUM_SMALL_BLOCKS (1 << SHIFT_NUM_SMALL_BLOCKS)
#define SMALL_BLOCKS_ALIGN (SHIFT_NUM_SMALL_BLOCKS + SHIFT_SMALL_QUANTUM) // 23
#define SMALL_REGION_SIZE (NUM_SMALL_BLOCKS * SMALL_QUANTUM + NUM_SMALL_BLOCKS * 2) // data + meta data
#define SMALL_PREVIOUS_MSIZE(ptr) ((msize_t *)(ptr))[-1]
#define SMALL_REGION_ADDRESS(region) (((unsigned)region) << SMALL_BLOCKS_ALIGN)
#define SMALL_REGION_END(region) (SMALL_REGION_ADDRESS(region)+(1 << SMALL_BLOCKS_ALIGN))
typedef unsigned short small_region_t;
#define INITIAL_NUM_SMALL_REGIONS 6 // must be even for szone to be aligned
#define PROTECT_SMALL 0 // Should be 0: 1 is too slow for normal use
#define SMALL_CACHE 1
#if !SMALL_CACHE
#warning SMALL_CACHE turned off
#endif
/********************* DEFINITIONS for large ************************/
#define LARGE_THRESHOLD (15 * 1024) // at or above this use "large"
#if (LARGE_THRESHOLD > NUM_SMALL_SLOTS * SMALL_QUANTUM)
#error LARGE_THRESHOLD should always be less than NUM_SMALL_SLOTS * SMALL_QUANTUM
#endif
#define VM_COPY_THRESHOLD (40 * 1024)
// When all memory is touched after a copy, vm_copy() is always a lose
// But if the memory is only read, vm_copy() wins over memmove() at 3 or 4 pages (on a G3/300MHz)
// This must be larger than LARGE_THRESHOLD
#define LARGE_ENTRY_ADDRESS(entry) \
(((entry).address_and_num_pages >> vm_page_shift) << vm_page_shift)
#define LARGE_ENTRY_NUM_PAGES(entry) \
((entry).address_and_num_pages & ((1 << vm_page_shift) - 1))
#define LARGE_ENTRY_SIZE(entry) \
(LARGE_ENTRY_NUM_PAGES(entry) << vm_page_shift)
#define LARGE_ENTRY_MATCHES(entry,ptr) \
(!(((entry).address_and_num_pages - (unsigned)(ptr)) >> vm_page_shift))
#define LARGE_ENTRY_IS_EMPTY(entry) (!((entry).address_and_num_pages))
typedef compact_range_t large_entry_t;
/********************* DEFINITIONS for huge ************************/
typedef vm_range_t huge_entry_t;
/********************* zone itself ************************/
typedef struct {
malloc_zone_t basic_zone;
pthread_lock_t lock;
unsigned debug_flags;
void *log_address;
/* Regions for tiny objects */
unsigned num_tiny_regions;
tiny_region_t *tiny_regions;
void *last_tiny_free; // low SHIFT_TINY_QUANTUM indicate the msize
unsigned tiny_bitmap; // cache of the 32 free lists
free_list_t *tiny_free_list[NUM_TINY_SLOTS]; // 31 free lists for 1*TINY_QUANTUM to 31*TINY_QUANTUM plus 1 for larger than 32*SMALL_QUANTUM
size_t tiny_bytes_free_at_end; // the last free region in the last block is treated as a big block in use that is not accounted for
unsigned num_tiny_objects;
unsigned num_bytes_in_tiny_objects;
/* Regions for small objects */
unsigned num_small_regions;
small_region_t *small_regions;
void *last_small_free; // low SHIFT_SMALL_QUANTUM indicate the msize
unsigned small_bitmap; // cache of the free list
free_list_t *small_free_list[NUM_SMALL_SLOTS];
size_t small_bytes_free_at_end; // the last free region in the last block is treated as a big block in use that is not accounted for
unsigned num_small_objects;
unsigned num_bytes_in_small_objects;
/* large objects: vm_page_shift <= log2(size) < 2 *vm_page_shift */
unsigned num_large_objects_in_use;
unsigned num_large_entries;
large_entry_t *large_entries; // hashed by location; null entries don't count
unsigned num_bytes_in_large_objects;
/* huge objects: log2(size) >= 2 *vm_page_shift */
unsigned char num_huge_entries;
huge_entry_t *huge_entries;
unsigned num_bytes_in_huge_objects;
/* Initial region list */
tiny_region_t initial_tiny_regions[INITIAL_NUM_TINY_REGIONS];
small_region_t initial_small_regions[INITIAL_NUM_SMALL_REGIONS];
} szone_t;
static void *szone_malloc(szone_t *szone, size_t size);
static INLINE void *szone_malloc_should_clear(szone_t *szone, size_t size, boolean_t cleared_requested);
static void szone_free(szone_t *szone, void *ptr);
static boolean_t szone_check_all(szone_t *szone, const char *function);
static void szone_print(szone_t *szone, boolean_t verbose);
static void *small_malloc_from_region_no_lock(szone_t *szone, msize_t msize);
#if DEBUG_MALLOC
#define LOG(szone,ptr) \
(szone->log_address && (((unsigned)szone->log_address == -1) || (szone->log_address == (void *)(ptr))))
#else
#define LOG(szone,ptr) 0
#endif
#define SZONE_LOCK(szone) { \
LOCK(szone->lock); \
}
#define SZONE_UNLOCK(szone) { \
UNLOCK(szone->lock); \
}
#define LOCK_AND_NOTE_LOCKED(szone,locked) { \
CHECK(szone, __PRETTY_FUNCTION__); \
locked = 1; SZONE_LOCK(szone); \
}
#if DEBUG_MALLOC || DEBUG_CLIENT
#define CHECK(szone,fun) \
if ((szone)->debug_flags & CHECK_REGIONS) szone_check_all(szone, fun)
#else
#define CHECK(szone,fun) {}
#endif
/********************* VERY LOW LEVEL UTILITIES ************************/
#if DEBUG_MALLOC || DEBUG_CLIENT
static void
szone_sleep(void) {
if (getenv("MallocErrorSleep")) {
malloc_printf("*** Sleeping to help debug\n");
sleep(3600); // to help debug
}
}
#endif
static void
szone_error(szone_t *szone, const char *msg, const void *ptr) {
if (szone) SZONE_UNLOCK(szone);
if (ptr) {
malloc_printf("*** malloc[%d]: error for object %p: %s\n", getpid(), ptr, msg);
} else {
malloc_printf("*** malloc[%d]: error: %s\n", getpid(), msg);
}
#if DEBUG_MALLOC
szone_print(szone, 1);
szone_sleep();
#endif
#if DEBUG_CLIENT
szone_sleep();
#endif
}
static void
protect(szone_t *szone, vm_address_t address, vm_size_t size,
unsigned protection, unsigned debug_flags) {
kern_return_t err;
if (!(debug_flags & SCALABLE_MALLOC_DONT_PROTECT_PRELUDE)) {
err = vm_protect(mach_task_self(), address - (1 << vm_page_shift), 1 << vm_page_shift,
0, protection);
if (err) {
malloc_printf("*** malloc[%d]: Can't protect(%p) region for "
"prelude guard page at %p\n", getpid(), protection,
address - (1 << vm_page_shift));
}
}
if (!(debug_flags & SCALABLE_MALLOC_DONT_PROTECT_POSTLUDE)) {
err = vm_protect(mach_task_self(), (vm_address_t)(address + size), 1 << vm_page_shift, 0, protection);
if (err) {
malloc_printf("*** malloc[%d]: Can't protect(%p) region for "
"postlude guard page at %p\n", getpid(), protection,
address + size);
}
}
}
static vm_address_t
allocate_pages(szone_t *szone, size_t size, unsigned char align, unsigned debug_flags, int vm_page_label) {
// align specifies a desired alignment (as a log) or 0 if no alignment requested
kern_return_t err;
vm_address_t addr;
boolean_t add_guard_pages = debug_flags & SCALABLE_MALLOC_ADD_GUARD_PAGES;
size_t allocation_size = round_page(size);
if (align) add_guard_pages = 0; // too cumbersome to deal with that
if (!allocation_size) allocation_size = 1 << vm_page_shift;
if (add_guard_pages) allocation_size += 2 * (1 << vm_page_shift);
if (align) allocation_size += 1 << align;
err = vm_allocate(mach_task_self(), &addr, allocation_size, vm_page_label | 1);
if (err) {
malloc_printf("*** malloc: vm_allocate(size=%d) failed (error code=%d)\n", size, err);
szone_error(szone, "Can't allocate region", NULL);
return NULL;
}
if (align) {
// malloc_printf("In allocate_pages(size=%d(%p), align=%d) -> %p\n", size, size, align, addr);
vm_address_t aligned_address = (addr + (1 << align) - 1) & ~ ((1 << align) - 1);
if (aligned_address != addr) {
size_t delta = aligned_address - addr;
err = vm_deallocate(mach_task_self(), addr, delta);
if (err) malloc_printf("*** malloc: freeing unaligned header failed with %d\n", err);
// malloc_printf("deallocated unaligned header %p length=%d(%p)\n", addr, delta, delta);
addr = aligned_address;
allocation_size -= delta;
}
if (allocation_size > size) {
err = vm_deallocate(mach_task_self(), addr+size, allocation_size - size);
if (err) malloc_printf("*** malloc: freeing unaligned footer failed with %d\n", err);
}
}
if (add_guard_pages) {
addr += 1 << vm_page_shift;
protect(szone, addr, size, 0, debug_flags);
}
return addr;
}
static void
deallocate_pages(szone_t *szone, vm_address_t addr, size_t size, unsigned debug_flags) {
kern_return_t err;
boolean_t add_guard_pages = debug_flags & SCALABLE_MALLOC_ADD_GUARD_PAGES;
if (add_guard_pages) {
addr -= 1 << vm_page_shift;
size += 2 * (1 << vm_page_shift);
}
/* Open MPI change */
opal_mem_free_release_hook((void*) addr, size);
/* Open MPI change */
err = vm_deallocate(mach_task_self(), addr, size);
if (err) {
szone_error(szone, "Can't deallocate_pages region", (void *)addr);
}
}
static kern_return_t
_szone_default_reader(task_t task, vm_address_t address, vm_size_t size, void **ptr) {
*ptr = (void *)address;
return 0;
}
static INLINE void
free_list_checksum(szone_t *szone, free_list_t *ptr, const char *msg) {
// We always checksum, as testing whether to do it (based on szone->debug_flags) is as fast as doing it
if (ptr->checksum != (((unsigned)ptr->previous) ^ ((unsigned)ptr->next) ^ CHECKSUM_MAGIC)) {
#if DEBUG_MALLOC
malloc_printf("*** Incorrect checksum: %s\n", msg);
#endif
szone_error(szone, "Incorrect checksum for freed object - object was probably modified after being freed; break at szone_error", ptr);
}
}
static INLINE void
free_list_set_checksum(szone_t *szone, free_list_t *ptr) {
// We always set checksum, as testing whether to do it (based on
// szone->debug_flags) is slower than just doing it
ptr->checksum = ((unsigned)ptr->previous) ^ ((unsigned)ptr->next) ^ CHECKSUM_MAGIC;
}
static unsigned
free_list_count(const free_list_t *ptr) {
unsigned count = 0;
while (ptr) {
count++;
// malloc_printf("%p ", ptr);
ptr = ptr->next;
}
return count;
}
#define BITMAP32_SET(bitmap,bit) (bitmap |= 1 << (bit))
#define BITMAP32_CLR(bitmap,bit) (bitmap &= ~ (1 << (bit)))
#define BITMAP32_BIT(bitmap,bit) ((bitmap >> (bit)) & 1)
#define BITMAP32_FFS(bitmap) (ffs(bitmap))
// returns bit # of first bit that's one, starting at 1 (returns 0 if !bitmap)
/********************* TINY FREE LIST UTILITIES ************************/
// We encode the meta-headers as follows:
// Each quantum has an associated set of 2 bits:
// block_header when 1 says this block is the beginning of a block
// in_use when 1 says this block is in use
// so a block in use of size 3 is 1-1 0-X 0-X
// for a free block TINY_FREE_SIZE(ptr) carries the size and the bits are 1-0 X-X X-X
// for a block middle the bits are 0-0
// Attention double evaluation for these
#define BITARRAY_SET(bits,index) (bits[index>>3] |= (1 << (index & 7)))
#define BITARRAY_CLR(bits,index) (bits[index>>3] &= ~(1 << (index & 7)))
#define BITARRAY_BIT(bits,index) (((bits[index>>3]) >> (index & 7)) & 1)
// Following is for start<8 and end<=start+32
#define BITARRAY_MCLR_LESS_32(bits,start,end) { \
unsigned char *_bits = (bits); \
unsigned _end = (end); \
switch (_end >> 3) { \
case 4: _bits[4] &= ~ ((1 << (_end - 32)) - 1); _end = 32; \
case 3: _bits[3] &= ~ ((1 << (_end - 24)) - 1); _end = 24; \
case 2: _bits[2] &= ~ ((1 << (_end - 16)) - 1); _end = 16; \
case 1: _bits[1] &= ~ ((1 << (_end - 8)) - 1); _end = 8; \
case 0: _bits[0] &= ~ ((1 << _end) - (1 << (start))); \
} \
}
#if 0 // Simple but slow version
#warning Slow version in effect
#define BITARRAY_MCLR(bits,index,num) { \
unsigned _ctr = (num); \
unsigned _cur = (index); \
while (_ctr--) {BITARRAY_CLR(bits,_cur); _cur++; } \
}
#else
// Following is for num <= 32
#define BITARRAY_MCLR(bits,index,num) { \
unsigned _index = (index); \
unsigned char *_rebased = (bits) + (_index >> 3); \
_index &= 7; \
BITARRAY_MCLR_LESS_32(_rebased, _index, _index + (num)); \
}
#endif
static INLINE msize_t
get_tiny_meta_header(const void *ptr, boolean_t *is_free) {
// returns msize and is_free
// may return 0 for the msize component (meaning 65536)
unsigned short shifted_base = ((unsigned)ptr) >> TINY_BLOCKS_ALIGN;
unsigned headers_start = (shifted_base + 1) << TINY_BLOCKS_ALIGN;
unsigned char *block_header = (unsigned char *)headers_start;
msize_t index = (((unsigned)ptr) >> SHIFT_TINY_QUANTUM) & (NUM_TINY_BLOCKS - 1);
unsigned byte_index = index >> 3;
block_header += byte_index;
index &= 7;
*is_free = 0;
if (!BITMAP32_BIT(*block_header, index)) return 0;
unsigned char *in_use = block_header + (NUM_TINY_BLOCKS >> 3) + 4;
if (!BITMAP32_BIT(*in_use, index)) {
*is_free = 1;
return TINY_FREE_SIZE(ptr);
}
#if defined(__BIG_ENDIAN__)
unsigned *addr = (void *)((unsigned)block_header & ~3);
unsigned word0 = OSReadSwapInt32(addr, 0);
unsigned word1 = OSReadSwapInt32(addr, 4);
unsigned bits = index + (((unsigned)block_header & 3) * 8);
unsigned word = (word0 >> bits) | (word1 << (32 - bits));
unsigned result = ffs(word >> 1);
#if DEBUG_MALLOC
if (result >= 32) {
malloc_printf("*** get_tiny_meta_header() invariant broken %p %d\n", ptr, result);
szone_sleep();
}
#endif
return result;
#else
unsigned cur = index + 1;
while (!BITARRAY_BIT(block_header, cur)) cur++; // assumes padding at the zone end
#if DEBUG_MALLOC
if (cur - index >= 32) {
malloc_printf("*** get_tiny_meta_header() invariant broken %p %d %d\n", ptr, index, cur);
szone_sleep();
}
#endif
return cur - index;
#endif
}
static INLINE void
set_tiny_meta_header_in_use(const void *ptr, msize_t msize) {
unsigned short shifted_base = ((unsigned)ptr) >> TINY_BLOCKS_ALIGN;
unsigned headers_start = (shifted_base + 1) << TINY_BLOCKS_ALIGN;
unsigned char *block_header = (unsigned char *)headers_start;
msize_t index = (((unsigned)ptr) >> SHIFT_TINY_QUANTUM) & (NUM_TINY_BLOCKS - 1);
