1
1
openmpi/opal/class/opal_pointer_array.c
George Bosilca ba46b35515
Dont assume a size for constants with UL and ULL.
According to Section 6.4.4.1 of the C, we do not need to prepend a type
to a constant to get the right size. The compiler will infer the type
according to the number of bits in the constant.

Signed-off-by: George Bosilca <bosilca@icl.utk.edu>
2017-06-05 22:07:53 -04:00

455 строки
15 KiB
C

/* -*- Mode: C; c-basic-offset:4 ; -*- */
/*
* Copyright (c) 2004-2005 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2017 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "opal_config.h"
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include "opal/constants.h"
#include "opal/class/opal_pointer_array.h"
#include "opal/util/output.h"
static void opal_pointer_array_construct(opal_pointer_array_t *);
static void opal_pointer_array_destruct(opal_pointer_array_t *);
static bool grow_table(opal_pointer_array_t *table, int at_least);
OBJ_CLASS_INSTANCE(opal_pointer_array_t, opal_object_t,
opal_pointer_array_construct,
opal_pointer_array_destruct);
/*
* opal_pointer_array constructor
*/
static void opal_pointer_array_construct(opal_pointer_array_t *array)
{
OBJ_CONSTRUCT(&array->lock, opal_mutex_t);
array->lowest_free = 0;
array->number_free = 0;
array->size = 0;
array->max_size = INT_MAX;
array->block_size = 8;
array->free_bits = NULL;
array->addr = NULL;
}
/*
* opal_pointer_array destructor
*/
static void opal_pointer_array_destruct(opal_pointer_array_t *array)
{
/* free table */
if( NULL != array->free_bits) {
free(array->free_bits);
array->free_bits = NULL;
}
if( NULL != array->addr ) {
free(array->addr);
array->addr = NULL;
}
array->size = 0;
OBJ_DESTRUCT(&array->lock);
}
#define TYPE_ELEM_COUNT(TYPE, CAP) (((CAP) + 8 * sizeof(TYPE) - 1) / (8 * sizeof(TYPE)))
/**
* Translate an index position into the free bits array into 2 values, the
* index of the element and the index of the bit position.
*/
#define GET_BIT_POS(IDX, BIDX, PIDX) \
do { \
uint32_t __idx = (uint32_t)(IDX); \
(BIDX) = (__idx / (8 * sizeof(uint64_t))); \
(PIDX) = (__idx % (8 * sizeof(uint64_t))); \
} while(0)
/**
* A classical find first zero bit (ffs) on a large array. It checks starting
* from the indicated position until it finds a zero bit. If SET is true,
* the bit is set. The position of the bit is returned in store.
*
* According to Section 6.4.4.1 of the C standard we don't need to prepend a type
* indicator to constants (the type is inferred by the compiler according to
* the number of bits necessary to represent it).
*/
#define FIND_FIRST_ZERO(START_IDX, STORE) \
do { \
uint32_t __b_idx, __b_pos; \
if( 0 == table->number_free ) { \
(STORE) = table->size; \
break; \
} \
GET_BIT_POS((START_IDX), __b_idx, __b_pos); \
for (; table->free_bits[__b_idx] == 0xFFFFFFFFFFFFFFFFu; __b_idx++); \
assert(__b_idx < (uint32_t)table->size); \
uint64_t __check_value = table->free_bits[__b_idx]; \
__b_pos = 0; \
\
if( 0x00000000FFFFFFFFu == (__check_value & 0x00000000FFFFFFFFu) ) { \
__check_value >>= 32; __b_pos += 32; \
} \
if( 0x000000000000FFFFu == (__check_value & 0x000000000000FFFFu) ) { \
__check_value >>= 16; __b_pos += 16; \
} \
if( 0x00000000000000FFu == (__check_value & 0x00000000000000FFu) ) { \
__check_value >>= 8; __b_pos += 8; \
} \
if( 0x000000000000000Fu == (__check_value & 0x000000000000000Fu) ) { \
__check_value >>= 4; __b_pos += 4; \
} \
if( 0x0000000000000003u == (__check_value & 0x0000000000000003u) ) { \
__check_value >>= 2; __b_pos += 2; \
} \
if( 0x0000000000000001u == (__check_value & 0x0000000000000001u) ) { \
__b_pos += 1; \
} \
(STORE) = (__b_idx * 8 * sizeof(uint64_t)) + __b_pos; \
} while(0)
/**
* Set the IDX bit in the free_bits array. The bit should be previously unset.
