1
1
openmpi/ompi/mca/btl/openib/btl_openib.c
Gleb Natapov 60af46d541 We have QP description in component structure, module structure and endpoint.
Each one of them has a field to store QP type, but this is redundant.
Store qp type only in one structure (the component one).

This commit was SVN r16272.
2007-09-30 16:14:17 +00:00

1064 строки
36 KiB
C

/*
* Copyright (c) 2004-2007 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2005 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2007 Cisco Systems, Inc. All rights reserved.
* Copyright (c) 2006-2007 Mellanox Technologies. All rights reserved.
* Copyright (c) 2006-2007 Los Alamos National Security, LLC. All rights
* reserved.
* Copyright (c) 2006-2007 Voltaire All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "ompi_config.h"
#include <string.h>
#include <inttypes.h>
#include "opal/util/output.h"
#include "opal/util/if.h"
#include "opal/util/show_help.h"
#include "ompi/mca/pml/pml.h"
#include "ompi/mca/btl/btl.h"
#include "ompi/mca/btl/base/btl_base_error.h"
#include "btl_openib.h"
#include "btl_openib_frag.h"
#include "btl_openib_proc.h"
#include "btl_openib_endpoint.h"
#include "ompi/datatype/convertor.h"
#include "ompi/datatype/datatype.h"
#include "ompi/datatype/dt_arch.h"
#include "ompi/mca/mpool/base/base.h"
#include "ompi/mca/mpool/mpool.h"
#include "ompi/mca/mpool/rdma/mpool_rdma.h"
#include "ompi/runtime/params.h"
#include "orte/util/sys_info.h"
#include <errno.h>
#include <string.h>
#include <math.h>
#include <inttypes.h>
#ifdef HAVE_SYS_TYPES_H
#include <sys/types.h>
#endif
#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#endif
#ifdef HAVE_SYS_RESOURCE_H
#include <sys/resource.h>
#endif
mca_btl_openib_module_t mca_btl_openib_module = {
{
&mca_btl_openib_component.super,
0, /* max size of first fragment */
0, /* min send fragment size */
0, /* max send fragment size */
0, /* btl_rdma_pipeline_send_length */
0, /* btl_rdma_pipeline_frag_size */
0, /* btl_min_rdma_pipeline_size */
0, /* exclusivity */
0, /* latency */
0, /* bandwidth */
0, /* TODO this should be PUT btl flags */
mca_btl_openib_add_procs,
mca_btl_openib_del_procs,
mca_btl_openib_register,
mca_btl_openib_finalize,
/* we need alloc free, pack */
mca_btl_openib_alloc,
mca_btl_openib_free,
mca_btl_openib_prepare_src,
mca_btl_openib_prepare_dst,
mca_btl_openib_send,
mca_btl_openib_put,
mca_btl_openib_get,
mca_btl_base_dump,
NULL, /* mpool */
mca_btl_openib_register_error_cb, /* error call back registration */
mca_btl_openib_ft_event
}
};
/*
* Local functions
*/
static int mca_btl_openib_size_queues( struct mca_btl_openib_module_t* openib_btl, size_t nprocs);
static int mca_btl_finalize_hca(struct mca_btl_openib_hca_t *hca);
static void show_init_error(const char *file, int line,
const char *func, const char *dev)
{
if (ENOMEM == errno) {
int ret;
struct rlimit limit;
char *str_limit = NULL;
ret = getrlimit(RLIMIT_MEMLOCK, &limit);
if (0 != ret) {
asprintf(&str_limit, "Unknown");
} else if (limit.rlim_cur == RLIM_INFINITY) {
asprintf(&str_limit, "unlimited");
} else {
asprintf(&str_limit, "%ld", (long)limit.rlim_cur);
}
opal_show_help("help-mpi-btl-openib.txt", "init-fail-no-mem",
true, orte_system_info.nodename,
file, line, func, dev, str_limit);
if (NULL != str_limit) free(str_limit);
} else {
opal_show_help("help-mpi-btl-openib.txt", "init-fail-create-q",