#if DEBUG_MALLOC
if (msize >= 32) malloc_printf("*** set_tiny_meta_header_in_use() invariant broken %p %d\n", ptr, msize);
if ((unsigned)index + (unsigned)msize > 0x10000) malloc_printf("*** set_tiny_meta_header_in_use() invariant broken (2) %p %d\n", ptr, msize);
#endif
unsigned byte_index = index >> 3;
block_header += byte_index;
index &= 7;
BITMAP32_SET(*block_header, index);
unsigned char *in_use = block_header + (NUM_TINY_BLOCKS >> 3) + 4;
BITMAP32_SET(*in_use, index);
index++;
msize_t clr_msize = msize-1;
if (clr_msize) {
byte_index = index >> 3;
block_header += byte_index; in_use += byte_index;
index &= 7;
unsigned end_bit = index + clr_msize;
BITARRAY_MCLR_LESS_32(block_header, index, end_bit);
BITARRAY_MCLR_LESS_32(in_use, index, end_bit);
}
BITARRAY_SET(block_header, index+clr_msize); // we set the block_header bit for the following block to reaffirm next block is a block
#if DEBUG_MALLOC
boolean_t ff;
msize_t mf = get_tiny_meta_header(ptr, &ff);
if (msize != mf) {
malloc_printf("*** setting header for tiny in_use %p : %d\n", ptr, msize);
malloc_printf("reading header for tiny %p : %d %d\n", ptr, mf, ff);
}
#endif
}
static INLINE void
set_tiny_meta_header_middle(const void *ptr) {
// indicates this block is in the middle of an in use block
unsigned short shifted_base = ((unsigned)ptr) >> TINY_BLOCKS_ALIGN;
unsigned headers_start = (shifted_base + 1) << TINY_BLOCKS_ALIGN;
unsigned char *block_header = (unsigned char *)headers_start;
unsigned char *in_use = (unsigned char *)(headers_start + (NUM_TINY_BLOCKS >> 3) + 4);
msize_t index = (((unsigned)ptr) >> SHIFT_TINY_QUANTUM) & (NUM_TINY_BLOCKS - 1);
BITARRAY_CLR(block_header, index); BITARRAY_CLR(in_use, index);
TINY_FREE_SIZE(ptr) = 0;
}
static INLINE void
set_tiny_meta_header_free(const void *ptr, msize_t msize) {
// !msize is acceptable and means 65536
unsigned short shifted_base = ((unsigned)ptr) >> TINY_BLOCKS_ALIGN;
unsigned headers_start = (shifted_base + 1) << TINY_BLOCKS_ALIGN;
unsigned char *block_header = (unsigned char *)headers_start;
unsigned char *in_use = (unsigned char *)(headers_start + (NUM_TINY_BLOCKS >> 3) + 4);
msize_t index = (((unsigned)ptr) >> SHIFT_TINY_QUANTUM) & (NUM_TINY_BLOCKS - 1);
#if DEBUG_MALLOC
if ((unsigned)index + (unsigned)msize > 0x10000) {
malloc_printf("*** setting header for tiny free %p msize too large: %d\n", ptr, msize);
}
#endif
BITARRAY_SET(block_header, index); BITARRAY_CLR(in_use, index);
TINY_FREE_SIZE(ptr) = msize;
// mark the end of this block
if (msize) { // msize==0 => the whole region is free
void *follower = FOLLOWING_TINY_PTR(ptr, msize);
TINY_PREVIOUS_MSIZE(follower) = msize;
}
#if DEBUG_MALLOC
boolean_t ff;
msize_t mf = get_tiny_meta_header(ptr, &ff);
if ((msize != mf) || !ff) {
malloc_printf("*** setting header for tiny free %p : %d\n", ptr, msize);
malloc_printf("reading header for tiny %p : %d %d\n", ptr, mf, ff);
}
#endif
}
static INLINE boolean_t
tiny_meta_header_is_free(const void *ptr) {
// returns msize and is_free shifted by 16
// may return 0 for the msize component (meaning 65536)
unsigned short shifted_base = ((unsigned)ptr) >> TINY_BLOCKS_ALIGN;
unsigned headers_start = (shifted_base + 1) << TINY_BLOCKS_ALIGN;
unsigned char *block_header = (unsigned char *)headers_start;
unsigned char *in_use = (unsigned char *)(headers_start + (NUM_TINY_BLOCKS >> 3) + 4);
msize_t index = (((unsigned)ptr) >> SHIFT_TINY_QUANTUM) & (NUM_TINY_BLOCKS - 1);
if (!BITARRAY_BIT(block_header, index)) return 0;
return !BITARRAY_BIT(in_use, index);
}
static INLINE void *
tiny_previous_preceding_free(void *ptr, msize_t *prev_msize) {
// returns the previous block, assuming and verifying it's free
unsigned short shifted_base = ((unsigned)ptr) >> TINY_BLOCKS_ALIGN;
unsigned headers_start = (shifted_base + 1) << TINY_BLOCKS_ALIGN;
unsigned char *block_header = (unsigned char *)headers_start;
unsigned char *in_use = (unsigned char *)(headers_start + (NUM_TINY_BLOCKS >> 3) + 4);
msize_t index = (((unsigned)ptr) >> SHIFT_TINY_QUANTUM) & (NUM_TINY_BLOCKS - 1);
if (!index) return NULL;
msize_t previous_msize = TINY_PREVIOUS_MSIZE(ptr);
if (previous_msize > index) return NULL;
msize_t previous_index = index - previous_msize;
void *previous_ptr = (void *)((shifted_base << TINY_BLOCKS_ALIGN) + (previous_index << SHIFT_TINY_QUANTUM));
if (TINY_FREE_SIZE(previous_ptr) != previous_msize) return NULL;
if (!BITARRAY_BIT(block_header, previous_index)) return NULL;
if (BITARRAY_BIT(in_use, previous_index)) return NULL;
// conservative check did match true check
*prev_msize = previous_msize;
// malloc_printf("tiny_previous_preceding_free(%p) -> %p,%d\n", ptr, previous_ptr, previous_msize);
return previous_ptr;
}
static INLINE void
tiny_free_list_add_ptr(szone_t *szone, void *ptr, msize_t msize) {
// Adds an item to the proper free list
// Also marks the meta-header of the block properly
// Assumes szone has been locked
grain_t slot = (!msize || (msize >= NUM_TINY_SLOTS)) ? NUM_TINY_SLOTS - 1 : msize - 1;
free_list_t *free_ptr = ptr;
free_list_t *free_head = szone->tiny_free_list[slot];
#if DEBUG_MALLOC
if (LOG(szone,ptr)) {
malloc_printf("In tiny_free_list_add_ptr(), ptr=%p, msize=%d\n", ptr, msize);
}
if (((unsigned)ptr) & (TINY_QUANTUM - 1)) {
szone_error(szone, "tiny_free_list_add_ptr: Unaligned ptr", ptr);
}
#endif
set_tiny_meta_header_free(ptr, msize);
if (free_head) {
free_list_checksum(szone, free_head, __PRETTY_FUNCTION__);
#if DEBUG_MALLOC
if (free_head->previous) {
malloc_printf("ptr=%p slot=%d free_head=%p previous=%p\n", ptr, slot, free_head, free_head->previous);
szone_error(szone, "tiny_free_list_add_ptr: Internal invariant broken (free_head->previous)", ptr);
}
if (! tiny_meta_header_is_free(free_head)) {
malloc_printf("ptr=%p slot=%d free_head=%p\n", ptr, slot, free_head);
szone_error(szone, "tiny_free_list_add_ptr: Internal invariant broken (free_head is not a free pointer)", ptr);
}
#endif
free_head->previous = free_ptr;
free_list_set_checksum(szone, free_head);
} else {
BITMAP32_SET(szone->tiny_bitmap, slot);
}
free_ptr->previous = NULL;
free_ptr->next = free_head;
free_list_set_checksum(szone, free_ptr);
szone->tiny_free_list[slot] = free_ptr;
// malloc_printf("Setting head of free list for slot=%d to %p\n", slot, free_ptr);
}
static INLINE void
tiny_free_list_remove_ptr(szone_t *szone, void *ptr, msize_t msize) {
// Removes item in the proper free list
// msize could be read, but all callers have it so we pass it in
// Assumes szone has been locked
grain_t slot = (!msize || (msize >= NUM_TINY_SLOTS)) ? NUM_TINY_SLOTS - 1 : msize - 1;
free_list_t *free_ptr = ptr;
free_list_t *next = free_ptr->next;
free_list_t *previous = free_ptr->previous;
#if DEBUG_MALLOC
if (LOG(szone,ptr)) {
malloc_printf("In tiny_free_list_remove_ptr(), ptr=%p, msize=%d\n", ptr, msize);
}
#endif
free_list_checksum(szone, free_ptr, __PRETTY_FUNCTION__);
if (!previous) {
// The block to remove is the head of the free list
#if DEBUG_MALLOC
if (szone->tiny_free_list[slot] != ptr) {
malloc_printf("ptr=%p slot=%d msize=%d szone->tiny_free_list[slot]=%p\n", ptr, slot, msize, szone->tiny_free_list[slot]);
szone_error(szone, "tiny_free_list_remove_ptr: Internal invariant broken (szone->tiny_free_list[slot])", ptr);
return;
}
#endif
szone->tiny_free_list[slot] = next;
if (!next) BITMAP32_CLR(szone->tiny_bitmap, slot);
} else {
previous->next = next;
free_list_set_checksum(szone, previous);
}
if (next) {
next->previous = previous;
free_list_set_checksum(szone, next);
}
}
static INLINE tiny_region_t *
tiny_region_for_ptr_no_lock(szone_t *szone, const void *ptr) {
tiny_region_t *region = szone->tiny_regions;
unsigned num_regions = szone->num_tiny_regions;
unsigned ptr_shifted = ((unsigned)ptr) >> TINY_BLOCKS_ALIGN;
while (num_regions--) {
tiny_region_t this = *region;
if (ptr_shifted == this) return region;
region++;
}
return NULL;
}
static INLINE void
tiny_free_no_lock(szone_t *szone, tiny_region_t *region, void *ptr, msize_t msize) {
size_t original_size = msize << SHIFT_TINY_QUANTUM;
void *next_block = ((char *)ptr + original_size);
#if DEBUG_MALLOC
if (LOG(szone,ptr)) {
malloc_printf("In tiny_free_no_lock(), ptr=%p, msize=%d\n", ptr, msize);
}
if (! msize) {
malloc_printf("In tiny_free_no_lock(), ptr=%p, msize=%d\n", ptr, msize);
szone_error(szone, "Trying to free tiny block that is too small", ptr);
}
#endif
// We try to coalesce this block with the preceeding one
msize_t previous_msize;
void *previous = tiny_previous_preceding_free(ptr, &previous_msize);
if (previous) {
#if DEBUG_MALLOC
if (LOG(szone, ptr) || LOG(szone,previous)) {
malloc_printf("In tiny_free_no_lock(), coalesced backwards for %p previous=%p\n", ptr, previous);
}
#endif
tiny_free_list_remove_ptr(szone, previous, previous_msize);
ptr = previous;
msize += previous_msize;
}
// We try to coalesce with the next block
if (((vm_address_t)next_block < TINY_REGION_END(*region)) && tiny_meta_header_is_free(next_block)) {
// The next block is free, we coalesce
msize_t next_msize = TINY_FREE_SIZE(next_block);
#if DEBUG_MALLOC
if (LOG(szone, ptr) || LOG(szone, next_block)) {
malloc_printf("In tiny_free_no_lock(), for ptr=%p, msize=%d coalesced forward=%p next_msize=%d\n", ptr, msize, next_block, next_msize);
}
#endif
if (next_msize >= NUM_TINY_SLOTS) {
// we take a short cut here to avoid removing next_block from the slot 31 freelist and then adding ptr back to slot 31
// malloc_printf("Replacing %p(msize=%d) with %p(msize=%d) in freelist\n", next_block, next_msize, ptr, msize+next_msize);
msize += next_msize;
free_list_t *big_free_block = (free_list_t *)next_block;
free_list_t *after_next_block = big_free_block->next;
free_list_t *before_next_block = big_free_block->previous;
free_list_checksum(szone, big_free_block, __PRETTY_FUNCTION__);
if (!before_next_block) {
szone->tiny_free_list[NUM_TINY_SLOTS-1] = ptr;
} else {
before_next_block->next = ptr;
free_list_set_checksum(szone, before_next_block);
}
if (after_next_block) {
after_next_block->previous = ptr;
free_list_set_checksum(szone, after_next_block);
}
((free_list_t *)ptr)->previous = before_next_block;
((free_list_t *)ptr)->next = after_next_block;
free_list_set_checksum(szone, ptr);
set_tiny_meta_header_free(ptr, msize);
set_tiny_meta_header_middle(big_free_block); // clear the meta_header to enable coalescing backwards
goto tiny_free_ending;
}
tiny_free_list_remove_ptr(szone, next_block, next_msize);
set_tiny_meta_header_middle(next_block); // clear the meta_header to enable coalescing backwards
msize += next_msize;
}
if ((szone->debug_flags & SCALABLE_MALLOC_DO_SCRIBBLE) && msize) {
memset(ptr, 0x55, msize << SHIFT_TINY_QUANTUM);
}
tiny_free_list_add_ptr(szone, ptr, msize);
tiny_free_ending:
// When in proper debug mode we write on the memory to help debug memory smashers
szone->num_tiny_objects--;
szone->num_bytes_in_tiny_objects -= original_size; // we use original_size and not msize to avoid double counting the coalesced blocks
}
static void *
tiny_malloc_from_region_no_lock(szone_t *szone, msize_t msize) {
// Allocates from the last region or a freshly allocated region
// Before anything we transform the tiny_bytes_free_at_end - if any - to a regular free block
if (szone->tiny_bytes_free_at_end) {
tiny_region_t last_region = szone-> tiny_regions[szone->num_tiny_regions-1];
void *last_block = (void *)(TINY_REGION_END(last_region) - szone->tiny_bytes_free_at_end);
tiny_free_list_add_ptr(szone, last_block, szone->tiny_bytes_free_at_end >> SHIFT_TINY_QUANTUM);
szone->tiny_bytes_free_at_end = 0;
}
void *ptr;
// time to create a new region
vm_address_t aligned_address = allocate_pages(szone, TINY_REGION_SIZE, TINY_BLOCKS_ALIGN, 0, VM_MAKE_TAG(VM_MEMORY_MALLOC_TINY));
if (! aligned_address) {
// out of memory!
return NULL;
}
// malloc_printf("Allocated tiny region #%d: %p [%y]\n", szone->num_tiny_regions, aligned_address, TINY_REGION_SIZE);
// We set the padding after block_header to be all 1
((unsigned *)(aligned_address + (1 << TINY_BLOCKS_ALIGN) + (NUM_TINY_BLOCKS >> 3)))[0] = ~0;
if (szone->num_tiny_regions == INITIAL_NUM_TINY_REGIONS) {
tiny_region_t *new_regions;
// malloc_printf("=== Growing tiny_regions (%d regions)\n", szone->num_tiny_regions);
new_regions = small_malloc_from_region_no_lock(szone, 16); // 16 * 512 bytes is plenty of tiny regions (more than 4,000)
if (!new_regions) return NULL;
memcpy(new_regions, szone->tiny_regions, INITIAL_NUM_TINY_REGIONS * sizeof(tiny_region_t));
szone->tiny_regions = new_regions; // we set the pointer after it's all ready to enable enumeration from another thread without locking
}
szone->tiny_regions[szone->num_tiny_regions] = aligned_address >> TINY_BLOCKS_ALIGN;
szone->num_tiny_regions ++; // we set the number after the pointer is all ready to enable enumeration from another thread without taking the lock
ptr = (void *)aligned_address;
set_tiny_meta_header_in_use(ptr, msize);
szone->num_tiny_objects++;
szone->num_bytes_in_tiny_objects += msize << SHIFT_TINY_QUANTUM;
// We put a header on the last block so that it appears in use (for coalescing, etc...)
