1
1
openmpi/ompi/mca/op/op.h
KAWASHIMA Takahiro 4375c11a58 ompi/datatype: Add ompi_mpi_short_float
... and `ompi_mpi_c_short_float_complex` and `ompi_mpi_cxx_sfltcplex`.

These are Open MPI internal variables intended to be defined as
`MPI_SHORT_FLOAT`, `MPI_C_SHORT_FLOAT_COMPLEX`, and
`MPI_CXX_SHORT_FLOAT_COMPLEX` in the future.

`OMPI_DATATYPE_MPI_C_SHORT_FLOAT_COMPLEX` is also required to
support `MPI_COMPLEX4` in the next commit.

Signed-off-by: KAWASHIMA Takahiro <t-kawashima@jp.fujitsu.com>
2019-02-01 12:43:13 +09:00

423 строки
15 KiB
C

/* -*- Mode: C; c-basic-offset:4 ; indent-tabs-mode:nil -*- */
/*
* Copyright (c) 2004-2007 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2010 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2006-2007 Los Alamos National Security, LLC. All rights
* reserved.
* Copyright (c) 2007-2008 UT-Battelle, LLC
* Copyright (c) 2007-2009 Cisco Systems, Inc. All rights reserved.
* Copyright (c) 2013-2015 Los Alamos National Security, LLC. All rights
* reserved.
* Copyright (c) 2018 FUJITSU LIMITED. All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
/**
* @file
*
* MPI_Op back-end operation framework. This framework allows
* component-izing the back-end operations of MPI_Op in order to use
* specialized hardware (e.g., mathematical accelerators). In short:
* each MPI_Op contains a table of function pointers; one for
* implementing the operation on each predefined datatype.
*
* The MPI interface provides error checking and error handler
* invocation, but the op components provide all other functionality.
*
* Component selection is done on a per-MPI_Op basis when each MPI_Op
* is created. All MPI_Ops go through the selection process, even
* user-defined MPI_Ops -- although it is expected that most (all?)
* op components will only be able to handle the predefined MPI_Ops.
*
* The general sequence of usage for the op framework is:
*
* 1. ompi_op_base_open() is invoked during MPI_INIT to find/open all
* op components.
*
* 2. ompi_op_base_find_available() is invoked during MPI_INIT to call
* each successfully opened op component's opc_init_query() function.
* All op components that return OMPI_SUCCESS are kept; all others are
* closed and removed from the process.
*
* 3. ompi_op_base_op_select() is invoked during MPI_INIT for each
* predefined MPI_Op (e.g., MPI_SUM). This function will call each
* available op component's opc_op_query() function to see if this
* component wants to provide a module for one or more of the function
* pointers on this MPI_Op. Priorities are used to rank returned
* modules; the module with the highest priority has its function
* pointers set in the MPI_Op function table.
*
* Note that a module may only have *some* non-NULL function pointers
* (i.e., for the functions that it can support). For example, some
* modules may only support operations on single-precision floating
* point datatypes. These modules would provide function pointers for
* these datatypes and NULL for all the rest. The op framework will
* mix-n-match function pointers between modules to obtain a full set
* of non-NULL function pointers for a given MPI_Op (note that the op
* base provides a complete set of functions for the MPI_Op, usually a
* simple C loop around the operation, such as "+=" -- so even if
* there is no specialized op component available, there will *always*
* be a full set of MPI_Op function pointers). The op framework will
* OBJ_RETAIN an op module once for each function pointer where it is
* used on a given MPI_Op.
*
* Note that this scheme can result in up to N different modules being
* used for a single MPI_Op, one per needed datatype function.
*
* 5. Finally, during MPI_FINALIZE, ompi_op_base_close() is invoked to
* close all available op components.
*/
#ifndef MCA_OP_H
#define MCA_OP_H
#include "ompi_config.h"
#include "opal/class/opal_object.h"
#include "ompi/mca/mca.h"
/*
* This file includes some basic struct declarations (but not
* definitions) just so that we can avoid including files like op/op.h
* and datatype/datatype.h, which would create #include file loops.