*/
#define SET_BIT(IDX) \
do { \
uint32_t __b_idx, __b_pos; \
GET_BIT_POS((IDX), __b_idx, __b_pos); \
assert( 0 == (table->free_bits[__b_idx] & (((uint64_t)1) << __b_pos))); \
table->free_bits[__b_idx] |= (((uint64_t)1) << __b_pos); \
} while(0)
/**
* Unset the IDX bit in the free_bits array. The bit should be previously set.
*/
#define UNSET_BIT(IDX) \
do { \
uint32_t __b_idx, __b_pos; \
GET_BIT_POS((IDX), __b_idx, __b_pos); \
assert( (table->free_bits[__b_idx] & (((uint64_t)1) << __b_pos))); \
table->free_bits[__b_idx] ^= (((uint64_t)1) << __b_pos); \
} while(0)
#if 0
/**
* Validate the pointer array by making sure that the elements and
* the free bits array are in sync. It also check that the number
* of remaining free element is consistent.
*/
static void opal_pointer_array_validate(opal_pointer_array_t *array)
{
int i, cnt = 0;
uint32_t b_idx, p_idx;
for( i = 0; i < array->size; i++ ) {
GET_BIT_POS(i, b_idx, p_idx);
if( NULL == array->addr[i] ) {
cnt++;
assert( 0 == (array->free_bits[b_idx] & (((uint64_t)1) << p_idx)) );
} else {
assert( 0 != (array->free_bits[b_idx] & (((uint64_t)1) << p_idx)) );
}
}
assert(cnt == array->number_free);
}
#endif
/**
* initialize an array object
*/
int opal_pointer_array_init(opal_pointer_array_t* array,
int initial_allocation,
int max_size, int block_size)
{
size_t num_bytes;
/* check for errors */
if (NULL == array || max_size < block_size) {
return OPAL_ERR_BAD_PARAM;
}
array->max_size = max_size;
array->block_size = (0 == block_size ? 8 : block_size);
array->lowest_free = 0;
num_bytes = (0 < initial_allocation ? initial_allocation : block_size);
/* Allocate and set the array to NULL */
array->addr = (void **)calloc(num_bytes, sizeof(void*));
if (NULL == array->addr) { /* out of memory */
return OPAL_ERR_OUT_OF_RESOURCE;
}
array->free_bits = (uint64_t*)calloc(TYPE_ELEM_COUNT(uint64_t, num_bytes), sizeof(uint64_t));
if (NULL == array->free_bits) { /* out of memory */
free(array->addr);
array->addr = NULL;
return OPAL_ERR_OUT_OF_RESOURCE;
}
array->number_free = num_bytes;
array->size = num_bytes;
return OPAL_SUCCESS;
}
/**
* add a pointer to dynamic pointer table
*
* @param table Pointer to opal_pointer_array_t object (IN)
* @param ptr Pointer to be added to table (IN)
*
* @return Array index where ptr is inserted or OPAL_ERROR if it fails
*/
int opal_pointer_array_add(opal_pointer_array_t *table, void *ptr)
{
int index = table->size + 1;
OPAL_THREAD_LOCK(&(table->lock));
if (table->number_free == 0) {
/* need to grow table */
if (!grow_table(table, index) ) {
OPAL_THREAD_UNLOCK(&(table->lock));
return OPAL_ERR_OUT_OF_RESOURCE;
}
}
assert( (table->addr != NULL) && (table->size > 0) );
assert( (table->lowest_free >= 0) && (table->lowest_free < table->size) );
assert( (table->number_free > 0) && (table->number_free <= table->size) );
/*
* add pointer to table, and return the index
*/
index = table->lowest_free;
assert(NULL == table->addr[index]);
table->addr[index] = ptr;
table->number_free--;
SET_BIT(index);
if (table->number_free > 0) {
FIND_FIRST_ZERO(index, table->lowest_free);
} else {
table->lowest_free = table->size;
}
#if 0
opal_pointer_array_validate(table);
#endif
OPAL_THREAD_UNLOCK(&(table->lock));
return index;
}
/**
* Set the value of the dynamic array at a specified location.
*
*
* @param table Pointer to opal_pointer_array_t object (IN)
* @param ptr Pointer to be added to table (IN)
*
* @return Error code
*
* Assumption: NULL element is free element.