set_tiny_meta_header_in_use(ptr + (msize << SHIFT_TINY_QUANTUM), 1);
szone->tiny_bytes_free_at_end = (NUM_TINY_BLOCKS - msize) << SHIFT_TINY_QUANTUM;
#if DEBUG_MALLOC
if (LOG(szone,ptr)) {
malloc_printf("In tiny_malloc_from_region_no_lock(), ptr=%p, msize=%d\n", ptr, msize);
}
#endif
return ptr;
}
static INLINE boolean_t
try_realloc_tiny_in_place(szone_t *szone, void *ptr, size_t old_size, size_t new_size) {
// returns 1 on success
msize_t index = (((unsigned)ptr) >> SHIFT_TINY_QUANTUM) & (NUM_TINY_BLOCKS - 1);
msize_t old_msize = old_size >> SHIFT_TINY_QUANTUM;
unsigned next_index = index + old_msize;
// malloc_printf("try_realloc_tiny_in_place %p %d %d\n", ptr, old_size, new_size);
if (next_index >= NUM_TINY_BLOCKS) {
// malloc_printf("try_realloc_tiny_in_place can't take place at end %p %d %d %d\n", ptr, old_size, new_size, next_index);
return 0;
}
void *next_block = (char *)ptr + old_size;
SZONE_LOCK(szone);
boolean_t is_free = tiny_meta_header_is_free(next_block);
if (!is_free) {
SZONE_UNLOCK(szone);
return 0; // next_block is in use;
}
msize_t next_msize = TINY_FREE_SIZE(next_block);
if (old_size + (next_msize >> SHIFT_TINY_QUANTUM) < new_size) {
// malloc_printf("try_realloc_tiny_in_place can't %p too small %d\n", next_block, next_msize);
SZONE_UNLOCK(szone);
return 0; // even with next block, not enough
}
tiny_free_list_remove_ptr(szone, next_block, next_msize);
set_tiny_meta_header_middle(next_block); // clear the meta_header to enable coalescing backwards
msize_t coalesced_msize = (new_size - old_size + TINY_QUANTUM - 1) >> SHIFT_TINY_QUANTUM;
msize_t leftover_msize = next_msize - coalesced_msize;
// malloc_printf("Realloc in place for %p; current size=%d next_msize=%d wanted=%d\n", ptr, old_size, next_msize, new_size);
if (leftover_msize) {
void *leftover = next_block + (coalesced_msize << SHIFT_TINY_QUANTUM);
// malloc_printf("Leftover in realloc in place %p leftover_msize=%d\n", leftover, leftover_msize);
tiny_free_list_add_ptr(szone, leftover, leftover_msize);
}
set_tiny_meta_header_in_use(ptr, old_msize + coalesced_msize);
#if DEBUG_MALLOC
if (LOG(szone,ptr)) {
malloc_printf("In try_realloc_tiny_in_place(), ptr=%p, msize=%d\n", ptr, old_msize + coalesced_msize);
}
#endif
szone->num_bytes_in_tiny_objects += coalesced_msize << SHIFT_TINY_QUANTUM;
SZONE_UNLOCK(szone);
CHECK(szone, __PRETTY_FUNCTION__);
// malloc_printf("Extended ptr %p for realloc old=%d desired=%d new=%d leftover=%d\n", ptr, (unsigned)old_size, (unsigned)new_size, (unsigned)szone_size(szone, ptr), leftover_msize << SHIFT_TINY_QUANTUM);
return 1;
}
static boolean_t
szone_check_tiny_region(szone_t *szone, tiny_region_t *region) {
vm_address_t start = TINY_REGION_ADDRESS(*region);
void *ptr = (void *)start;
vm_address_t region_end = TINY_REGION_END(*region);
boolean_t prev_free = 0;
if (region == szone->tiny_regions + szone->num_tiny_regions - 1) region_end -= szone->tiny_bytes_free_at_end;
// malloc_printf("szone_check_tiny_region: szone=%p region=%p start=%p ptr=%p region_end=%p\n", szone, region, start, ptr, region_end);
while ((vm_address_t)ptr < region_end) {
boolean_t is_free;
msize_t msize = get_tiny_meta_header(ptr, &is_free);
if (is_free && !msize && (ptr == (void *)start)) {
// the entire region is free
return 1;
}
// malloc_printf("tiny %p [%d %d]\n", ptr, msize, is_free);
if (! msize) {
malloc_printf("*** malloc[%d]: invariant broken for tiny block %p this msize=%d - size is too small\n", getpid(), ptr, msize);
return 0;
}
if (!is_free) {
// this block is in use
prev_free = 0;
if (msize > 31*TINY_QUANTUM) {
malloc_printf("*** malloc[%d]: invariant broken for %p this tiny msize=%d[%p] - size is too large\n", getpid(), ptr, msize, msize);
return 0;
}
ptr += msize << SHIFT_TINY_QUANTUM;
} else {
// free pointer
if (prev_free) {
malloc_printf("*** malloc[%d]: invariant broken for free block %p this tiny msize=%d: two free blocks in a row\n", getpid(), ptr, msize);
return 0;
}
prev_free = 1;
free_list_t *free_head = ptr;
free_list_checksum(szone, free_head, __PRETTY_FUNCTION__);
if (free_head->previous && !tiny_meta_header_is_free(free_head->previous)) {
malloc_printf("*** malloc[%d]: invariant broken for %p (previous %p is not a free pointer)\n", getpid(), ptr, free_head->previous);
return 0;
}
if (free_head->next && !tiny_meta_header_is_free(free_head->next)) {
malloc_printf("*** malloc[%d]: invariant broken for %p (next in free list %p is not a free pointer)\n", getpid(), ptr, free_head->next);
return 0;
}
void *follower = FOLLOWING_TINY_PTR(ptr, msize);
if ((follower != (void *)region_end) && (TINY_PREVIOUS_MSIZE(follower) != msize)) {
malloc_printf("*** malloc[%d]: invariant broken for tiny free %p followed by %p in region [%p-%p] (end marker incorrect) should be %d; in fact %d\n", getpid(), ptr, follower, TINY_REGION_ADDRESS(*region), region_end, msize, TINY_PREVIOUS_MSIZE(follower));
return 0;
}
ptr = follower;
}
}
if (ptr != (void *)region_end) {
malloc_printf("*** malloc[%d]: invariant broken for region end %p - %p\n", getpid(), ptr, region_end);
return 0;
}
if (region == szone->tiny_regions + szone->num_tiny_regions - 1) {
if (szone->tiny_bytes_free_at_end) {
boolean_t is_free;
msize_t msize = get_tiny_meta_header(ptr, &is_free);
if (is_free || (msize != 1)) {
malloc_printf("*** malloc[%d]: invariant broken for blocker block %p - %d %d\n", getpid(), ptr, msize, is_free);
}
}
}
return 1;
}
static kern_return_t
tiny_in_use_enumerator(task_t task, void *context, unsigned type_mask, vm_address_t region_address, unsigned short num_regions, size_t tiny_bytes_free_at_end, memory_reader_t reader, vm_range_recorder_t recorder) {
tiny_region_t *regions;
unsigned index = 0;
vm_range_t buffer[MAX_RECORDER_BUFFER];
unsigned count = 0;
kern_return_t err;
err = reader(task, region_address, sizeof(tiny_region_t) * num_regions, (void **)&regions);
if (err) return err;
while (index < num_regions) {
// unsigned num_in_use = 0;
// unsigned num_free = 0;
tiny_region_t region = regions[index];
vm_range_t range = {TINY_REGION_ADDRESS(region), TINY_REGION_SIZE};
// malloc_printf("Enumerating tiny ptrs for tiny region starting at %p\n", range.address);
if (type_mask & MALLOC_ADMIN_REGION_RANGE_TYPE) {
vm_range_t admin_range = {range.address + (1 << TINY_BLOCKS_ALIGN), range.size - (1 << TINY_BLOCKS_ALIGN)};
recorder(task, context, MALLOC_ADMIN_REGION_RANGE_TYPE, &admin_range, 1);
}
if (type_mask & (MALLOC_PTR_REGION_RANGE_TYPE | MALLOC_ADMIN_REGION_RANGE_TYPE)) {
vm_range_t ptr_range = {range.address, 1 << TINY_BLOCKS_ALIGN};
recorder(task, context, MALLOC_PTR_REGION_RANGE_TYPE, &ptr_range, 1);
}
if (type_mask & MALLOC_PTR_IN_USE_RANGE_TYPE) {
unsigned char *mapped_region;
err = reader(task, range.address, range.size, (void **)&mapped_region);
if (err) return err;
unsigned char *block_header = (unsigned char *)(mapped_region + (1 << TINY_BLOCKS_ALIGN));
unsigned char *in_use = block_header + (NUM_TINY_BLOCKS >> 3) + 4;
unsigned block_index = 0;
unsigned block_limit = NUM_TINY_BLOCKS;
if (index == num_regions - 1)
block_limit -= (tiny_bytes_free_at_end >> SHIFT_TINY_QUANTUM);
while (block_index < block_limit) {
boolean_t is_free = ! BITARRAY_BIT(in_use, block_index);
msize_t msize;
if (is_free) {
void *mapped_ptr = mapped_region + (block_index << SHIFT_TINY_QUANTUM);
msize = TINY_FREE_SIZE(mapped_ptr);
// printf("free: index=%x mapped=%p true_addr=%p msize=%d\n", block_index, mapped_ptr, (void *)range.address + (block_index << SHIFT_TINY_QUANTUM), msize);
// num_free++;
if (!msize) break;
} else {
msize = 1;
unsigned bit = block_index + 1;
while (! BITARRAY_BIT(block_header, bit)) { bit++; msize ++; }
// printf("in_use: index=%x true_addr=%p msize=%d\n", block_index, (void *)range.address + (block_index << SHIFT_TINY_QUANTUM), msize);
// num_in_use++;
buffer[count].address = range.address + (block_index << SHIFT_TINY_QUANTUM);
buffer[count].size = msize << SHIFT_TINY_QUANTUM;
count++;
if (count >= MAX_RECORDER_BUFFER) {
recorder(task, context, MALLOC_PTR_IN_USE_RANGE_TYPE, buffer, count);
count = 0;
}
}
block_index += msize;
}
}
// malloc_printf("Found in tiny region %d in_use and %d free\n", num_in_use, num_free);
index++;
}
if (count) {
recorder(task, context, MALLOC_PTR_IN_USE_RANGE_TYPE, buffer, count);
}
return 0;
}
static INLINE void *
tiny_malloc_from_free_list(szone_t *szone, msize_t msize) {
// Assumes we've locked the region
void *ptr;
msize_t this_msize;
grain_t slot = msize-1;
free_list_t **free_list = szone->tiny_free_list;
free_list_t **the_slot = free_list + slot;
ptr = *the_slot;
if (ptr) {
free_list_t *next;
next = ((free_list_t *)ptr)->next;
if (next) {
next->previous = NULL;
free_list_set_checksum(szone, next);
}
*the_slot = next;
this_msize = msize;
#if DEBUG_MALLOC
if (LOG(szone,ptr)) {
malloc_printf("In tiny_malloc_from_free_list(), exact match ptr=%p, this_msize=%d\n", ptr, this_msize);
}
#endif
goto return_tiny_alloc;
}
// adjust slot based on bitmap
unsigned bitmap = szone->tiny_bitmap & ~ ((1 << slot) - 1);
if (! bitmap) goto try_tiny_malloc_from_end;
slot = BITMAP32_FFS(bitmap) - 1;
free_list_t **limit = free_list + NUM_TINY_SLOTS - 1;
free_list += slot;
while (free_list < limit) {
// try bigger grains
ptr = *free_list;
if (ptr) {
free_list_t *next;
next = ((free_list_t *)ptr)->next;
if (next) {
next->previous = NULL;
free_list_set_checksum(szone, next);
}
*free_list = next;
this_msize = TINY_FREE_SIZE(ptr);
#if DEBUG_MALLOC
if (LOG(szone,ptr)) {
malloc_printf("In tiny_malloc_from_free_list(), bigger grain ptr=%p, msize=%d this_msize=%d\n", ptr, msize, this_msize);
}
#endif
goto add_leftover_and_proceed;
}
free_list++;
}
// we are now looking at the last slot (31)
ptr = *limit;
if (ptr) {
free_list_t *next;
this_msize = TINY_FREE_SIZE(ptr);
next = ((free_list_t *)ptr)->next;
if (this_msize - msize >= NUM_TINY_SLOTS) {
// the leftover will go back to the free list, so we optimize by modifying the free list rather than removing the head and then adding back
// malloc_printf("Allocation from largest tiny slot %p optimized\n", ptr);
msize_t leftover_msize = this_msize - msize;
void *leftover_ptr = ptr + (msize << SHIFT_TINY_QUANTUM);
*limit = leftover_ptr;
if (next) {
next->previous = leftover_ptr;
free_list_set_checksum(szone, next);
}
((free_list_t *)leftover_ptr)->next = next;
((free_list_t *)leftover_ptr)->previous = NULL;
free_list_set_checksum(szone, leftover_ptr);
set_tiny_meta_header_free(leftover_ptr, leftover_msize);
#if DEBUG_MALLOC
if (LOG(szone,ptr)) {
malloc_printf("In tiny_malloc_from_free_list(), last slot ptr=%p, msize=%d this_msize=%d\n", ptr, msize, this_msize);
}
#endif
this_msize = msize;
goto return_tiny_alloc;
}
*limit = next;
if (next) {
next->previous = NULL;
free_list_set_checksum(szone, next);
}
goto add_leftover_and_proceed;
}
try_tiny_malloc_from_end:
// Let's see if we can use szone->tiny_bytes_free_at_end
if (szone->tiny_bytes_free_at_end >= (msize << SHIFT_TINY_QUANTUM)) {
ptr = (void *)(TINY_REGION_END(szone->tiny_regions[szone->num_tiny_regions-1]) - szone->tiny_bytes_free_at_end);
szone->tiny_bytes_free_at_end -= msize << SHIFT_TINY_QUANTUM;
if (szone->tiny_bytes_free_at_end) {
// let's add an in use block after ptr to serve as boundary
set_tiny_meta_header_in_use(ptr + (msize << SHIFT_TINY_QUANTUM), 1);
}
this_msize = msize;
#if DEBUG_MALLOC
if (LOG(szone,ptr)) {
malloc_printf("In tiny_malloc_from_free_list(), from end ptr=%p, msize=%d\n", ptr, msize);
}
#endif
goto return_tiny_alloc;
}
return NULL;
add_leftover_and_proceed:
// malloc_printf("For msize=%d found tiny in free_list (slot=%d) this_msize=%d\n", msize, free_list - szone->tiny_free_list, this_msize);
if (!this_msize || (this_msize > msize)) {
msize_t leftover_msize = this_msize - msize;
void *leftover_ptr = ptr + (msize << SHIFT_TINY_QUANTUM);
#if DEBUG_MALLOC
if (LOG(szone,ptr)) {
malloc_printf("In tiny_malloc_from_free_list(), adding leftover ptr=%p, this_msize=%d\n", ptr, this_msize);
}
#endif
tiny_free_list_add_ptr(szone, leftover_ptr, leftover_msize);
this_msize = msize;
}
return_tiny_alloc:
szone->num_tiny_objects++;
szone->num_bytes_in_tiny_objects += this_msize << SHIFT_TINY_QUANTUM;
#if DEBUG_MALLOC
if (LOG(szone,ptr)) {
malloc_printf("In tiny_malloc_from_free_list(), ptr=%p, this_msize=%d, msize=%d\n", ptr, this_msize, msize);
}
#endif
set_tiny_meta_header_in_use(ptr, this_msize);
return ptr;
}
static INLINE void *
tiny_malloc_should_clear(szone_t *szone, msize_t msize, boolean_t cleared_requested) {
boolean_t locked = 0;
void *ptr;
#if DEBUG_MALLOC
if (! msize) {
szone_error(szone, "Invariant broken (!msize) in allocation (region)", NULL);
}
#endif
#if TINY_CACHE
ptr = (void *)szone->last_tiny_free;
if ((((unsigned)ptr) & (TINY_QUANTUM - 1)) == msize) {
// we have a candidate - let's lock to make sure
LOCK_AND_NOTE_LOCKED(szone, locked);
if (ptr == (void *)szone->last_tiny_free) {
szone->last_tiny_free = NULL;
// malloc_printf("using last_tiny_free\n");
SZONE_UNLOCK(szone);
CHECK(szone, __PRETTY_FUNCTION__);
ptr = (void *)((unsigned)ptr & ~ (TINY_QUANTUM - 1));
if (cleared_requested) {
memset(ptr, 0, msize << SHIFT_TINY_QUANTUM);
}
#if DEBUG_MALLOC
if (LOG(szone,ptr)) {
malloc_printf("In tiny_malloc_should_clear(), tiny cache ptr=%p, msize=%d\n", ptr, msize);
}
#endif
return ptr;
}
// malloc_printf("optimistic locking for last_tiny_free failed\n");
}
#endif
// Except in rare occasions where we need to add a new region, we are going to end up locking, so we might as well lock right away to avoid doing unnecessary optimistic probes
if (!locked) LOCK_AND_NOTE_LOCKED(szone, locked);
ptr = tiny_malloc_from_free_list(szone, msize);
// malloc_printf("tiny_malloc_from_free_list(%d) returned %p\n", msize, ptr);
if (ptr) {
SZONE_UNLOCK(szone);
CHECK(szone, __PRETTY_FUNCTION__);
if (cleared_requested) {