*/
#include "ompi/types.h"
BEGIN_C_DECLS
/**
* Corresponding to the types that we can reduce over. See
* MPI-1:4.9.2, p114-115 and
* MPI-2:4.15, p76-77
*/
enum {
/** C integer: int8_t */
OMPI_OP_BASE_TYPE_INT8_T,
/** C integer: uint8_t */
OMPI_OP_BASE_TYPE_UINT8_T,
/** C integer: int16_t */
OMPI_OP_BASE_TYPE_INT16_T,
/** C integer: uint16_t */
OMPI_OP_BASE_TYPE_UINT16_T,
/** C integer: int32_t */
OMPI_OP_BASE_TYPE_INT32_T,
/** C integer: uint32_t */
OMPI_OP_BASE_TYPE_UINT32_T,
/** C integer: int64_t */
OMPI_OP_BASE_TYPE_INT64_T,
/** C integer: uint64_t */
OMPI_OP_BASE_TYPE_UINT64_T,
/** Fortran integer */
OMPI_OP_BASE_TYPE_INTEGER,
/** Fortran integer*1 */
OMPI_OP_BASE_TYPE_INTEGER1,
/** Fortran integer*2 */
OMPI_OP_BASE_TYPE_INTEGER2,
/** Fortran integer*4 */
OMPI_OP_BASE_TYPE_INTEGER4,
/** Fortran integer*8 */
OMPI_OP_BASE_TYPE_INTEGER8,
/** Fortran integer*16 */
OMPI_OP_BASE_TYPE_INTEGER16,
/** Floating point: short float */
OMPI_OP_BASE_TYPE_SHORT_FLOAT,
/** Floating point: float */
OMPI_OP_BASE_TYPE_FLOAT,
/** Floating point: double */
OMPI_OP_BASE_TYPE_DOUBLE,
/** Floating point: real */
OMPI_OP_BASE_TYPE_REAL,
/** Floating point: real*2 */
OMPI_OP_BASE_TYPE_REAL2,
/** Floating point: real*4 */
OMPI_OP_BASE_TYPE_REAL4,
/** Floating point: real*8 */
OMPI_OP_BASE_TYPE_REAL8,
/** Floating point: real*16 */
OMPI_OP_BASE_TYPE_REAL16,
/** Floating point: double precision */
OMPI_OP_BASE_TYPE_DOUBLE_PRECISION,
/** Floating point: long double */
OMPI_OP_BASE_TYPE_LONG_DOUBLE,
/** Logical */
OMPI_OP_BASE_TYPE_LOGICAL,
/** Bool */
OMPI_OP_BASE_TYPE_BOOL,
/** Complex */
/* short float complex */
OMPI_OP_BASE_TYPE_C_SHORT_FLOAT_COMPLEX,
/* float complex */
OMPI_OP_BASE_TYPE_C_FLOAT_COMPLEX,
/* double complex */
OMPI_OP_BASE_TYPE_C_DOUBLE_COMPLEX,
/* long double complex */
OMPI_OP_BASE_TYPE_C_LONG_DOUBLE_COMPLEX,
/** Byte */
OMPI_OP_BASE_TYPE_BYTE,
/** 2 location Fortran: 2 real */
OMPI_OP_BASE_TYPE_2REAL,
/** 2 location Fortran: 2 double precision */
OMPI_OP_BASE_TYPE_2DOUBLE_PRECISION,
/** 2 location Fortran: 2 integer */
OMPI_OP_BASE_TYPE_2INTEGER,
/** 2 location C: float int */
OMPI_OP_BASE_TYPE_FLOAT_INT,
/** 2 location C: double int */
OMPI_OP_BASE_TYPE_DOUBLE_INT,
/** 2 location C: long int */
OMPI_OP_BASE_TYPE_LONG_INT,
/** 2 location C: int int */
OMPI_OP_BASE_TYPE_2INT,
/** 2 location C: short int */
OMPI_OP_BASE_TYPE_SHORT_INT,
/** 2 location C: long double int */
OMPI_OP_BASE_TYPE_LONG_DOUBLE_INT,
/** 2 location C: wchar_t */
OMPI_OP_BASE_TYPE_WCHAR,
/** Maximum type */
OMPI_OP_BASE_TYPE_MAX
};
/**
* Fortran handles; must be [manually set to be] equivalent to the
* values in mpif.h.