true, orte_system_info.nodename,
file, line, func, strerror(errno), errno, dev);
}
}
/*
* add a proc to this btl module
* creates an endpoint that is setup on the
* first send to the endpoint
*/
int mca_btl_openib_add_procs(
struct mca_btl_base_module_t* btl,
size_t nprocs,
struct ompi_proc_t **ompi_procs,
struct mca_btl_base_endpoint_t** peers,
ompi_bitmap_t* reachable)
{
mca_btl_openib_module_t* openib_btl = (mca_btl_openib_module_t*)btl;
int i,j, rc;
int rem_subnet_id_port_cnt;
int lcl_subnet_id_port_cnt = 0;
int btl_rank = 0;
mca_btl_base_endpoint_t* endpoint;
for(j=0; j < mca_btl_openib_component.ib_num_btls; j++){
if(mca_btl_openib_component.openib_btls[j]->port_info.subnet_id
== openib_btl->port_info.subnet_id) {
if(openib_btl == mca_btl_openib_component.openib_btls[j]) {
btl_rank = lcl_subnet_id_port_cnt;
}
lcl_subnet_id_port_cnt++;
}
}
for(i = 0; i < (int) nprocs; i++) {
struct ompi_proc_t* ompi_proc = ompi_procs[i];
mca_btl_openib_proc_t* ib_proc;
if(NULL == (ib_proc = mca_btl_openib_proc_create(ompi_proc))) {
return OMPI_ERR_OUT_OF_RESOURCE;
}
rem_subnet_id_port_cnt = 0;
/* check if the remote proc has a reachable subnet first */
BTL_VERBOSE(("got %d port_infos \n", ib_proc->proc_port_count));
for(j = 0; j < (int) ib_proc->proc_port_count; j++){
BTL_VERBOSE(("got a subnet %016x\n",
ib_proc->proc_ports[j].subnet_id));
if(ib_proc->proc_ports[j].subnet_id ==
openib_btl->port_info.subnet_id) {
BTL_VERBOSE(("Got a matching subnet!\n"));
rem_subnet_id_port_cnt ++;
}
}
if(!rem_subnet_id_port_cnt ) {
/* no use trying to communicate with this endpointlater */
BTL_VERBOSE(("No matching subnet id was found, moving on.. \n"));
continue;
}
#if 0
num_endpoints = rem_subnet_id_port_cnt / lcl_subnet_id_port_cnt +
(btl_rank < (rem_subnet_id_port_cnt / lcl_subnet_id_port_cnt)) ? 1:0;
#endif
if(rem_subnet_id_port_cnt < lcl_subnet_id_port_cnt &&
btl_rank >= rem_subnet_id_port_cnt ) {
BTL_VERBOSE(("Not enough remote ports on this subnet id, moving on.. \n"));
continue;
}
OPAL_THREAD_LOCK(&ib_proc->proc_lock);
/* The btl_proc datastructure is shared by all IB BTL
* instances that are trying to reach this destination.
* Cache the peer instance on the btl_proc.
*/
endpoint = OBJ_NEW(mca_btl_openib_endpoint_t);
assert(((opal_object_t*)endpoint)->obj_reference_count == 1);
if(NULL == endpoint) {
OPAL_THREAD_UNLOCK(&ib_proc->proc_lock);
return OMPI_ERR_OUT_OF_RESOURCE;
}
endpoint->endpoint_btl = openib_btl;
endpoint->use_eager_rdma = openib_btl->hca->use_eager_rdma &
mca_btl_openib_component.use_eager_rdma;
endpoint->subnet_id = openib_btl->port_info.subnet_id;
rc = mca_btl_openib_proc_insert(ib_proc, endpoint);
if(rc != OMPI_SUCCESS) {
OBJ_RELEASE(endpoint);
OPAL_THREAD_UNLOCK(&ib_proc->proc_lock);
continue;
}
orte_pointer_array_add((orte_std_cntr_t*)&endpoint->index,
openib_btl->hca->endpoints, (void*)endpoint);
ompi_bitmap_set_bit(reachable, i);
OPAL_THREAD_UNLOCK(&ib_proc->proc_lock);
peers[i] = endpoint;
}
return mca_btl_openib_size_queues(openib_btl, nprocs);
}
static inline struct ibv_cq *ibv_create_cq_compat(struct ibv_context *context,
int cqe, void *cq_context, struct ibv_comp_channel *channel,
int comp_vector)
{
#if OMPI_IBV_CREATE_CQ_ARGS == 3
return ibv_create_cq(context, cqe, channel);
#else
return ibv_create_cq(context, cqe, cq_context, channel, comp_vector);
#endif