memset(ptr, 0, msize << SHIFT_TINY_QUANTUM);
}
return ptr;
}
ptr = tiny_malloc_from_region_no_lock(szone, msize);
// malloc_printf("tiny_malloc_from_region_no_lock returned %p for msize=%d\n", ptr, msize);
// we don't clear because this freshly allocated space is pristine
SZONE_UNLOCK(szone);
CHECK(szone, __PRETTY_FUNCTION__);
return ptr;
}
static INLINE void
free_tiny(szone_t *szone, void *ptr, tiny_region_t *tiny_region) {
// ptr is known to be in tiny_region
SZONE_LOCK(szone);
#if TINY_CACHE
void *ptr2 = szone->last_tiny_free;
if (ptr == (void *)((unsigned)ptr2 & ~ (TINY_QUANTUM - 1))) {
szone_error(szone, "Double free", ptr);
return;
}
#endif /* TINY_CACHE */
boolean_t is_free;
msize_t msize = get_tiny_meta_header(ptr, &is_free);
if (is_free) {
szone_error(szone, "Double free", ptr);
return;
}
// malloc_printf("%p[%x]\n", ptr, msize);
#if DEBUG_MALLOC
if (!msize) {
malloc_printf("*** szone_free() block in use is too large: %p\n", ptr);
}
#endif
#if TINY_CACHE
if (msize < TINY_QUANTUM) { // to see if the bits fit in the last 4 bits
szone->last_tiny_free = (void *)(((unsigned)ptr) | msize);
if (!ptr2) {
// malloc_printf("stuffing last_tiny_free\n");
SZONE_UNLOCK(szone);
CHECK(szone, __PRETTY_FUNCTION__);
return;
}
// malloc_printf("replacing previous last_tiny_free %p with %p\n", ptr2, szone->last_tiny_free);
msize = (unsigned)ptr2 & (TINY_QUANTUM - 1);
ptr = (void *)(((unsigned)ptr2) & ~ (TINY_QUANTUM - 1));
tiny_region = tiny_region_for_ptr_no_lock(szone, ptr);
if (!tiny_region) {
szone_error(szone, "Double free (tiny cache)", ptr);
}
}
#endif
tiny_free_no_lock(szone, tiny_region, ptr, msize);
SZONE_UNLOCK(szone);
CHECK(szone, __PRETTY_FUNCTION__);
}
static void
print_tiny_free_list(szone_t *szone) {
grain_t slot = 0;
malloc_printf("Tiny free sizes: ");
while (slot < NUM_TINY_SLOTS) {
free_list_t *ptr = szone->tiny_free_list[slot];
if (ptr) {
malloc_printf("%s%y[%d]; ", (slot == NUM_TINY_SLOTS-1) ? ">=" : "", (slot+1)*TINY_QUANTUM, free_list_count(ptr));
}
slot++;
}
malloc_printf("\n");
}
static void
print_tiny_region(boolean_t verbose, tiny_region_t region, size_t bytes_at_end) {
unsigned counts[1024];
unsigned in_use = 0;
vm_address_t start = TINY_REGION_ADDRESS(region);
vm_address_t current = start;
vm_address_t limit = TINY_REGION_END(region) - bytes_at_end;
memset(counts, 0, 1024 * sizeof(unsigned));
while (current < limit) {
boolean_t is_free;
msize_t msize = get_tiny_meta_header((void *)current, &is_free);
// malloc_printf("%p [%d %d]; ", current, msize, is_free);
if (is_free & !msize && (current == start)) {
// first block is all free
break;
}
if (!msize) {
malloc_printf("*** Error with %p: msize=%d\n", current, msize);
break;
}
if (! is_free) {
// block in use
if (msize > 32) malloc_printf("*** Error at %p msize for in_use is %d\n", current, msize);
if (msize < 1024) counts[msize]++;
in_use++;
}
current += msize << SHIFT_TINY_QUANTUM;
}
malloc_printf("Tiny region [%p-%p, %y]\t", start, TINY_REGION_END(region), (int)TINY_REGION_SIZE);
malloc_printf("In_use=%d ", in_use);
if (bytes_at_end) malloc_printf("Untouched=%y ", bytes_at_end);
if (verbose && in_use) {
unsigned ci = 0;
malloc_printf("\n\tSizes in use: ");
while (ci < 1024) {
if (counts[ci]) {
malloc_printf("%d[%d] ", ci << SHIFT_TINY_QUANTUM, counts[ci]);
}
ci++;
}
}
malloc_printf("\n");
}
static boolean_t
tiny_free_list_check(szone_t *szone, grain_t slot) {
CHECK_LOCKED(szone, __PRETTY_FUNCTION__);
unsigned count = 0;
free_list_t *ptr = szone->tiny_free_list[slot];
free_list_t *previous = NULL;
while (ptr) {
free_list_checksum(szone, ptr, __PRETTY_FUNCTION__);
boolean_t is_free = tiny_meta_header_is_free(ptr);
if (! is_free) {
malloc_printf("*** malloc[%d]: In-use ptr in free list slot=%d count=%d ptr=%p\n", getpid(), slot, count, ptr);
return 0;
}
if (((unsigned)ptr) & (TINY_QUANTUM - 1)) {
malloc_printf("*** malloc[%d]: Unaligned ptr in free list slot=%d count=%d ptr=%p\n", getpid(), slot, count, ptr);
return 0;
}
if (!tiny_region_for_ptr_no_lock(szone, ptr)) {
malloc_printf("*** malloc[%d]: Ptr not in szone slot=%d count=%d ptr=%p\n", getpid(), slot, count, ptr);
return 0;
}
if (ptr->previous != previous) {
malloc_printf("*** malloc[%d]: Previous incorrectly set slot=%d count=%d ptr=%p\n", getpid(), slot, count, ptr);
return 0;
}
previous = ptr;
ptr = ptr->next;
count++;
}
// malloc_printf("tiny_free_list_check passed\n");
return 1;
}
/********************* SMALL FREE LIST UTILITIES ************************/
static INLINE msize_t *
small_meta_headers(const void *ptr) {
// returns address of meta info
unsigned short shifted_base = ((unsigned)ptr) >> SMALL_BLOCKS_ALIGN;
unsigned headers_start = (shifted_base + 1) << SMALL_BLOCKS_ALIGN;
return (msize_t *)headers_start;
}
static INLINE msize_t
small_meta_index(const void *ptr) {
// returns address of meta info
return (((unsigned)ptr) >> SHIFT_SMALL_QUANTUM) & (NUM_SMALL_BLOCKS - 1);
}
static INLINE msize_t *
small_meta_header(const void *ptr) {
// returns address of meta info
msize_t *meta_headers = small_meta_headers(ptr);
msize_t index = small_meta_index(ptr);
return meta_headers + index;
}
static INLINE void
small_meta_header_set_is_free(msize_t *meta_headers, msize_t index, msize_t msize) {
// Indicates that the meta_header for index says 'is free'
meta_headers[index] = msize | SMALL_IS_FREE;
}
static INLINE void
small_meta_header_set_in_use(msize_t *meta_headers, msize_t index, msize_t msize) {
// Indicates that the meta_header for index says 'in use'
meta_headers[index] = msize;
}
static INLINE void
small_meta_header_set_middle(msize_t *meta_headers, msize_t index) {
// Indicates that the meta_header for index says 'in the middle of a block'
meta_headers[index] = 0;
}
static void
small_free_list_add_ptr(szone_t *szone, void *ptr, msize_t msize) {
// Adds an item to the proper free list
// Also marks the header of the block properly
// Assumes szone has been locked
CHECK_LOCKED(szone, __PRETTY_FUNCTION__);
grain_t grain = (msize <= NUM_SMALL_SLOTS) ? msize - 1 : NUM_SMALL_SLOTS - 1;
free_list_t *free_ptr = ptr;
free_list_t *free_head = szone->small_free_list[grain];
#if DEBUG_MALLOC
if (LOG(szone,ptr)) {
malloc_printf("In small_free_list_add_ptr(), ptr=%p, msize=%d\n", ptr, msize);
}
if (((unsigned)ptr) & (SMALL_QUANTUM - 1)) {
szone_error(szone, "small_free_list_add_ptr: Unaligned ptr", ptr);
}
#endif
if (free_head) {
free_list_checksum(szone, free_head, __PRETTY_FUNCTION__);
#if DEBUG_MALLOC
if (free_head->previous) {
malloc_printf("ptr=%p grain=%d free_head=%p previous=%p\n", ptr, grain, free_head, free_head->previous);
szone_error(szone, "small_free_list_add_ptr: Internal invariant broken (free_head->previous)", ptr);
}
if (!(small_meta_header(free_head)[0] & SMALL_IS_FREE)) {
malloc_printf("ptr=%p grain=%d free_head=%p\n", ptr, grain, free_head);
szone_error(szone, "small_free_list_add_ptr: Internal invariant broken (free_head is not a free pointer)", ptr);
}
#endif
free_head->previous = free_ptr;
free_list_set_checksum(szone, free_head);
} else {
BITMAP32_SET(szone->small_bitmap, grain);
}
free_ptr->previous = NULL;
free_ptr->next = free_head;
free_list_set_checksum(szone, free_ptr);
szone->small_free_list[grain] = free_ptr;
void *follower = ptr + (msize << SHIFT_SMALL_QUANTUM);
SMALL_PREVIOUS_MSIZE(follower) = msize;
}
static void
small_free_list_remove_ptr(szone_t *szone, void *ptr, msize_t msize) {
// Removes item in the proper free list
// msize could be read, but all callers have it so we pass it in
// Assumes szone has been locked
CHECK_LOCKED(szone, __PRETTY_FUNCTION__);
grain_t grain = (msize <= NUM_SMALL_SLOTS) ? msize - 1 : NUM_SMALL_SLOTS - 1;
free_list_t *free_ptr = ptr;
free_list_t *next = free_ptr->next;
free_list_t *previous = free_ptr->previous;
#if DEBUG_MALLOC
if (LOG(szone,ptr)) {
malloc_printf("In small_free_list_remove_ptr(), ptr=%p, msize=%d\n", ptr, msize);
}
#endif
free_list_checksum(szone, free_ptr, __PRETTY_FUNCTION__);
if (!previous) {
#if DEBUG_MALLOC
if (szone->small_free_list[grain] != ptr) {
malloc_printf("ptr=%p grain=%d msize=%d szone->small_free_list[grain]=%p\n", ptr, grain, msize, szone->small_free_list[grain]);
szone_error(szone, "small_free_list_remove_ptr: Internal invariant broken (szone->small_free_list[grain])", ptr);
return;
}
#endif
szone->small_free_list[grain] = next;
if (!next) BITMAP32_CLR(szone->small_bitmap, grain);
} else {
previous->next = next;
free_list_set_checksum(szone, previous);
}
if (next) {
next->previous = previous;
free_list_set_checksum(szone, next);
}
}
static INLINE small_region_t *
small_region_for_ptr_no_lock(szone_t *szone, const void *ptr) {
small_region_t *region = szone->small_regions;
unsigned num_regions = szone->num_small_regions;
unsigned ptr_shifted = ((unsigned)ptr) >> SMALL_BLOCKS_ALIGN;
while (num_regions--) {
small_region_t this = *region;
if (ptr_shifted == this) return region;
region++;
}
return NULL;
}
static INLINE void
small_free_no_lock(szone_t *szone, small_region_t *region, void *ptr, msize_t msize) {
// Assumes locked
CHECK_LOCKED(szone, __PRETTY_FUNCTION__);
msize_t *meta_headers = small_meta_headers(ptr);
msize_t index = small_meta_index(ptr);
size_t original_size = msize << SHIFT_SMALL_QUANTUM;
void *next_block = ((char *)ptr + original_size);
msize_t next_index = index + msize;
#if DEBUG_MALLOC
if (LOG(szone,ptr)) {
malloc_printf("In small_free_no_lock(), ptr=%p, msize=%d\n", ptr, msize);
}
if (! msize) {
malloc_printf("In small_free_no_lock(), ptr=%p, msize=%d\n", ptr, msize);
szone_error(szone, "Trying to free small block that is too small", ptr);
}
// printf("In small_free_no_lock %p - msize=%d\n", ptr, msize);
#endif
// We try to coalesce this block with the preceeding one
if (index && (SMALL_PREVIOUS_MSIZE(ptr) <= index)) {
msize_t previous_msize = SMALL_PREVIOUS_MSIZE(ptr);
if (meta_headers[index - previous_msize] == (previous_msize | SMALL_IS_FREE)) {
void *previous = ptr - (previous_msize << SHIFT_SMALL_QUANTUM);
// previous is really to be coalesced
#if DEBUG_MALLOC
if (LOG(szone, ptr) || LOG(szone,previous)) {
malloc_printf("In small_free_no_lock(), coalesced backwards for %p previous=%p\n", ptr, previous);
}
#endif
// malloc_printf("In small_free_no_lock(), coalesced backwards for %p previous=%p\n", ptr, previous);
small_free_list_remove_ptr(szone, previous, previous_msize);
small_meta_header_set_middle(meta_headers, index);
ptr = previous;
msize += previous_msize;
index -= previous_msize;
}
}
// We try to coalesce with the next block
if (((vm_address_t)next_block < SMALL_REGION_END(*region)) && (meta_headers[next_index] & SMALL_IS_FREE)) {
// next block is free, we coalesce
msize_t next_msize = meta_headers[next_index] & ~ SMALL_IS_FREE;
#if DEBUG_MALLOC
if (LOG(szone,ptr)) malloc_printf("In small_free_no_lock(), for ptr=%p, msize=%d coalesced next block=%p next_msize=%d\n", ptr, msize, next_block, next_msize);
#endif
// malloc_printf("In small_free_no_lock(), for ptr=%p, msize=%d coalesced next block=%p next_msize=%d\n", ptr, msize, next_block, next_msize);
small_free_list_remove_ptr(szone, next_block, next_msize);
small_meta_header_set_middle(meta_headers, next_index);
msize += next_msize;
}
if (szone->debug_flags & SCALABLE_MALLOC_DO_SCRIBBLE) {
if (!msize) {
szone_error(szone, "Incorrect size information - block header was damaged", ptr);
} else {
memset(ptr, 0x55, (msize << SHIFT_SMALL_QUANTUM));
}
}
small_free_list_add_ptr(szone, ptr, msize);
small_meta_header_set_is_free(meta_headers, index, msize);
szone->num_small_objects--;
szone->num_bytes_in_small_objects -= original_size; // we use original_size and not msize to avoid double counting the coalesced blocks
}
static void *
small_malloc_from_region_no_lock(szone_t *szone, msize_t msize) {
// Allocates from the last region or a freshly allocated region
CHECK_LOCKED(szone, __PRETTY_FUNCTION__);
// Before anything we transform the small_bytes_free_at_end - if any - to a regular free block
if (szone->small_bytes_free_at_end) {
small_region_t last_region = szone->small_regions[szone->num_small_regions - 1];
void *last_block = (void *)(SMALL_REGION_END(last_region) - szone->small_bytes_free_at_end);
small_free_list_add_ptr(szone, last_block, szone->small_bytes_free_at_end >> SHIFT_SMALL_QUANTUM);
small_meta_header(last_block)[0] = (szone->small_bytes_free_at_end >> SHIFT_SMALL_QUANTUM) | SMALL_IS_FREE;
szone->small_bytes_free_at_end = 0;
}
void *ptr;
// time to create a new region
vm_address_t new_address = allocate_pages(szone, SMALL_REGION_SIZE, SMALL_BLOCKS_ALIGN, 0, VM_MAKE_TAG(VM_MEMORY_MALLOC_SMALL));
if (!new_address) {
// out of memory!
return NULL;
}
ptr = (void *)new_address;
msize_t *meta_headers = small_meta_headers(ptr);
msize_t index = 0;
// malloc_printf("Allocated small region #%d: %p [%y]\n", szone->num_small_regions, new_address, SMALL_REGION_SIZE);
if (szone->num_small_regions == INITIAL_NUM_SMALL_REGIONS) {
// time to grow the number of regions
unsigned region_capacity = (1 << (32 - SMALL_BLOCKS_ALIGN)) - 20; // that is for sure the maximum number of small regions we can have
msize_t new_msize = (region_capacity * sizeof(small_region_t) + SMALL_QUANTUM - 1) / SMALL_QUANTUM;
small_region_t *new_regions = ptr;
// malloc_printf("Now %d small_regions growing regions %p to %d msize=%d\n", szone->num_small_regions + 1, szone->small_regions, region_capacity, new_msize);
small_meta_header_set_in_use(meta_headers, index, new_msize);
szone->num_small_objects++;
szone->num_bytes_in_small_objects += new_msize << SHIFT_SMALL_QUANTUM;
memcpy(new_regions, szone->small_regions, INITIAL_NUM_SMALL_REGIONS * sizeof(small_region_t));
// We intentionally leak the previous regions pointer to avoid multi-threading crashes if another thread was reading it (unlocked) while we are changing it.