*/
int opal_pointer_array_set_item(opal_pointer_array_t *table, int index,
void * value)
{
assert(table != NULL);
if (OPAL_UNLIKELY(0 > index)) {
return OPAL_ERROR;
}
/* expand table if required to set a specific index */
OPAL_THREAD_LOCK(&(table->lock));
if (table->size <= index) {
if (!grow_table(table, index)) {
OPAL_THREAD_UNLOCK(&(table->lock));
return OPAL_ERROR;
}
}
assert(table->size > index);
/* mark element as free, if NULL element */
if( NULL == value ) {
if( NULL != table->addr[index] ) {
if (index < table->lowest_free) {
table->lowest_free = index;
}
table->number_free++;
UNSET_BIT(index);
}
} else {
if (NULL == table->addr[index]) {
table->number_free--;
SET_BIT(index);
/* Reset lowest_free if required */
if ( index == table->lowest_free ) {
FIND_FIRST_ZERO(index, table->lowest_free);
}
} else {
assert( index != table->lowest_free );
}
}
table->addr[index] = value;
#if 0
opal_pointer_array_validate(table);
opal_output(0,"opal_pointer_array_set_item: OUT: "
" table %p (size %ld, lowest free %ld, number free %ld)"
" addr[%d] = %p\n",
table, table->size, table->lowest_free, table->number_free,
index, table->addr[index]);
#endif
OPAL_THREAD_UNLOCK(&(table->lock));
return OPAL_SUCCESS;
}
/**
* Test whether a certain element is already in use. If not yet
* in use, reserve it.
*
* @param array Pointer to array (IN)
* @param index Index of element to be tested (IN)
* @param value New value to be set at element index (IN)
*
* @return true/false True if element could be reserved
* False if element could not be reserved (e.g.in use).
*
* In contrary to array_set, this function does not allow to overwrite
* a value, unless the previous value is NULL ( equiv. to free ).
*/
bool opal_pointer_array_test_and_set_item (opal_pointer_array_t *table,
int index, void *value)
{
assert(table != NULL);
assert(index >= 0);
#if 0
opal_output(0,"opal_pointer_array_test_and_set_item: IN: "
" table %p (size %ld, lowest free %ld, number free %ld)"
" addr[%d] = %p\n",
table, table->size, table->lowest_free, table->number_free,
index, table->addr[index]);
#endif
/* expand table if required to set a specific index */
OPAL_THREAD_LOCK(&(table->lock));
if ( index < table->size && table->addr[index] != NULL ) {
/* This element is already in use */
OPAL_THREAD_UNLOCK(&(table->lock));
return false;
}
/* Do we need to grow the table? */
if (table->size <= index) {
if (!grow_table(table, index)) {
OPAL_THREAD_UNLOCK(&(table->lock));
return false;
}
}
/*
* allow a specific index to be changed.
*/
assert(NULL == table->addr[index]);
table->addr[index] = value;
table->number_free--;
SET_BIT(index);
/* Reset lowest_free if required */
if( table->number_free > 0 ) {
if ( index == table->lowest_free ) {
FIND_FIRST_ZERO(index, table->lowest_free);
}
} else {
table->lowest_free = table->size;
}
#if 0
opal_pointer_array_validate(table);
opal_output(0,"opal_pointer_array_test_and_set_item: OUT: "
" table %p (size %ld, lowest free %ld, number free %ld)"
" addr[%d] = %p\n",
table, table->size, table->lowest_free, table->number_free,
index, table->addr[index]);
#endif
OPAL_THREAD_UNLOCK(&(table->lock));
return true;
}
int opal_pointer_array_set_size(opal_pointer_array_t *array, int new_size)
{
OPAL_THREAD_LOCK(&(array->lock));
if(new_size > array->size) {
if (!grow_table(array, new_size)) {
OPAL_THREAD_UNLOCK(&(array->lock));
return OPAL_ERROR;
}
}
OPAL_THREAD_UNLOCK(&(array->lock));
return OPAL_SUCCESS;
}
static bool grow_table(opal_pointer_array_t *table, int at_least)
{
int i, new_size, new_size_int;
void *p;
new_size = table->block_size * ((at_least + 1 + table->block_size - 1) / table->block_size);
if( new_size >= table->max_size ) {
new_size = table->max_size;
if( at_least >= table->max_size ) {
return false;
}
}
p = (void **) realloc(table->addr, new_size * sizeof(void *));
if (NULL == p) {
return false;
}
table->number_free += (new_size - table->size);
table->addr = (void**)p;
for (i = table->size; i < new_size; ++i) {
table->addr[i] = NULL;
}
new_size_int = TYPE_ELEM_COUNT(uint64_t, new_size);
if( (int)(TYPE_ELEM_COUNT(uint64_t, table->size)) != new_size_int ) {
p = (uint64_t*)realloc(table->free_bits, new_size_int * sizeof(uint64_t));
if (NULL == p) {
return false;
}
table->free_bits = (uint64_t*)p;
for (i = TYPE_ELEM_COUNT(uint64_t, table->size);
i < new_size_int; i++ ) {
table->free_bits[i] = 0;
}
}
table->size = new_size;
#if 0
opal_output(0, "grow_table %p to %d (max_size %d, block %d, number_free %d)\n",
(void*)table, table->size, table->max_size, table->block_size, table->number_free);
#endif
return true;
}