}
/*
* create both the high and low priority completion queues
* and the shared receive queue (if requested)
*/
static int create_srq(mca_btl_openib_module_t *openib_btl)
{
int qp;
/* create the SRQ's */
for(qp = 0; qp < mca_btl_openib_component.num_qps; qp++) {
struct ibv_srq_init_attr attr;
if(BTL_OPENIB_QP_TYPE_SRQ(qp)) {
attr.attr.max_wr = mca_btl_openib_component.qp_infos[qp].rd_num +
mca_btl_openib_component.qp_infos[qp].u.srq_qp.sd_max;
attr.attr.max_sge = mca_btl_openib_component.ib_sg_list_size;
openib_btl->qps[qp].u.srq_qp.rd_posted = 0;
openib_btl->qps[qp].u.srq_qp.srq =
ibv_create_srq(openib_btl->hca->ib_pd, &attr);
if (NULL == openib_btl->qps[qp].u.srq_qp.srq) {
show_init_error(__FILE__, __LINE__, "ibv_create_srq",
ibv_get_device_name(openib_btl->hca->ib_dev));
return OMPI_ERROR;
}
}
}
return OMPI_SUCCESS;
}
static int adjust_cq(mca_btl_openib_hca_t *hca, const int cq_size, const int cq)
{
if(NULL == hca->ib_cq[cq]) {
hca->ib_cq[cq] = ibv_create_cq_compat(hca->ib_dev_context, cq_size,
#if OMPI_ENABLE_PROGRESS_THREADS == 1
hca, hca->ib_channel,
#else
NULL, NULL,
#endif
0);
if (NULL == hca->ib_cq[cq]) {
show_init_error(__FILE__, __LINE__, "ibv_create_cq",
ibv_get_device_name(hca->ib_dev));
return OMPI_ERROR;
}
#if OMPI_ENABLE_PROGRESS_THREADS == 1
if(ibv_req_notify_cq(hca->ib_cq[cq], 0)) {
show_init_error(__FILE__, __LINE__, "ibv_req_notify_cq",
ibv_get_device_name(hca->ib_dev));
return OMPI_ERROR;
}
OPAL_THREAD_LOCK(&hca->hca_lock);
if (!hca->progress) {
int rc;
hca->progress = true;
if(OPAL_SUCCESS != (rc = opal_thread_start(&hca->thread))) {
BTL_ERROR(("Unable to create progress thread, retval=%d", rc));
return rc;
}
}
OPAL_THREAD_UNLOCK(&hca->hca_lock);
#endif
}
#ifdef HAVE_IBV_RESIZE_CQ
else {
int rc;
rc = ibv_resize_cq(hca->ib_cq[cq], cq_size);
if(rc) {
BTL_ERROR(("cannot resize completion queue, error: %d", rc));
return OMPI_ERROR;
}
}
#endif
hca->cq_size[cq] = cq_size;
return OMPI_SUCCESS;
}
static int mca_btl_openib_size_queues( struct mca_btl_openib_module_t* openib_btl, size_t nprocs)
{
uint32_t min_hp_cq_size = openib_btl->hca->cq_size[BTL_OPENIB_HP_CQ],
min_lp_cq_size = openib_btl->hca->cq_size[BTL_OPENIB_HP_CQ],
cq_size;
int rc = OMPI_SUCCESS, qp;
mca_btl_openib_hca_t *hca = openib_btl->hca;
/* figure out reasonable sizes for completion queues */
for(qp = 0; qp < mca_btl_openib_component.num_qps; qp++) {
if(BTL_OPENIB_QP_TYPE_SRQ(qp)) {
cq_size = mca_btl_openib_component.qp_infos[qp].rd_num +
mca_btl_openib_component.qp_infos[qp].u.srq_qp.sd_max;
if(mca_btl_openib_component.qp_infos[qp].size <=
mca_btl_openib_component.eager_limit) {
min_hp_cq_size += cq_size;
} else {
min_lp_cq_size += cq_size;
}
} else {
cq_size = (mca_btl_openib_component.qp_infos[qp].rd_num +
mca_btl_openib_component.qp_infos[qp].u.pp_qp.rd_rsv) *
2 * nprocs;
if(mca_btl_openib_component.qp_infos[qp].size <=
mca_btl_openib_component.eager_limit) {
min_hp_cq_size += cq_size;
} else {
min_lp_cq_size += cq_size;
}
}
}
/* make sure we don't exceed the maximum CQ size and that we
* don't size the queue smaller than otherwise requested
*/
if(min_lp_cq_size < mca_btl_openib_component.ib_lp_cq_size)
min_lp_cq_size = mca_btl_openib_component.ib_lp_cq_size;
if(min_lp_cq_size > (uint32_t)openib_btl->hca->ib_dev_attr.max_cq)
min_lp_cq_size = openib_btl->hca->ib_dev_attr.max_cq;