szone->small_regions = new_regions; // note we set this pointer after it's all set
ptr += new_msize << SHIFT_SMALL_QUANTUM;
index = new_msize;
// malloc_printf("Regions is now %p next ptr is %p\n", szone->small_regions, ptr);
}
szone->small_regions[szone->num_small_regions] = new_address >> SMALL_BLOCKS_ALIGN;
szone->num_small_regions++; // we bump the number of regions AFTER we have changes the regions pointer to enable finding a small region without taking the lock
// malloc_printf("Now %d small regions\n", szone->num_small_regions);
small_meta_header_set_in_use(meta_headers, index, msize);
msize_t msize_left = NUM_SMALL_BLOCKS - index;
szone->num_small_objects++;
szone->num_bytes_in_small_objects += msize << SHIFT_SMALL_QUANTUM;
// add a big free block
index += msize; msize_left -= msize;
meta_headers[index] = msize_left;
szone->small_bytes_free_at_end = msize_left << SHIFT_SMALL_QUANTUM;
// malloc_printf("small_bytes_free_at_end set to %d\n", szone-> small_bytes_free_at_end);
return ptr;
}
static boolean_t
szone_check_small_region(szone_t *szone, small_region_t *region) {
CHECK_LOCKED(szone, __PRETTY_FUNCTION__);
void *ptr = (void *)SMALL_REGION_ADDRESS(*region);
msize_t *meta_headers = small_meta_headers(ptr);
vm_address_t region_end = SMALL_REGION_END(*region);
msize_t prev_free = 0;
if (region == szone->small_regions + szone->num_small_regions - 1) region_end -= szone->small_bytes_free_at_end;
while ((vm_address_t)ptr < region_end) {
msize_t index = small_meta_index(ptr);
msize_t msize_and_free = meta_headers[index];
if (! (msize_and_free & SMALL_IS_FREE)) {
// block is in use
msize_t msize = msize_and_free;
if (!msize) {
malloc_printf("*** malloc[%d]: invariant broken: null msize ptr=%p region#=%d num_small_regions=%d end=%p\n", getpid(), ptr, region - szone->small_regions, szone->num_small_regions, (void *)region_end);
return 0;
}
if (msize > (LARGE_THRESHOLD / SMALL_QUANTUM)) {
malloc_printf("*** malloc[%d]: invariant broken for %p this small msize=%d - size is too large\n", getpid(), ptr, msize_and_free);
return 0;
}
ptr += msize << SHIFT_SMALL_QUANTUM;
prev_free = 0;
} else {
// free pointer
msize_t msize = msize_and_free & ~ SMALL_IS_FREE;
free_list_t *free_head = ptr;
msize_t *follower = (void *)FOLLOWING_SMALL_PTR(ptr, msize);
if (! msize) {
malloc_printf("*** malloc[%d]: invariant broken for free block %p this msize=%d\n", getpid(), ptr, msize);
return 0;
}
if (prev_free) {
malloc_printf("*** malloc[%d]: invariant broken for %p (2 free in a row)\n", getpid(), ptr);
return 0;
}
free_list_checksum(szone, free_head, __PRETTY_FUNCTION__);
if (free_head->previous && !(small_meta_header(free_head->previous)[0] & SMALL_IS_FREE)) {
malloc_printf("*** malloc[%d]: invariant broken for %p (previous %p is not a free pointer)\n", getpid(), ptr, free_head->previous);
return 0;
}
if (free_head->next && !(small_meta_header(free_head->next)[0] & SMALL_IS_FREE)) {
malloc_printf("*** malloc[%d]: invariant broken for %p (next is not a free pointer)\n", getpid(), ptr);
return 0;
}
if (SMALL_PREVIOUS_MSIZE(follower) != msize) {
malloc_printf("*** malloc[%d]: invariant broken for small free %p followed by %p in region [%p-%p] (end marker incorrect) should be %d; in fact %d\n", getpid(), ptr, follower, SMALL_REGION_ADDRESS(*region), region_end, msize, SMALL_PREVIOUS_MSIZE(follower));
return 0;
}
ptr = follower;
prev_free = SMALL_IS_FREE;
}
}
return 1;
}
static kern_return_t
small_in_use_enumerator(task_t task, void *context, unsigned type_mask, vm_address_t region_address, unsigned short num_regions, size_t small_bytes_free_at_end, memory_reader_t reader, vm_range_recorder_t recorder) {
small_region_t *regions;
unsigned index = 0;
vm_range_t buffer[MAX_RECORDER_BUFFER];
unsigned count = 0;
kern_return_t err;
err = reader(task, region_address, sizeof(small_region_t) * num_regions, (void **)&regions);
if (err) return err;
while (index < num_regions) {
small_region_t region = regions[index];
vm_range_t range = {SMALL_REGION_ADDRESS(region), SMALL_REGION_SIZE};
// malloc_printf("Enumerating small ptrs for Region starting at %p\n", range.address);
if (type_mask & MALLOC_ADMIN_REGION_RANGE_TYPE) {
vm_range_t admin_range = {range.address + (1 << SMALL_BLOCKS_ALIGN), range.size - (1 << SMALL_BLOCKS_ALIGN)};
recorder(task, context, MALLOC_ADMIN_REGION_RANGE_TYPE, &admin_range, 1);
}
if (type_mask & (MALLOC_PTR_REGION_RANGE_TYPE | MALLOC_ADMIN_REGION_RANGE_TYPE)) {
vm_range_t ptr_range = {range.address, 1 << SMALL_BLOCKS_ALIGN};
recorder(task, context, MALLOC_PTR_REGION_RANGE_TYPE, &ptr_range, 1);
}
if (type_mask & MALLOC_PTR_IN_USE_RANGE_TYPE) {
unsigned char *mapped_region;
err = reader(task, range.address, range.size, (void **)&mapped_region);
if (err) return err;
msize_t *block_header = (msize_t *)(mapped_region + (1 << SMALL_BLOCKS_ALIGN));
unsigned block_index = 0;
unsigned block_limit = NUM_SMALL_BLOCKS;
if (index == num_regions - 1)
block_limit -= (small_bytes_free_at_end >> SHIFT_SMALL_QUANTUM);
while (block_index < block_limit) {
msize_t msize_and_free = block_header[block_index];
msize_t msize = msize_and_free & ~ SMALL_IS_FREE;
if (! (msize_and_free & SMALL_IS_FREE)) {
// Block in use
buffer[count].address = range.address + (block_index << SHIFT_SMALL_QUANTUM);
buffer[count].size = msize << SHIFT_SMALL_QUANTUM;
count++;
if (count >= MAX_RECORDER_BUFFER) {
recorder(task, context, MALLOC_PTR_IN_USE_RANGE_TYPE, buffer, count);
count = 0;
}
}
block_index += msize;
}
// malloc_printf("End small region - count=%d\n", count);
}
index++;
}
if (count) {
recorder(task, context, MALLOC_PTR_IN_USE_RANGE_TYPE, buffer, count);
}
return 0;
}
static INLINE void *
small_malloc_from_free_list(szone_t *szone, msize_t msize) {
// Assumes locked
CHECK_LOCKED(szone, __PRETTY_FUNCTION__);
grain_t grain = (msize <= NUM_SMALL_SLOTS) ? msize - 1 : NUM_SMALL_SLOTS - 1;
unsigned bitmap = szone->small_bitmap & ~ ((1 << grain) - 1);
void *ptr;
msize_t this_msize;
if (!bitmap) goto try_small_from_end;
grain = BITMAP32_FFS(bitmap) - 1;
// first try the small grains
free_list_t **free_list;
free_list_t **limit = szone->small_free_list + NUM_SMALL_SLOTS - 1;
free_list = szone->small_free_list + grain;
while (free_list < limit) {
// try bigger grains
ptr = *free_list;
if (ptr) {
free_list_t *next;
next = ((free_list_t *)ptr)->next;
if (next) {
next->previous = NULL;
free_list_set_checksum(szone, next);
}
*free_list = next;
this_msize = small_meta_header(ptr)[0] & ~ SMALL_IS_FREE;
// malloc_printf("small_malloc_from_free_list: allocated from free list\n");
goto add_leftover_and_proceed;
}
free_list++;
}
// We now check the large grains for one that is big enough
ptr = *free_list;
while (ptr) {
this_msize = small_meta_header(ptr)[0] & ~ SMALL_IS_FREE;
if (this_msize >= msize) {
// malloc_printf("small_malloc_from_free_list: allocated from last free list\n");
small_free_list_remove_ptr(szone, ptr, this_msize);
goto add_leftover_and_proceed;
}
ptr = ((free_list_t *)ptr)->next;
}
try_small_from_end:
// Let's see if we can use szone->small_bytes_free_at_end
// malloc_printf("Found nothing in free list small_bytes_free_at_end=%y\n", szone-> small_bytes_free_at_end);
if (szone->small_bytes_free_at_end >= (msize << SHIFT_SMALL_QUANTUM)) {
ptr = (void *)(SMALL_REGION_END(szone->small_regions[szone->num_small_regions-1]) - szone->small_bytes_free_at_end);
szone->small_bytes_free_at_end -= msize << SHIFT_SMALL_QUANTUM;
if (szone->small_bytes_free_at_end) {
// let's mark this block as in use to serve as boundary
small_meta_header(ptr + (msize << SHIFT_SMALL_QUANTUM))[0] = szone->small_bytes_free_at_end >> SHIFT_SMALL_QUANTUM;
}
this_msize = msize;
goto return_small_alloc;
}
return NULL;
add_leftover_and_proceed:
if (this_msize > msize) {
msize_t leftover_msize = this_msize - msize;
void *leftover_ptr = ptr + (msize << SHIFT_SMALL_QUANTUM);
#if DEBUG_MALLOC
if (LOG(szone,ptr)) {
malloc_printf("In small_malloc_from_free_list(), adding leftover ptr=%p, this_msize=%d\n", ptr, this_msize);
}
#endif
small_free_list_add_ptr(szone, leftover_ptr, leftover_msize);
msize_t *meta_headers = small_meta_headers(leftover_ptr);
msize_t leftover_index = small_meta_index(leftover_ptr);
small_meta_header_set_is_free(meta_headers, leftover_index, leftover_msize);
this_msize = msize;
}
return_small_alloc:
szone->num_small_objects++;
szone->num_bytes_in_small_objects += this_msize << SHIFT_SMALL_QUANTUM;
#if DEBUG_MALLOC
if (LOG(szone,ptr)) {
malloc_printf("In small_malloc_from_free_list(), ptr=%p, this_msize=%d, msize=%d\n", ptr, this_msize, msize);
}
#endif
small_meta_header(ptr)[0] = this_msize;
return ptr;
}
static INLINE void *
small_malloc_should_clear(szone_t *szone, msize_t msize, boolean_t cleared_requested) {
boolean_t locked = 0;
void *ptr;
#if SMALL_CACHE
ptr = (void *)szone->last_small_free;
if ((((unsigned)ptr) & (SMALL_QUANTUM - 1)) == msize) {
// we have a candidate - let's lock to make sure
LOCK_AND_NOTE_LOCKED(szone, locked);
if (ptr == (void *)szone->last_small_free) {
szone->last_small_free = NULL;
// malloc_printf("using last_small_free\n");
SZONE_UNLOCK(szone);
CHECK(szone, __PRETTY_FUNCTION__);
ptr = (void *)((unsigned)ptr & ~ (SMALL_QUANTUM - 1));
if (cleared_requested) {
memset(ptr, 0, msize << SHIFT_SMALL_QUANTUM);
}
return ptr;
}
// malloc_printf("optimistic locking for last_small_free failed\n");
}
#endif
// Except in rare occasions where we need to add a new region, we are going to end up locking, so we might as well lock right away to avoid doing unnecessary optimistic probes
if (!locked) LOCK_AND_NOTE_LOCKED(szone, locked);
ptr = small_malloc_from_free_list(szone, msize);
if (ptr) {
SZONE_UNLOCK(szone);
CHECK(szone, __PRETTY_FUNCTION__);
if (cleared_requested) {
memset(ptr, 0, msize << SHIFT_SMALL_QUANTUM);
}
return ptr;
}
ptr = small_malloc_from_region_no_lock(szone, msize);
// we don't clear because this freshly allocated space is pristine
SZONE_UNLOCK(szone);
CHECK(szone, __PRETTY_FUNCTION__);
return ptr;
}
static INLINE void *
small_malloc_cleared_no_lock(szone_t *szone, msize_t msize) {
// tries to allocate a small, cleared block
// Assumes already locked
CHECK_LOCKED(szone, __PRETTY_FUNCTION__);
void *ptr;
ptr = small_malloc_from_free_list(szone, msize);
if (ptr) {
memset(ptr, 0, msize << SHIFT_SMALL_QUANTUM);
return ptr;
} else {
ptr = small_malloc_from_region_no_lock(szone, msize);
// we don't clear because this freshly allocated space is pristine
}
return ptr;
}
static INLINE void
free_small(szone_t *szone, void *ptr, small_region_t *small_region) {
// ptr is known to be in small_region
msize_t msize_and_free;
msize_and_free = small_meta_header(ptr)[0];
if (msize_and_free & SMALL_IS_FREE) {
szone_error(szone, "Object already freed being freed", ptr);
return;
}
CHECK(szone, __PRETTY_FUNCTION__);
// malloc_printf("%p[%x]\n", ptr, msize_and_free);
SZONE_LOCK(szone);
#if SMALL_CACHE
void *ptr2 = szone->last_small_free;
szone->last_small_free = (void *)(((unsigned)ptr) | msize_and_free);
if (!ptr2) {
// malloc_printf("stuffing last_small_free\n");
SZONE_UNLOCK(szone);
CHECK(szone, __PRETTY_FUNCTION__);
return;
}
// malloc_printf("replacing previous last_small_free %p with %p\n", ptr2, szone->last_small_free);
msize_and_free = (unsigned)ptr2 & (SMALL_QUANTUM - 1);
ptr = (void *)(((unsigned)ptr2) & ~ (SMALL_QUANTUM - 1));
small_region = small_region_for_ptr_no_lock(szone, ptr);
if (!small_region) {
szone_error(szone, "Double free (small cache)", ptr);
}
#endif
small_free_no_lock(szone, small_region, ptr, msize_and_free);
SZONE_UNLOCK(szone);
CHECK(szone, __PRETTY_FUNCTION__);
}
static void
print_small_free_list(szone_t *szone) {
grain_t grain = 0;
malloc_printf("Small free sizes: ");
while (grain < NUM_SMALL_SLOTS) {
free_list_t *ptr = szone->small_free_list[grain];
if (ptr) {
malloc_printf("%s%y[%d]; ", (grain == NUM_SMALL_SLOTS-1) ? ">=" : "", (grain + 1) * SMALL_QUANTUM, free_list_count(ptr));
}
grain++;
}
malloc_printf("\n");
}
static void
print_small_region(szone_t *szone, boolean_t verbose, small_region_t *region, size_t bytes_at_end) {
unsigned counts[1024];
unsigned in_use = 0;
vm_address_t start = SMALL_REGION_ADDRESS(*region);
vm_address_t limit = SMALL_REGION_END(*region) - bytes_at_end;
memset(counts, 0, 1024 * sizeof(unsigned));
while (start < limit) {
msize_t msize_and_free = small_meta_header((void *)start)[0];
msize_t msize = msize_and_free & ~ SMALL_IS_FREE;
if (!(msize_and_free & SMALL_IS_FREE)) {
// block in use
if (msize < 1024) counts[msize]++;
in_use++;
}
start += msize << SHIFT_SMALL_QUANTUM;
}
malloc_printf("Small region [%p-%p, %y]\tIn_use=%d ", SMALL_REGION_ADDRESS(*region), SMALL_REGION_END(*region), (int)SMALL_REGION_SIZE, in_use);
if (bytes_at_end) malloc_printf("Untouched=%y ", bytes_at_end);
if (verbose && in_use) {
unsigned ci = 0;
malloc_printf("\n\tSizes in use: ");
while (ci < 1024) {
if (counts[ci]) {
malloc_printf("%d[%d] ", ci << SHIFT_SMALL_QUANTUM, counts[ci]);
}
ci++;
}
}
malloc_printf("\n");
}
static boolean_t
small_free_list_check(szone_t *szone, grain_t grain) {
CHECK_LOCKED(szone, __PRETTY_FUNCTION__);
unsigned count = 0;
free_list_t *ptr = szone->small_free_list[grain];
free_list_t *previous = NULL;
while (ptr) {
msize_t msize_and_free = small_meta_header(ptr)[0];
count++;
if (!(msize_and_free & SMALL_IS_FREE)) {
malloc_printf("*** malloc[%d]: In-use ptr in free list grain=%d count=%d ptr=%p\n", getpid(), grain, count, ptr);
return 0;
}
if (((unsigned)ptr) & (SMALL_QUANTUM - 1)) {
malloc_printf("*** malloc[%d]: Unaligned ptr in free list grain=%d count=%d ptr=%p\n", getpid(), grain, count, ptr);
return 0;
}
if (!small_region_for_ptr_no_lock(szone, ptr)) {
malloc_printf("*** malloc[%d]: Ptr not in szone grain=%d count=%d ptr=%p\n", getpid(), grain, count, ptr);
return 0;
}
free_list_checksum(szone, ptr, __PRETTY_FUNCTION__);
if (ptr->previous != previous) {
malloc_printf("*** malloc[%d]: Previous incorrectly set grain=%d count=%d ptr=%p\n", getpid(), grain, count, ptr);
return 0;
}
previous = ptr;
ptr = ptr->next;
}
return 1;
}
/********************* LARGE ENTRY UTILITIES ************************/
#if DEBUG_MALLOC
static void
large_debug_print(szone_t *szone) {
unsigned num_large_entries = szone->num_large_entries;
unsigned index = num_large_entries;
while (index--) {
large_entry_t *range = szone->large_entries + index;
large_entry_t entry = *range;
if (!LARGE_ENTRY_IS_EMPTY(entry)) {
malloc_printf("%d: %p(%y); ", index, LARGE_ENTRY_ADDRESS(entry), LARGE_ENTRY_SIZE(entry));
}
}
malloc_printf("\n");
}
#endif
static large_entry_t *
large_entry_for_pointer_no_lock(szone_t *szone,
const void *ptr) {
// result only valid during a lock
unsigned num_large_entries = szone->num_large_entries;
unsigned hash_index;
unsigned index;
if (!num_large_entries) return NULL;
hash_index = ((unsigned)ptr >> vm_page_shift) % num_large_entries;
index = hash_index;
do {
large_entry_t *range = szone->large_entries + index;
large_entry_t entry = *range;
if (LARGE_ENTRY_MATCHES(entry, ptr)) return range;
if (LARGE_ENTRY_IS_EMPTY(entry)) return NULL; // end of chain
index++; if (index == num_large_entries) index = 0;
} while (index != hash_index);
return NULL;
}
static void
large_entry_insert_no_lock(szone_t *szone, large_entry_t range) {
unsigned num_large_entries = szone->num_large_entries;
unsigned hash_index = (range.address_and_num_pages >> vm_page_shift)
% num_large_entries;
unsigned index = hash_index;
// malloc_printf("Before insertion of %p\n", LARGE_ENTRY_ADDRESS(range));
do {
large_entry_t *entry = szone->large_entries + index;
if (LARGE_ENTRY_IS_EMPTY(*entry)) {
*entry = range;