*/
enum {
/** Corresponds to Fortran MPI_OP_NULL */
OMPI_OP_BASE_FORTRAN_NULL = 0,
/** Corresponds to Fortran MPI_MAX */
OMPI_OP_BASE_FORTRAN_MAX,
/** Corresponds to Fortran MPI_MIN */
OMPI_OP_BASE_FORTRAN_MIN,
/** Corresponds to Fortran MPI_SUM */
OMPI_OP_BASE_FORTRAN_SUM,
/** Corresponds to Fortran MPI_PROD */
OMPI_OP_BASE_FORTRAN_PROD,
/** Corresponds to Fortran MPI_LAND */
OMPI_OP_BASE_FORTRAN_LAND,
/** Corresponds to Fortran MPI_BAND */
OMPI_OP_BASE_FORTRAN_BAND,
/** Corresponds to Fortran MPI_LOR */
OMPI_OP_BASE_FORTRAN_LOR,
/** Corresponds to Fortran MPI_BOR */
OMPI_OP_BASE_FORTRAN_BOR,
/** Corresponds to Fortran MPI_LXOR */
OMPI_OP_BASE_FORTRAN_LXOR,
/** Corresponds to Fortran MPI_BXOR */
OMPI_OP_BASE_FORTRAN_BXOR,
/** Corresponds to Fortran MPI_MAXLOC */
OMPI_OP_BASE_FORTRAN_MAXLOC,
/** Corresponds to Fortran MPI_MINLOC */
OMPI_OP_BASE_FORTRAN_MINLOC,
/** Corresponds to Fortran MPI_REPLACE */
OMPI_OP_BASE_FORTRAN_REPLACE,
/** Corresponds to Fortran MPI_NO_OP */
OMPI_OP_BASE_FORTRAN_NO_OP,
/** Maximum value */
OMPI_OP_BASE_FORTRAN_OP_MAX
};
/**
* Pre-declare this so that we can pass it as an argument to the
* typedef'ed functions.
*/
struct ompi_op_base_module_1_0_0_t;
typedef struct ompi_op_base_module_1_0_0_t ompi_op_base_module_t;
/**
* Typedef for 2-buffer op functions.
*
* We don't use MPI_User_function because this would create a
* confusing dependency loop between this file and mpi.h. So this is
* repeated code, but it's better this way (and this typedef will
* never change, so there's not much of a maintenance worry).
*/
typedef void (*ompi_op_base_handler_fn_1_0_0_t)(void *, void *, int *,
struct ompi_datatype_t **,
struct ompi_op_base_module_1_0_0_t *);
typedef ompi_op_base_handler_fn_1_0_0_t ompi_op_base_handler_fn_t;
/*
* Typedef for 3-buffer (two input and one output) op functions.
*/
typedef void (*ompi_op_base_3buff_handler_fn_1_0_0_t)(void *,
void *,
void *, int *,
struct ompi_datatype_t **,
struct ompi_op_base_module_1_0_0_t *);
typedef ompi_op_base_3buff_handler_fn_1_0_0_t ompi_op_base_3buff_handler_fn_t;
/**
* Op component initialization
*
* Initialize the given op component. This function should initialize
* any component-level. data. It will be called exactly once during
* MPI_INIT.
*
* @note The component framework is not lazily opened, so attempts
* should be made to minimze the amount of memory allocated during
* this function.
*
* @param[in] enable_progress_threads True if the component needs to
* support progress threads
* @param[in] enable_mpi_threads True if the component needs to
* support MPI_THREAD_MULTIPLE
*
* @retval OMPI_SUCCESS Component successfully initialized
* @retval OMPI_ERROR An unspecified error occurred
*/
typedef int (*ompi_op_base_component_init_query_fn_t)
(bool enable_progress_threads, bool enable_mpi_threads);
/**
* Query whether a component is available for a specific MPI_Op.
*
* If the component is available, an object should be allocated and
* returned (with refcount at 1). The module will not be used for
* reduction operations until module_enable() is called on the module,
* but may be destroyed (via OBJ_RELEASE) either before or after
* module_enable() is called. If the module needs to release
* resources obtained during query(), it should do so in the module
* destructor.
*
* A component may provide NULL to this function to indicate it does
* not wish to run or return an error during module_enable().