return; // end of chain
}
index++; if (index == num_large_entries) index = 0;
} while (index != hash_index);
}
static INLINE void
large_entries_rehash_after_entry_no_lock(szone_t *szone,
large_entry_t *entry) {
unsigned num_large_entries = szone->num_large_entries;
unsigned hash_index = entry - szone->large_entries;
unsigned index = hash_index;
do {
large_entry_t range;
index++; if (index == num_large_entries) index = 0;
range = szone->large_entries[index];
if (LARGE_ENTRY_IS_EMPTY(range)) return;
szone->large_entries[index].address_and_num_pages = 0;
large_entry_insert_no_lock(szone, range); // this will reinsert in the
// proper place
} while (index != hash_index);
}
static INLINE large_entry_t *
large_entries_alloc_no_lock(szone_t *szone,
unsigned num) {
size_t size = num * sizeof(large_entry_t);
boolean_t is_vm_allocation = size >= LARGE_THRESHOLD;
if (is_vm_allocation) {
// Note that we allocate memory (via a system call) under a spin lock
// That is certainly evil, however it's very rare in the lifetime of a process
// The alternative would slow down the normal case
return (void *)allocate_pages(szone, round_page(size), 0, 0, VM_MAKE_TAG(VM_MEMORY_MALLOC_LARGE));
} else {
return small_malloc_cleared_no_lock(szone, (size + SMALL_QUANTUM - 1) >> SHIFT_SMALL_QUANTUM);
}
}
static void
large_entries_free_no_lock(szone_t *szone, large_entry_t *entries, unsigned num, vm_range_t *range_to_deallocate) {
// returns range to deallocate
size_t size = num * sizeof(large_entry_t);
boolean_t is_vm_allocation = size >= LARGE_THRESHOLD;
// malloc_printf("In large_entries_free_no_lock %d %d\n", num, is_vm_allocation);
if (is_vm_allocation) {
range_to_deallocate->address = (vm_address_t)entries;
range_to_deallocate->size = round_page(size);
} else {
range_to_deallocate->size = 0;
small_region_t *region = small_region_for_ptr_no_lock(szone, entries);
msize_t msize_and_free = small_meta_header(entries)[0];
if (msize_and_free & SMALL_IS_FREE) {
szone_error(szone, "Object already freed being freed", entries);
return;
}
small_free_no_lock(szone, region, entries, msize_and_free);
}
}
static void
large_entries_grow_no_lock(szone_t *szone, vm_range_t *range_to_deallocate) {
// sets range_to_deallocate
unsigned old_num_entries = szone->num_large_entries;
large_entry_t *old_entries = szone->large_entries;
unsigned new_num_entries = (old_num_entries) ? old_num_entries
* 2 + 1 : 63; // always an odd number for good hashing
large_entry_t *new_entries = large_entries_alloc_no_lock(szone, new_num_entries);
unsigned index = old_num_entries;
szone->num_large_entries = new_num_entries;
szone->large_entries = new_entries;
// malloc_printf("_grow_large_entries old_num_entries=%d new_num_entries=%d %p\n", old_num_entries, new_num_entries, old_entries);
while (index--) {
large_entry_t oldRange = old_entries[index];
if (!LARGE_ENTRY_IS_EMPTY(oldRange)) {
large_entry_insert_no_lock(szone, oldRange);
}
}
if (old_entries) {
large_entries_free_no_lock(szone, old_entries, old_num_entries, range_to_deallocate);
} else {
range_to_deallocate->size = 0;
}
}
static vm_range_t
large_free_no_lock(szone_t *szone, large_entry_t *entry) {
// frees the specific entry in the size table
// returns a range to truly deallocate
vm_range_t range;
range.address = LARGE_ENTRY_ADDRESS(*entry);
range.size = LARGE_ENTRY_SIZE(*entry);
szone->num_large_objects_in_use --;
szone->num_bytes_in_large_objects -= range.size;
if (szone->debug_flags & SCALABLE_MALLOC_ADD_GUARD_PAGES) {
protect(szone, range.address, range.size, VM_PROT_READ | VM_PROT_WRITE,
szone->debug_flags);
range.address -= 1 << vm_page_shift;
range.size += 2 * (1 << vm_page_shift);
}
// malloc_printf("Entry is %p=%d; cache is %p ; found=%p\n", entry,
// entry-szone->large_entries, szone->large_entries,
// large_entry_for_pointer_no_lock(szone, (void *)range.address));
entry->address_and_num_pages = 0;
large_entries_rehash_after_entry_no_lock(szone, entry);
#if DEBUG_MALLOC
if (large_entry_for_pointer_no_lock(szone, (void *)range.address)) {
malloc_printf("*** malloc[%d]: Freed entry %p still in use; "
"num_large_entries=%d\n", getpid(), range.address,
szone->num_large_entries);
large_debug_print(szone);
szone_sleep();
}
#endif
return range;
}
static INLINE boolean_t
try_realloc_small_in_place(szone_t *szone, void *ptr, size_t old_size, size_t new_size) {
// returns 1 on success
msize_t *meta_headers = small_meta_headers(ptr);
msize_t index = small_meta_index(ptr);
msize_t old_msize = old_size >> SHIFT_SMALL_QUANTUM;
msize_t new_msize = (new_size + SMALL_QUANTUM - 1) >> SHIFT_SMALL_QUANTUM;
void *next_block = (char *)ptr + old_size;
msize_t next_index = index + old_msize;
if (next_index >= NUM_SMALL_BLOCKS) {
// malloc_printf("try_realloc_small_in_place can't take place at end %p %d %d %d\n", ptr, old_size, new_size, next_index);
return 0;
}
#if DEBUG_MALLOC
if ((vm_address_t)next_block & (SMALL_QUANTUM - 1)) {
szone_error(szone, "Internal invariant broken in realloc(next_block)", next_block);
}
if (meta_headers[index] != old_msize) malloc_printf("*** try_realloc_small_in_place incorrect old %d %d\n", meta_headers[index], old_msize);
#endif
SZONE_LOCK(szone);
// If the next block is free, we coalesce
msize_t next_msize_and_free;
msize_t next_msize;
next_msize_and_free = meta_headers[next_index];
next_msize = next_msize_and_free & ~ SMALL_IS_FREE;
if (!(next_msize_and_free & SMALL_IS_FREE) || (old_msize + next_msize < new_msize)) {
SZONE_UNLOCK(szone);
return 0;
}
// malloc_printf("Small realloc in place for %p; current msize=%db(%d) next=%p next_msize=%d wanted=%db(%d)\n", ptr, old_size, meta_headers[index], next_block, next_msize, new_size, new_msize);
small_free_list_remove_ptr(szone, next_block, next_msize);
small_meta_header_set_middle(meta_headers, next_index);
msize_t leftover_msize = old_msize + next_msize - new_msize;
if (leftover_msize) {
void *leftover = ptr + (new_msize << SHIFT_SMALL_QUANTUM);
// malloc_printf("Leftover in realloc in place %p msize=%d\n", leftover, leftover_msize);
small_free_list_add_ptr(szone, leftover, leftover_msize);
msize_t leftover_index = index + new_msize;
small_meta_header_set_is_free(meta_headers, leftover_index, leftover_msize);
}
#if DEBUG_MALLOC
if ((new_msize << SHIFT_SMALL_QUANTUM) >= LARGE_THRESHOLD) {
malloc_printf("*** Realloc in place for %p exceeded msize=%d\n", new_msize);
}
#endif
small_meta_header_set_in_use(meta_headers, index, new_msize);
#if DEBUG_MALLOC
if (LOG(szone,ptr)) {
malloc_printf("In szone_realloc(), ptr=%p, msize=%d\n", ptr, small_meta_header(ptr)[0]);
}
#endif
szone->num_bytes_in_small_objects += (new_msize - old_msize) << SHIFT_SMALL_QUANTUM;
SZONE_UNLOCK(szone);
CHECK(szone, __PRETTY_FUNCTION__);
// malloc_printf("Extended ptr %p for realloc old=%d desired=%d new=%d "
// "leftover=%d\n", ptr, (unsigned)old_size, (unsigned)new_size,
// (unsigned)szone_size(szone, ptr), leftover_msize << SHIFT_SMALL_QUANTUM);
return 1;
}
static kern_return_t
large_in_use_enumerator(task_t task, void *context,
unsigned type_mask, vm_address_t large_entries_address, unsigned num_entries,
memory_reader_t reader, vm_range_recorder_t recorder) {
unsigned index = 0;
vm_range_t buffer[MAX_RECORDER_BUFFER];
unsigned count = 0;
large_entry_t *entries;
kern_return_t err;
err = reader(task, large_entries_address,
sizeof(large_entry_t) * num_entries, (void **)&entries);
if (err) return err;
index = num_entries;
if ((type_mask & MALLOC_ADMIN_REGION_RANGE_TYPE)
&& (num_entries * sizeof(large_entry_t) >= LARGE_THRESHOLD)) {
vm_range_t range;
range.address = large_entries_address;
range.size = round_page(num_entries * sizeof(large_entry_t));
recorder(task, context, MALLOC_ADMIN_REGION_RANGE_TYPE, &range, 1);
}
if (type_mask & (MALLOC_PTR_IN_USE_RANGE_TYPE
| MALLOC_PTR_REGION_RANGE_TYPE))
while (index--) {
large_entry_t entry = entries[index];
if (!LARGE_ENTRY_IS_EMPTY(entry)) {
vm_range_t range;
range.address = LARGE_ENTRY_ADDRESS(entry);
range.size = LARGE_ENTRY_SIZE(entry);
buffer[count++] = range;
if (count >= MAX_RECORDER_BUFFER) {
recorder(task, context, MALLOC_PTR_IN_USE_RANGE_TYPE
| MALLOC_PTR_REGION_RANGE_TYPE, buffer, count);
count = 0;
}
}
}
if (count) {
recorder(task, context, MALLOC_PTR_IN_USE_RANGE_TYPE
| MALLOC_PTR_REGION_RANGE_TYPE, buffer, count);
}
return 0;
}
/********************* HUGE ENTRY UTILITIES ************************/
static huge_entry_t *
huge_entry_for_pointer_no_lock(szone_t *szone,
const void *ptr) {
unsigned index = szone->num_huge_entries;
while (index--) {
huge_entry_t *huge = szone->huge_entries + index;
if (huge->address == (vm_address_t)ptr) return huge;
}
return NULL;
}
static boolean_t
huge_entry_append(szone_t *szone, huge_entry_t huge) {
// We do a little dance with locking because doing allocation (even in the
// default szone) may cause something to get freed in this szone, with a
// deadlock
// Returns 1 on success
huge_entry_t *new_huge_entries = NULL;
SZONE_LOCK(szone);
while (1) {
unsigned num_huge_entries;
num_huge_entries = szone->num_huge_entries;
SZONE_UNLOCK(szone);
// malloc_printf("In huge_entry_append currentEntries=%d\n", num_huge_entries);
if (new_huge_entries) szone_free(szone, new_huge_entries);
new_huge_entries = szone_malloc(szone, (num_huge_entries + 1) * sizeof(huge_entry_t));
if (new_huge_entries == NULL) return 0;
SZONE_LOCK(szone);
if (num_huge_entries == szone->num_huge_entries) {
// No change - our malloc still applies
huge_entry_t *old_huge_entries = szone->huge_entries;
if (num_huge_entries) {
memcpy(new_huge_entries, old_huge_entries, num_huge_entries * sizeof(huge_entry_t));
}
new_huge_entries[szone->num_huge_entries++] = huge;
szone->huge_entries = new_huge_entries;
SZONE_UNLOCK(szone);
szone_free(szone, old_huge_entries);
// malloc_printf("Done huge_entry_append now=%d\n", szone->num_huge_entries);
return 1;
}
// try again!
}
}
static kern_return_t
huge_in_use_enumerator(task_t task, void *context,
unsigned type_mask, vm_address_t huge_entries_address, unsigned num_entries,
memory_reader_t reader, vm_range_recorder_t recorder) {
huge_entry_t *entries;
kern_return_t err;
err = reader(task, huge_entries_address, sizeof(huge_entry_t) * num_entries,
(void **)&entries);
if (err) return err;
if (num_entries) {
recorder(task, context,
MALLOC_PTR_IN_USE_RANGE_TYPE | MALLOC_PTR_REGION_RANGE_TYPE, entries,
num_entries);
}
return 0;
}
static void *
large_and_huge_malloc(szone_t *szone, unsigned num_pages) {
vm_address_t addr = 0;
vm_range_t range_to_deallocate;
if (!num_pages) num_pages = 1; // minimal allocation size for this szone
// malloc_printf("In large_and_huge_malloc for %y\n", num_pages * (1 << vm_page_shift));
range_to_deallocate.size = 0;
if (num_pages >= (1 << vm_page_shift)) {
huge_entry_t huge;
huge.size = num_pages << vm_page_shift;
addr = allocate_pages(szone, huge.size, 0, szone->debug_flags, VM_MAKE_TAG(VM_MEMORY_MALLOC_HUGE));
if (!addr) return NULL;
huge.address = addr;
if (! huge_entry_append(szone, huge)) return NULL;
SZONE_LOCK(szone);
szone->num_bytes_in_huge_objects += huge.size;
} else {
vm_size_t size = num_pages << vm_page_shift;
large_entry_t entry;
addr = allocate_pages(szone, size, 0, szone->debug_flags, VM_MAKE_TAG(VM_MEMORY_MALLOC_LARGE));
#if DEBUG_MALLOC
if (LOG(szone, addr)) malloc_printf("In szone_malloc true large allocation at %p for %y\n", (void *)addr, size);
#endif
SZONE_LOCK(szone);
if (!addr) {
SZONE_UNLOCK(szone);
return NULL;
}
#if DEBUG_MALLOC
if (large_entry_for_pointer_no_lock(szone, (void *)addr)) {
malloc_printf("Freshly allocated is already in use: %p\n", addr);
large_debug_print(szone);
szone_sleep();
}
#endif
if ((szone->num_large_objects_in_use + 1) * 4 > szone->num_large_entries) {
// density of hash table too high; grow table
// we do that under lock to avoid a race
// malloc_printf("In szone_malloc growing hash table current=%d\n", szone->num_large_entries);
large_entries_grow_no_lock(szone, &range_to_deallocate);
}
// malloc_printf("Inserting large entry (%p, %y)\n", addr, num_pages * (1 << vm_page_shift));
entry.address_and_num_pages = addr | num_pages;
#if DEBUG_MALLOC
if (large_entry_for_pointer_no_lock(szone, (void *)addr)) {
malloc_printf("Entry about to be added already in use: %p\n",
addr);
large_debug_print(szone);
szone_sleep();
}
#endif
large_entry_insert_no_lock(szone, entry);
#if DEBUG_MALLOC
if (!large_entry_for_pointer_no_lock(szone, (void *)addr)) {
malloc_printf("Can't find entry just added\n");
large_debug_print(szone);
szone_sleep();
}
#endif
// malloc_printf("Inserted large entry (%p, %d pages)\n", addr,
// num_pages);
szone->num_large_objects_in_use ++;
szone->num_bytes_in_large_objects += size;
}
SZONE_UNLOCK(szone);
if (range_to_deallocate.size) {
deallocate_pages(szone, range_to_deallocate.address, range_to_deallocate.size, 0); // we deallocate outside the lock
// malloc_printf("Deallocated large entries %d\n", range_to_deallocate.size);
}
return (void *)addr;
}
static INLINE void
free_large_or_huge(szone_t *szone, void *ptr) {
// We have established ptr is page-aligned and not tiny nor small
large_entry_t *entry;
vm_range_t vm_range_to_deallocate;
huge_entry_t *huge;
SZONE_LOCK(szone);
entry = large_entry_for_pointer_no_lock(szone, ptr);
if (entry) {
// malloc_printf("Ready for deallocation [%p-%y]\n", LARGE_ENTRY_ADDRESS(*entry), LARGE_ENTRY_SIZE(*entry));
vm_range_to_deallocate = large_free_no_lock(szone, entry);
#if DEBUG_MALLOC
if (large_entry_for_pointer_no_lock(szone, ptr)) {
malloc_printf("*** malloc[%d]: Just after freeing %p still in use num_large_entries=%d\n", getpid(), ptr, szone->num_large_entries);
large_debug_print(szone);
szone_sleep();
}
#endif
} else if ((huge = huge_entry_for_pointer_no_lock(szone, ptr))) {
vm_range_to_deallocate = *huge;
*huge = szone->huge_entries[--szone->num_huge_entries]; // last entry fills that spot
szone->num_bytes_in_huge_objects -= vm_range_to_deallocate.size;
} else {
#if DEBUG_MALLOC
large_debug_print(szone);
#endif
szone_error(szone, "Pointer being freed was not allocated", ptr);
return;
}
SZONE_UNLOCK(szone); // we release the lock asap
CHECK(szone, __PRETTY_FUNCTION__);
// we deallocate_pages, including guard pages
if (vm_range_to_deallocate.address) {
// malloc_printf("About to deallocate %p size %y\n", vm_range_to_deallocate.address, vm_range_to_deallocate.size);
#if DEBUG_MALLOC
if (large_entry_for_pointer_no_lock(szone,
(void *)vm_range_to_deallocate.address)) {
malloc_printf("*** malloc[%d]: Invariant broken: %p still in use num_large_entries=%d\n", getpid(), vm_range_to_deallocate.address, szone->num_large_entries);
large_debug_print(szone);
szone_sleep();
}
#endif
deallocate_pages(szone, vm_range_to_deallocate.address, vm_range_to_deallocate.size, 0);
}
}
static INLINE int
try_realloc_large_or_huge_in_place(szone_t *szone, void *ptr, size_t old_size, size_t new_size) {
vm_address_t addr = (vm_address_t)ptr + old_size;
large_entry_t *entry;
kern_return_t err;
#if DEBUG_MALLOC
if (old_size != ((old_size >> vm_page_shift) << vm_page_shift)) {
malloc_printf("*** old_size is %d\n", old_size);
}
#endif
// malloc_printf("=== Trying (1) to extend %p from %d to %d\n", ptr, old_size, new_size);
SZONE_LOCK(szone);
entry = large_entry_for_pointer_no_lock(szone, (void *)addr);
SZONE_UNLOCK(szone);
if (entry) {
return 0; // large pointer already exist in table - extension is not going to work
}
new_size = round_page(new_size);
// malloc_printf("=== Trying (2) to extend %p from %d to %d\n", ptr, old_size, new_size);
/*
* Ask for allocation at a specific address, and mark as realloc
* to request coalescing with previous realloc'ed extensions.
*/
err = vm_allocate(mach_task_self(), &addr, new_size - old_size, VM_MAKE_TAG(VM_MEMORY_REALLOC));
if (err != KERN_SUCCESS) {
return 0;
}
SZONE_LOCK(szone);
/*
* If the new size is still under the large/huge threshold, we can just
* extend the existing large block.
*
* Note: this logic is predicated on the understanding that an allocated
* block can never really shrink, so that the new size will always be
* larger than the old size.
*/
if ((new_size >> vm_page_shift) < (1 << vm_page_shift)) {
/* extend existing large entry */
entry = large_entry_for_pointer_no_lock(szone, ptr);
if (!entry) {
szone_error(szone, "large entry reallocated is not properly in table", ptr);
/* XXX will cause fault on next reference to entry */
}
entry->address_and_num_pages = (vm_address_t)ptr | (new_size >> vm_page_shift);
szone->num_bytes_in_large_objects += new_size - old_size;
} else if ((old_size >> vm_page_shift) >= (1 << vm_page_shift)) {
/* extend existing huge entry */
huge_entry_t *huge_entry = huge_entry_for_pointer_no_lock(szone, ptr);
if (!huge_entry) {
szone_error(szone, "huge entry reallocated is not properly in table", ptr);
/* XXX will cause fault on next reference to huge_entry */
}
huge_entry->size = new_size;
szone->num_bytes_in_huge_objects += new_size - old_size;
} else {
/* need to convert large entry to huge entry */
huge_entry_t huge;
/* release large entry, note we still have the VM allocation */
entry = large_entry_for_pointer_no_lock(szone, ptr);
large_entry_t saved_entry = *entry; // in case we need to put it back
large_free_no_lock(szone, entry);
szone->num_bytes_in_large_objects -= old_size;
/* and get a huge entry */
huge.address = (vm_address_t)ptr;
huge.size = new_size; /* fix up size */
SZONE_UNLOCK(szone);
if (huge_entry_append(szone, huge)) {
szone->num_bytes_in_huge_objects += new_size;
return 1; // success!
}
SZONE_LOCK(szone);
// we leak memory (the extra space appended) but data structures are correct
large_entry_insert_no_lock(szone, saved_entry); // this will reinsert the large entry
}
// malloc_printf("=== Successfully reallocated at end of %p from %d to %d\n", ptr, old_size, new_size);
SZONE_UNLOCK(szone); // we release the lock asap
return 1;
}
/********************* Zone call backs ************************/
static void
szone_free(szone_t *szone, void *ptr) {
// malloc_printf("szone_free(%p)\n", ptr);
#if DEBUG_MALLOC
if (LOG(szone, ptr)) malloc_printf("In szone_free with %p\n", ptr);
#endif
if (!ptr) return;
if ((vm_address_t)ptr & (TINY_QUANTUM - 1)) {
szone_error(szone, "Non-aligned pointer being freed", ptr);
return;
}
// try a tiny pointer
tiny_region_t *tiny_region = tiny_region_for_ptr_no_lock(szone, ptr);
if (tiny_region) {
free_tiny(szone, ptr, tiny_region);
return;
}
if ((vm_address_t)ptr & (SMALL_QUANTUM - 1)) {
szone_error(szone, "Non-aligned pointer being freed (2)", ptr);
return;
}
// try a small pointer
small_region_t *small_region = small_region_for_ptr_no_lock(szone, ptr);
if (small_region) {
free_small(szone, ptr, small_region);
return;
}
if (((unsigned)ptr) & ((1 << vm_page_shift) - 1)) {
szone_error(szone, "Non-page-aligned, non-allocated pointer being freed", ptr);
return;
}
free_large_or_huge(szone, ptr);
}
static INLINE void *
szone_malloc_should_clear(szone_t *szone, size_t size, boolean_t cleared_requested) {
void *ptr;
if (size <= 31*TINY_QUANTUM) {
// think tiny
msize_t msize = (size + TINY_QUANTUM - 1) >> SHIFT_TINY_QUANTUM;
if (! msize) msize = 1;
ptr = tiny_malloc_should_clear(szone, msize, cleared_requested);
} else if (!((szone->debug_flags & SCALABLE_MALLOC_ADD_GUARD_PAGES) && PROTECT_SMALL) && (size < LARGE_THRESHOLD)) {
// think small
msize_t msize = (size + SMALL_QUANTUM - 1) >> SHIFT_SMALL_QUANTUM;
if (! msize) msize = 1;
ptr = small_malloc_should_clear(szone, msize, cleared_requested);
} else {
unsigned num_pages;
num_pages = round_page(size) >> vm_page_shift;
ptr = large_and_huge_malloc(szone, num_pages);
}
#if DEBUG_MALLOC
if (LOG(szone, ptr)) malloc_printf("szone_malloc returned %p\n", ptr);
#endif
return ptr;
}
static void *
szone_malloc(szone_t *szone, size_t size) {
// malloc_printf("szone_malloc(%d)\n", size);
void *ptr = szone_malloc_should_clear(szone, size, 0);
// malloc_printf("szone_malloc(%d) -> %p %d\n", size, ptr, malloc_size(ptr));
return ptr;
}
static void *
szone_calloc(szone_t *szone, size_t num_items, size_t size) {
// malloc_printf("szone_calloc(%d,%d)\n", num_items, size);
void *ptr = szone_malloc_should_clear(szone, num_items * size, 1);
// malloc_printf("szone_calloc(%d,%d) -> %p\n", num_items, size, ptr);
return ptr;
}
static void *
szone_valloc(szone_t *szone, size_t size) {
void *ptr;
unsigned num_pages;
num_pages = round_page(size) >> vm_page_shift;
ptr = large_and_huge_malloc(szone, num_pages);
#if DEBUG_MALLOC
if (LOG(szone, ptr)) malloc_printf("szone_valloc returned %p\n", ptr);
#endif
return ptr;
}
static size_t
szone_size(szone_t *szone, const void *ptr) {
size_t size = 0;
large_entry_t *entry;
huge_entry_t *huge;
// malloc_printf("szone_size(%p)\n", ptr);
if (!ptr) return 0;
#if DEBUG_MALLOC
if (LOG(szone, ptr)) {
malloc_printf("In szone_size for %p (szone=%p)\n", ptr, szone);
}
#endif
if ((vm_address_t)ptr & (TINY_QUANTUM - 1)) return 0;
// Try tiny
tiny_region_t *tiny_region = tiny_region_for_ptr_no_lock(szone, ptr);
if (tiny_region) {
// this is indeed a valid pointer
boolean_t is_free;
msize_t msize = get_tiny_meta_header(ptr, &is_free);
return (is_free) ? 0 : msize << SHIFT_TINY_QUANTUM;
}
if ((vm_address_t)ptr & (SMALL_QUANTUM - 1)) return 0;
// Try a small
small_region_t *small_region = small_region_for_ptr_no_lock(szone, ptr);
if (small_region) {
// this is indeed a valid pointer
msize_t msize_and_free = small_meta_header(ptr)[0];
return (msize_and_free & SMALL_IS_FREE) ? 0 : msize_and_free << SHIFT_SMALL_QUANTUM;
}
if (((unsigned)ptr) & ((1 << vm_page_shift) - 1)) {
// malloc_printf("Object %p not found in szone_size\n", ptr);
return 0;
}
SZONE_LOCK(szone);
entry = large_entry_for_pointer_no_lock(szone, ptr);
if (entry) {
size = LARGE_ENTRY_SIZE(*entry);
} else if ((huge = huge_entry_for_pointer_no_lock(szone, ptr))) {
size = huge->size;
}
SZONE_UNLOCK(szone);
// malloc_printf("szone_size for large/huge %p returned %d\n", ptr, (unsigned)size);
#if DEBUG_MALLOC
if (LOG(szone, ptr)) {
malloc_printf("szone_size for %p returned %d\n", ptr, (unsigned)size);
}
#endif
return size;
}
static void *
szone_realloc(szone_t *szone, void *ptr, size_t new_size) {
size_t old_size = 0;
void *new_ptr;
// malloc_printf("szone_realloc(%p,%d)\n", ptr, new_size);
#if DEBUG_MALLOC
if (LOG(szone, ptr)) {
malloc_printf("In szone_realloc for %p, %d\n", ptr, (unsigned)new_size);
}
#endif
if (!ptr) {
ptr = szone_malloc(szone, new_size);
// malloc_printf("szone_realloc(%p,%d) -> %p\n", ptr, new_size, ptr);
return ptr;
}
old_size = szone_size(szone, ptr);
if (!old_size) {
szone_error(szone, "Pointer being reallocated was not allocated", ptr);
return NULL;
}
/* we never shrink an allocation */
if (old_size >= new_size) return ptr;
if ((new_size + TINY_QUANTUM - 1) <= 31 * TINY_QUANTUM) {
// We now try to realloc in place
if (try_realloc_tiny_in_place(szone, ptr, old_size, new_size)) {
// malloc_printf("szone_realloc(%p,%d) -> %p\n", ptr, new_size, ptr);
return ptr;
}
} else if (!((szone->debug_flags & SCALABLE_MALLOC_ADD_GUARD_PAGES) && PROTECT_SMALL) && ((new_size + SMALL_QUANTUM - 1) < LARGE_THRESHOLD) && (old_size > 31 * TINY_QUANTUM)) {
// We now try to realloc in place
if (try_realloc_small_in_place(szone, ptr, old_size, new_size)) {
// malloc_printf("szone_realloc(%p,%d) small in place -> %p\n", ptr, new_size, ptr);
return ptr;
}
} else if (!((szone->debug_flags & SCALABLE_MALLOC_ADD_GUARD_PAGES) && PROTECT_SMALL) && (old_size > LARGE_THRESHOLD)) {
if (try_realloc_large_or_huge_in_place(szone, ptr, old_size, new_size)) {
return ptr;
}
}
new_ptr = szone_malloc(szone, new_size);
if (new_ptr == NULL) return NULL;
if ((old_size > VM_COPY_THRESHOLD) && (new_size > VM_COPY_THRESHOLD)) {
// we know everything is page-aligned try vm_copy
kern_return_t err = 0;
err = vm_copy(mach_task_self(), (vm_address_t)ptr, old_size, (vm_address_t)new_ptr);
if (err) {
szone_error(szone, "Can't vm_copy region", ptr);
}
} else {
memcpy(new_ptr, ptr, old_size);
}
szone_free(szone, ptr);
#if DEBUG_MALLOC
if (LOG(szone, ptr)) {
malloc_printf("szone_realloc returned %p for %d\n", new_ptr, (unsigned)new_size);
}
#endif
// malloc_printf("szone_realloc(%p,%d) -> %p\n", ptr, new_size, new_ptr);
return new_ptr;
}
unsigned
szone_batch_malloc(szone_t *szone, size_t size, void **results, unsigned count) {
// given a size, returns pointers capable of holding that size
// returns the number of pointers allocated
// may return 0 - this function will do best attempts, but just that
// malloc_printf("In szone_batch_malloc(%d, %d)\n", size, count);
if (size > 31*TINY_QUANTUM) return 0; // only bother implementing this for tiny
msize_t msize = (size + TINY_QUANTUM - 1) >> SHIFT_TINY_QUANTUM;
if (! msize) msize = 1;
size_t chunk_size = msize << SHIFT_TINY_QUANTUM;
unsigned found = 0;
CHECK(szone, __PRETTY_FUNCTION__);
SZONE_LOCK(szone); // might as well lock right here to avoid concurrency issues
free_list_t **free_list = szone->tiny_free_list + msize - 1;
free_list_t *ptr = *free_list;
while (found < count) {
if (!ptr) break;
*results++ = ptr; found++;
set_tiny_meta_header_in_use(ptr, msize);
ptr = ((free_list_t *)ptr)->next;
}
if (ptr) {
((free_list_t *)ptr)->previous = NULL;
free_list_set_checksum(szone, (free_list_t *)ptr);
}
*free_list = (void *)ptr;
// Note that we could allocate from the free lists for larger msize
// But that may un-necessarily fragment - so we might as well let the client do that
// We could also allocate from szone->tiny_bytes_free_at_end
// But that means we'll "eat-up" the untouched area faster, increasing the working set
// So we just return what we have and just that
szone->num_tiny_objects += found;
szone->num_bytes_in_tiny_objects += chunk_size * found;
SZONE_UNLOCK(szone);
// malloc_printf("In szone_batch_malloc(%d, %d) -> %d\n", size, count, found);
return found;
}
void
szone_batch_free(szone_t *szone, void **to_be_freed, unsigned count) {
// frees all the pointers in to_be_freed
// note that to_be_freed may be overwritten during the process
if (!count) return;
// malloc_printf("Freeing %d items\n", count);
unsigned cc = 0;
CHECK(szone, __PRETTY_FUNCTION__);
SZONE_LOCK(szone);
while (cc < count) {
void *ptr = to_be_freed[cc];
tiny_region_t *tiny_region = tiny_region_for_ptr_no_lock(szone, ptr);
if (tiny_region) {
// this is a tiny pointer
boolean_t is_free;
msize_t msize = get_tiny_meta_header(ptr, &is_free);
if (is_free) break; // a double free; let the standard free deal with it
tiny_free_no_lock(szone, tiny_region, ptr, msize);
to_be_freed[cc] = NULL;
}
cc++;
}
SZONE_UNLOCK(szone);
CHECK(szone, __PRETTY_FUNCTION__);
while (count--) {
void *ptr = to_be_freed[count];
// malloc_printf("Freeing item at %d: %p\n", count, ptr);
if (ptr) szone_free(szone, ptr);
}
}
static void
szone_destroy(szone_t *szone) {
unsigned index;
small_region_t pended_region = 0;
index = szone->num_large_entries;
while (index--) {
large_entry_t *entry = szone->large_entries + index;
if (!LARGE_ENTRY_IS_EMPTY(*entry)) {
large_entry_t range;
range = *entry;
// we deallocate_pages, including guard pages
deallocate_pages(szone, LARGE_ENTRY_ADDRESS(range), LARGE_ENTRY_SIZE(range), szone->debug_flags);
}
}
if (szone->num_large_entries * sizeof(large_entry_t) >= LARGE_THRESHOLD) {
vm_range_t range_to_deallocate;
large_entries_free_no_lock(szone, szone->large_entries, szone->num_large_entries, &range_to_deallocate); // we do not free in the small chunk case
if (range_to_deallocate.size) deallocate_pages(szone, range_to_deallocate.address, range_to_deallocate.size, 0);
}
index = szone->num_huge_entries;
while (index--) {
huge_entry_t *huge = szone->huge_entries + index;
deallocate_pages(szone, huge->address, huge->size, szone->debug_flags);
}
// the tiny regions
index = szone->num_tiny_regions;
while (index--) {
tiny_region_t tiny_region = szone->tiny_regions[index];
vm_size_t size_allocated = ((TINY_REGION_SIZE + (1 << vm_page_shift) - 1) >> vm_page_shift) << vm_page_shift;
deallocate_pages(szone, TINY_REGION_ADDRESS(tiny_region), size_allocated, 0);
}
// and now we free regions, with regions[0] as the last one (the final harakiri)
index = szone->num_small_regions;
while (index--) {
small_region_t region = szone->small_regions[index];
if (index > 0
&& (void *)szone->small_regions >= (void *)(SMALL_REGION_ADDRESS(region))
&& (void *)szone->small_regions < (void *)(SMALL_REGION_END(region))) {
// Pend deallocation of this region, since the region
// bookkeeping array is in it.