*
* @param[in] op The MPI_Op being created
* @param[out] priority Priority setting for component on
* this op
*
* @returns An initialized module structure if the component can
* provide a module with the requested functionality or NULL if the
* component should not be used on the given communicator.
*/
typedef struct ompi_op_base_module_1_0_0_t *
(*ompi_op_base_component_op_query_1_0_0_fn_t)
(struct ompi_op_t *op, int *priority);
/**
* Op component interface.
*
* Component interface for the op framework. A public instance of
* this structure, called mca_op_[component_name]_component, must
* exist in any op component.
*/
typedef struct ompi_op_base_component_1_0_0_t {
/** Base component description */
mca_base_component_t opc_version;
/** Base component data block */
mca_base_component_data_t opc_data;
/** Component initialization function */
ompi_op_base_component_init_query_fn_t opc_init_query;
/** Query whether component is useable for given op */
ompi_op_base_component_op_query_1_0_0_fn_t opc_op_query;
} ompi_op_base_component_1_0_0_t;
/** Per guidence in mca.h, use the unversioned struct name if you just
want to always keep up with the most recent version of the
interace. */
typedef struct ompi_op_base_component_1_0_0_t ompi_op_base_component_t;
/**
* Module initialization function. Should return OPAL_SUCCESS if
* everything goes ok. This function can be NULL in the module struct
* if the module doesn't need to do anything between the component
* query function and being invoked for MPI_Op operations.
*/
typedef int (*ompi_op_base_module_enable_1_0_0_fn_t)
(struct ompi_op_base_module_1_0_0_t *module,
struct ompi_op_t *op);
/**
* Module struct
*/
typedef struct ompi_op_base_module_1_0_0_t {
/** Op modules all inherit from opal_object */
opal_object_t super;
/** Enable function called when an op module is (possibly) going
to be used for the given MPI_Op */
ompi_op_base_module_enable_1_0_0_fn_t opm_enable;
/** Just for reference -- a pointer to the MPI_Op that this module
is being used for */
struct ompi_op_t *opm_op;
/** Function pointers for all the different datatypes to be used
with the MPI_Op that this module is used with */
ompi_op_base_handler_fn_1_0_0_t opm_fns[OMPI_OP_BASE_TYPE_MAX];
ompi_op_base_3buff_handler_fn_1_0_0_t opm_3buff_fns[OMPI_OP_BASE_TYPE_MAX];
} ompi_op_base_module_1_0_0_t;
/**
* Declare the module as a class, unversioned
*/
OMPI_DECLSPEC OBJ_CLASS_DECLARATION(ompi_op_base_module_t);
/**
* Declare the module as a class, unversioned
*/
OMPI_DECLSPEC OBJ_CLASS_DECLARATION(ompi_op_base_module_1_0_0_t);
/**
* Struct that is used in op.h to hold all the function pointers and
* pointers to the corresopnding modules (so that we can properly
* RETAIN/RELEASE them)
*/
typedef struct ompi_op_base_op_fns_1_0_0_t {
ompi_op_base_handler_fn_1_0_0_t fns[OMPI_OP_BASE_TYPE_MAX];
ompi_op_base_module_t *modules[OMPI_OP_BASE_TYPE_MAX];
} ompi_op_base_op_fns_1_0_0_t;
typedef ompi_op_base_op_fns_1_0_0_t ompi_op_base_op_fns_t;
/**
* Struct that is used in op.h to hold all the function pointers and
* pointers to the corresopnding modules (so that we can properly
* RETAIN/RELEASE them)
*/
typedef struct ompi_op_base_op_3buff_fns_1_0_0_t {
ompi_op_base_3buff_handler_fn_1_0_0_t fns[OMPI_OP_BASE_TYPE_MAX];
ompi_op_base_module_t *modules[OMPI_OP_BASE_TYPE_MAX];
} ompi_op_base_op_3buff_fns_1_0_0_t;
typedef ompi_op_base_op_3buff_fns_1_0_0_t ompi_op_base_op_3buff_fns_t;
/*
* Macro for use in modules that are of type op v2.0.0
*/
#define OMPI_OP_BASE_VERSION_1_0_0 \
OMPI_MCA_BASE_VERSION_2_1_0("op", 1, 0, 0)
END_C_DECLS
#endif /* OMPI_MCA_OP_H */