pended_region = region;
} else {
deallocate_pages(szone, SMALL_REGION_ADDRESS(region), SMALL_REGION_SIZE, 0);
}
}
if (pended_region) {
deallocate_pages(szone, SMALL_REGION_ADDRESS(pended_region), SMALL_REGION_SIZE, 0);
}
}
static size_t
szone_good_size(szone_t *szone, size_t size) {
if (size <= 31 * TINY_QUANTUM) {
// think tiny
msize_t msize = (size + TINY_QUANTUM - 1) >> SHIFT_TINY_QUANTUM;
if (! msize) msize = 1;
return msize << SHIFT_TINY_QUANTUM;
}
if (!((szone->debug_flags & SCALABLE_MALLOC_ADD_GUARD_PAGES) && PROTECT_SMALL) && (size < LARGE_THRESHOLD)) {
// think small
msize_t msize = (size + SMALL_QUANTUM - 1) >> SHIFT_SMALL_QUANTUM;
if (! msize) msize = 1;
return msize << SHIFT_SMALL_QUANTUM;
} else {
unsigned num_pages;
num_pages = round_page(size) >> vm_page_shift;
if (!num_pages) num_pages = 1; // minimal allocation size for this
return num_pages << vm_page_shift;
}
}
unsigned szone_check_counter = 0;
unsigned szone_check_start = 0;
unsigned szone_check_modulo = 1;
static boolean_t
szone_check_all(szone_t *szone, const char *function) {
unsigned index = 0;
SZONE_LOCK(szone);
CHECK_LOCKED(szone, __PRETTY_FUNCTION__);
while (index < szone->num_tiny_regions) {
tiny_region_t *region = szone->tiny_regions + index++;
if (! szone_check_tiny_region(szone, region)) {
SZONE_UNLOCK(szone);
szone->debug_flags &= ~ CHECK_REGIONS;
malloc_printf("*** malloc[%d]: Tiny region %d incorrect szone_check_all(%s) counter=%d\n", getpid(), index-1, function, szone_check_counter);
szone_error(szone, "Check: tiny region incorrect", NULL);
return 0;
}
}
index = 0;
while (index < NUM_TINY_SLOTS) {
if (! tiny_free_list_check(szone, index)) {
SZONE_UNLOCK(szone);
szone->debug_flags &= ~ CHECK_REGIONS;
malloc_printf("*** malloc[%d]: Tiny free list incorrect (slot=%d) szone_check_all(%s) counter=%d\n", getpid(), index, function, szone_check_counter);
szone_error(szone, "Check: tiny free list incorrect", NULL);
return 0;
}
index++;
}
index = 0; while (index < szone->num_small_regions) {
small_region_t *region = szone->small_regions + index++;
if (! szone_check_small_region(szone, region)) {
SZONE_UNLOCK(szone);
szone->debug_flags &= ~ CHECK_REGIONS;
malloc_printf("*** malloc[%d]: Small region %d incorrect szone_check_all(%s) counter=%d\n", getpid(), index-1, function, szone_check_counter);
szone_error(szone, "Check: small region incorrect", NULL);
return 0;
}
}
index = 0;
while (index < NUM_SMALL_SLOTS) {
if (! small_free_list_check(szone, index)) {
SZONE_UNLOCK(szone);
szone->debug_flags &= ~ CHECK_REGIONS;
malloc_printf("*** malloc[%d]: Small free list incorrect (grain=%d) szone_check_all(%s) counter=%d\n", getpid(), index, function, szone_check_counter);
szone_error(szone, "Check: small free list incorrect", NULL);
return 0;
}
index++;
}
SZONE_UNLOCK(szone);
// szone_print(szone, 1);
return 1;
}
static boolean_t
szone_check(szone_t *szone) {
if (! (++szone_check_counter % 10000)) {
malloc_printf("At szone_check counter=%d\n", szone_check_counter);
}
if (szone_check_counter < szone_check_start) return 1;
if (szone_check_counter % szone_check_modulo) return 1;
return szone_check_all(szone, "");
}
static kern_return_t
szone_ptr_in_use_enumerator(task_t task, void *context,
unsigned type_mask, vm_address_t zone_address, memory_reader_t reader,
vm_range_recorder_t recorder) {
szone_t *szone;
kern_return_t err;
if (!reader) reader = _szone_default_reader;
// malloc_printf("Enumerator for zone %p\n", zone_address);
err = reader(task, zone_address, sizeof(szone_t), (void **)&szone);
if (err) return err;
// malloc_printf("Tiny ptrs enumeration for zone %p\n", zone_address);
err = tiny_in_use_enumerator(task, context, type_mask,
(vm_address_t)szone->tiny_regions, szone->num_tiny_regions, szone->tiny_bytes_free_at_end , reader, recorder);
if (err) return err;
// malloc_printf("Small ptrs enumeration for zone %p\n", zone_address);
err = small_in_use_enumerator(task, context, type_mask,
(vm_address_t)szone->small_regions, szone->num_small_regions, szone->small_bytes_free_at_end , reader, recorder);
if (err) return err;
// malloc_printf("Large ptrs enumeration for zone %p\n", zone_address);
err = large_in_use_enumerator(task, context, type_mask,
(vm_address_t)szone->large_entries, szone->num_large_entries, reader,
recorder);
if (err) return err;
// malloc_printf("Huge ptrs enumeration for zone %p\n", zone_address);
err = huge_in_use_enumerator(task, context, type_mask,
(vm_address_t)szone->huge_entries, szone->num_huge_entries, reader,
recorder);
return err;
}
// Following method is deprecated: use scalable_zone_statistics instead
void
scalable_zone_info(malloc_zone_t *zone, unsigned *info_to_fill, unsigned count) {
szone_t *szone = (void *)zone;
unsigned info[13];
// We do not lock to facilitate debug
info[4] = szone->num_tiny_objects;
info[5] = szone->num_bytes_in_tiny_objects;
info[6] = szone->num_small_objects;
info[7] = szone->num_bytes_in_small_objects;
info[8] = szone->num_large_objects_in_use;
info[9] = szone->num_bytes_in_large_objects;
info[10] = szone->num_huge_entries;
info[11] = szone->num_bytes_in_huge_objects;
info[12] = szone->debug_flags;
info[0] = info[4] + info[6] + info[8] + info[10];
info[1] = info[5] + info[7] + info[9] + info[11];
info[3] = szone->num_tiny_regions * TINY_REGION_SIZE + szone->num_small_regions * SMALL_REGION_SIZE + info[9] + info[11];
info[2] = info[3] - szone->tiny_bytes_free_at_end - szone->small_bytes_free_at_end;
memcpy(info_to_fill, info, sizeof(unsigned)*count);
}
static void
szone_print(szone_t *szone, boolean_t verbose) {
unsigned info[13];
unsigned index = 0;
SZONE_LOCK(szone);
scalable_zone_info((void *)szone, info, 13);
malloc_printf("Scalable zone %p: inUse=%d(%y) touched=%y allocated=%y flags=%d\n", szone, info[0], info[1], info[2], info[3], info[12]);
malloc_printf("\ttiny=%d(%y) small=%d(%y) large=%d(%y) huge=%d(%y)\n", info[4], info[5], info[6], info[7], info[8], info[9], info[10], info[11]);
// tiny
malloc_printf("%d tiny regions: \n", szone->num_tiny_regions);
while (index < szone->num_tiny_regions) {
tiny_region_t *region = szone->tiny_regions + index;
print_tiny_region(verbose, *region, (index == szone->num_tiny_regions - 1) ? szone->tiny_bytes_free_at_end : 0);
index++;
}
if (verbose) print_tiny_free_list(szone);
// small
malloc_printf("%d small regions: \n", szone->num_small_regions);
index = 0;
while (index < szone->num_small_regions) {
small_region_t *region = szone->small_regions + index;
print_small_region(szone, verbose, region, (index == szone->num_small_regions - 1) ? szone->small_bytes_free_at_end : 0);
index++;
}
if (verbose) print_small_free_list(szone);
SZONE_UNLOCK(szone);
}
static void
szone_log(malloc_zone_t *zone, void *log_address) {
szone_t *szone = (void *)zone;
szone->log_address = log_address;
}
static void
szone_force_lock(szone_t *szone) {
// malloc_printf("szone_force_lock\n");
SZONE_LOCK(szone);
}
static void
szone_force_unlock(szone_t *szone) {
// malloc_printf("szone_force_unlock\n");
SZONE_UNLOCK(szone);
}
boolean_t
scalable_zone_statistics(malloc_zone_t *zone, malloc_statistics_t *stats, unsigned subzone) {
szone_t *szone = (void *)zone;
switch (subzone) {
case 0:
stats->blocks_in_use = szone->num_tiny_objects;
stats->size_in_use = szone->num_bytes_in_tiny_objects;
stats->size_allocated = szone->num_tiny_regions * TINY_REGION_SIZE;
stats->max_size_in_use = stats->size_allocated - szone->tiny_bytes_free_at_end;
return 1;
case 1:
stats->blocks_in_use = szone->num_small_objects;
stats->size_in_use = szone->num_bytes_in_small_objects;
stats->size_allocated = szone->num_small_regions * SMALL_REGION_SIZE;
stats->max_size_in_use = stats->size_allocated - szone->small_bytes_free_at_end;
return 1;
case 2:
stats->blocks_in_use = szone->num_large_objects_in_use;
stats->size_in_use = szone->num_bytes_in_large_objects;
stats->max_size_in_use = stats->size_allocated = stats->size_in_use;
return 1;
case 3:
stats->blocks_in_use = szone->num_huge_entries;
stats->size_in_use = szone->num_bytes_in_huge_objects;
stats->max_size_in_use = stats->size_allocated = stats->size_in_use;
return 1;
}
return 0;
}
static void
szone_statistics(szone_t *szone, malloc_statistics_t *stats) {
stats->blocks_in_use = szone->num_tiny_objects + szone->num_small_objects + szone->num_large_objects_in_use + szone->num_huge_entries;
size_t big_and_huge = szone->num_bytes_in_large_objects + szone->num_bytes_in_huge_objects;
stats->size_in_use = szone->num_bytes_in_tiny_objects + szone->num_bytes_in_small_objects + big_and_huge;
stats->max_size_in_use = stats->size_allocated = szone->num_tiny_regions * TINY_REGION_SIZE + szone->num_small_regions * SMALL_REGION_SIZE + big_and_huge ;
// Now we account for the untouched areas
stats->max_size_in_use -= szone->tiny_bytes_free_at_end;
stats->max_size_in_use -= szone->small_bytes_free_at_end;
}
static const struct malloc_introspection_t szone_introspect = {
(void *)szone_ptr_in_use_enumerator,
(void *)szone_good_size,
(void *)szone_check,
(void *)szone_print,
szone_log,
(void *)szone_force_lock,
(void *)szone_force_unlock,
(void *)szone_statistics
}; // marked as const to spare the DATA section
malloc_zone_t *
create_scalable_zone(size_t initial_size, unsigned debug_flags) {
szone_t *szone;
vm_address_t addr;
size_t msize;
size_t msize_used = 0;
// malloc_printf("=== create_scalable_zone(%d,%d) - %s\n", initial_size, debug_flags, (DEBUG_MALLOC) ? "**** DEBUG" : "");
#if PAGE_SIZE_FIXED
if ((1 << vm_page_shift) == vm_page_size) {
// malloc_printf("vm_page_shift validated to be %d\n", vm_page_shift);
} else {
malloc_printf("*** vm_page_shift incorrectly set to %d\n", vm_page_shift);
exit(-1);
}
#else
if (!vm_page_shift) {
unsigned page;
vm_page_shift = 12; // the minimal for page sizes
page = 1 << vm_page_shift;
while (page != vm_page_size) { page += page; vm_page_shift++;};
}
#endif
addr = allocate_pages(NULL, SMALL_REGION_SIZE, SMALL_BLOCKS_ALIGN, 0, VM_MAKE_TAG(VM_MEMORY_MALLOC));
if (!addr) return NULL;
szone = (void *)addr;
msize = (sizeof(szone_t) + SMALL_QUANTUM - 1) >> SHIFT_SMALL_QUANTUM;
// malloc_printf("sizeof(szone_t)=%d msize for 1st block=%d; wasted %d bytes\n", sizeof(szone_t), msize, (msize << SHIFT_SMALL_QUANTUM) - sizeof(szone_t));
small_meta_header(szone)[0] = msize;
szone->tiny_regions = szone->initial_tiny_regions;
szone->small_regions = szone->initial_small_regions;
msize_used += msize; szone->num_small_objects++;
szone->basic_zone.version = 3;
szone->basic_zone.size = (void *)szone_size;
szone->basic_zone.malloc = (void *)szone_malloc;
szone->basic_zone.calloc = (void *)szone_calloc;
szone->basic_zone.valloc = (void *)szone_valloc;
szone->basic_zone.free = (void *)szone_free;
szone->basic_zone.realloc = (void *)szone_realloc;
szone->basic_zone.destroy = (void *)szone_destroy;
szone->basic_zone.batch_malloc = (void *)szone_batch_malloc;
szone->basic_zone.batch_free = (void *)szone_batch_free;
szone->basic_zone.introspect = (struct malloc_introspection_t *)&szone_introspect;
LOCK_INIT(szone->lock);
#if 0
#warning CHECK_REGIONS enabled
debug_flags |= CHECK_REGIONS;
#endif
#if 0
#warning LOG enabled
szone->log_address = ~0;
#endif
szone->debug_flags = debug_flags;
szone->small_regions[0] = addr >> SMALL_BLOCKS_ALIGN;
szone->num_small_regions = 1;
msize_t free_msize = NUM_SMALL_BLOCKS - msize;
small_meta_header(szone)[msize] = free_msize;
szone->small_bytes_free_at_end = free_msize << SHIFT_SMALL_QUANTUM;
CHECK(szone, __PRETTY_FUNCTION__);
#if 0
write(1, "Malloc szone created\n", 23);
#endif
return (malloc_zone_t *)szone;
}
/********* Support code for emacs unexec ************/
/* History of freezedry version numbers:
*
* 1) Old malloc (before the scalable malloc implementation in this file
* existed).
* 2) Original freezedrying code for scalable malloc. This code was apparently
* based on the old freezedrying code and was fundamentally flawed in its
* assumption that tracking allocated memory regions was adequate to fake
* operations on freezedried memory. This doesn't work, since scalable
* malloc does not store flags in front of large page-aligned allocations.
* 3) Original szone-based freezedrying code.
* 4) Fresher malloc with tiny zone
*
* No version backward compatibility is provided, but the version number does
* make it possible for malloc_jumpstart() to return an error if the application
* was freezedried with an older version of malloc.
*/
#define MALLOC_FREEZEDRY_VERSION 4
typedef struct {
unsigned version;
unsigned nszones;
szone_t *szones;
} malloc_frozen;
static void *
frozen_malloc(szone_t *zone, size_t new_size) {
return malloc(new_size);
}
static void *
frozen_calloc(szone_t *zone, size_t num_items, size_t size) {
return calloc(num_items, size);
}
static void *
frozen_valloc(szone_t *zone, size_t new_size) {
return valloc(new_size);
}
static void *
frozen_realloc(szone_t *zone, void *ptr, size_t new_size) {
size_t old_size = szone_size(zone, ptr);
void *new_ptr;
if (new_size <= old_size) {
return ptr;
}
new_ptr = malloc(new_size);
if (old_size > 0) {
memcpy(new_ptr, ptr, old_size);
}
return new_ptr;
}
static void
frozen_free(szone_t *zone, void *ptr) {
}
static void
frozen_destroy(szone_t *zone) {
}
/********* Pseudo-private API for emacs unexec ************/
/*
* malloc_freezedry() records all of the szones in use, so that they can be
* partially reconstituted by malloc_jumpstart(). Due to the differences
* between reconstituted memory regions and those created by the szone code,
* care is taken not to reallocate from the freezedried memory, except in the
* case of a non-growing realloc().
*
* Due to the flexibility provided by the zone registration mechanism, it is
* impossible to implement generic freezedrying for any zone type. This code
* only handles applications that use the szone allocator, so malloc_freezedry()
* returns 0 (error) if any non-szone zones are encountered.
*/
int
malloc_freezedry(void) {
extern unsigned malloc_num_zones;
extern malloc_zone_t **malloc_zones;
malloc_frozen *data;
unsigned i;
/* Allocate space in which to store the freezedry state. */
data = (malloc_frozen *) malloc(sizeof(malloc_frozen));
/* Set freezedry version number so that malloc_jumpstart() can check for compatibility. */
data->version = MALLOC_FREEZEDRY_VERSION;
/* Allocate the array of szone pointers. */
data->nszones = malloc_num_zones;
data->szones = (szone_t *) calloc(malloc_num_zones, sizeof(szone_t));
/* Fill in the array of szone structures. They are copied rather than
* referenced, since the originals are likely to be clobbered during malloc
* initialization. */
for (i = 0; i < malloc_num_zones; i++) {
if (strcmp(malloc_zones[i]->zone_name, "DefaultMallocZone")) {
/* Unknown zone type. */
free(data->szones);
free(data);
return 0;
}
memcpy(&data->szones[i], malloc_zones[i], sizeof(szone_t));
}
return (int) data;
}
int
malloc_jumpstart(int cookie) {
malloc_frozen *data = (malloc_frozen *) cookie;
unsigned i;
if (data->version != MALLOC_FREEZEDRY_VERSION) {
/* Unsupported freezedry version. */
return 1;
}
for (i = 0; i < data->nszones; i++) {
/* Set function pointers. Even the functions that stay the same must be
* set, since there are no guarantees that they will be mapped to the
* same addresses. */
data->szones[i].basic_zone.size = (void *) szone_size;
data->szones[i].basic_zone.malloc = (void *) frozen_malloc;
data->szones[i].basic_zone.calloc = (void *) frozen_calloc;
data->szones[i].basic_zone.valloc = (void *) frozen_valloc;
data->szones[i].basic_zone.free = (void *) frozen_free;
data->szones[i].basic_zone.realloc = (void *) frozen_realloc;
data->szones[i].basic_zone.destroy = (void *) frozen_destroy;
data->szones[i].basic_zone.introspect = (struct malloc_introspection_t *)&szone_introspect;
/* Register the freezedried zone. */
malloc_zone_register(&data->szones[i].basic_zone);
}
return 0;
}