if(min_hp_cq_size < mca_btl_openib_component.ib_hp_cq_size)
min_hp_cq_size = mca_btl_openib_component.ib_hp_cq_size;
if(min_hp_cq_size > (uint32_t)openib_btl->hca->ib_dev_attr.max_cq)
min_hp_cq_size = openib_btl->hca->ib_dev_attr.max_cq;
if(min_hp_cq_size != hca->cq_size[BTL_OPENIB_HP_CQ]) {
rc = adjust_cq(hca, min_hp_cq_size, BTL_OPENIB_HP_CQ);
if(rc != OMPI_SUCCESS)
goto out;
}
if(min_lp_cq_size != hca->cq_size[BTL_OPENIB_LP_CQ]) {
rc = adjust_cq(hca, min_lp_cq_size, BTL_OPENIB_LP_CQ);
if(rc != OMPI_SUCCESS)
goto out;
}
if(0 == openib_btl->num_peers)
rc = create_srq(openib_btl);
out:
openib_btl->num_peers += nprocs;
return rc;
}
/*
* delete the proc as reachable from this btl module
*/
int mca_btl_openib_del_procs(struct mca_btl_base_module_t* btl,
size_t nprocs,
struct ompi_proc_t **procs,
struct mca_btl_base_endpoint_t ** peers)
{
int i,ep_index;
mca_btl_openib_module_t* openib_btl = (mca_btl_openib_module_t*) btl;
mca_btl_openib_endpoint_t* endpoint;
/* opal_output(0, "del_procs called!\n"); */
for (i=0 ; i < (int) nprocs ; i++) {
mca_btl_base_endpoint_t* del_endpoint = peers[i];
for(ep_index=0;
ep_index < orte_pointer_array_get_size(openib_btl->hca->endpoints);
ep_index++) {
endpoint =
orte_pointer_array_get_item(openib_btl->hca->endpoints,
ep_index);
if(!endpoint || endpoint->endpoint_btl != openib_btl) {
continue;
}
if (endpoint == del_endpoint) {
opal_output(mca_btl_base_output,"in del_procs %d, setting another endpoint to null\n",
ep_index);
orte_pointer_array_set_item(openib_btl->hca->endpoints,
ep_index, NULL);
assert(((opal_object_t*)endpoint)->obj_reference_count == 1);
OBJ_RELEASE(endpoint);
}
}
}
return OMPI_SUCCESS;
}
/*
*Register callback function to support send/recv semantics
*/
int mca_btl_openib_register(
struct mca_btl_base_module_t* btl,
mca_btl_base_tag_t tag,
mca_btl_base_module_recv_cb_fn_t cbfunc,
void* cbdata)
{
mca_btl_openib_module_t* openib_btl = (mca_btl_openib_module_t*) btl;
OPAL_THREAD_LOCK(&openib_btl->ib_lock);
openib_btl->ib_reg[tag].cbfunc = cbfunc;
openib_btl->ib_reg[tag].cbdata = cbdata;
OPAL_THREAD_UNLOCK(&openib_btl->ib_lock);
return OMPI_SUCCESS;
}
/*
*Register callback function for error handling..
*/
int mca_btl_openib_register_error_cb(
struct mca_btl_base_module_t* btl,
mca_btl_base_module_error_cb_fn_t cbfunc)
{
mca_btl_openib_module_t* openib_btl = (mca_btl_openib_module_t*) btl;
openib_btl->error_cb = cbfunc; /* stash for later */
return OMPI_SUCCESS;
}
/**
* Allocate a segment.
*
* @param btl (IN) BTL module
* @param size (IN) Request segment size.
* @param size (IN) Size of segment to allocate
*
* When allocating a segment we pull a pre-alllocated segment
* from one of two free lists, an eager list and a max list
*/
mca_btl_base_descriptor_t* mca_btl_openib_alloc(
struct mca_btl_base_module_t* btl,
uint8_t order,
size_t size)
{
mca_btl_openib_frag_t* frag = NULL;
mca_btl_openib_module_t* openib_btl;
int rc;
openib_btl = (mca_btl_openib_module_t*) btl;
MCA_BTL_IB_FRAG_ALLOC_BY_SIZE(btl, frag, size, rc);
if(NULL == frag)
return NULL;
/* GMS is this necessary anymore ? */
frag->segment.seg_len = size;
frag->base.order = order;
frag->base.des_flags = 0;
assert(frag->qp_idx <= order);
return (mca_btl_base_descriptor_t*)frag;
}
/**
* Return a segment
*
* Return the segment to the appropriate
* preallocated segment list
*/
int mca_btl_openib_free(
struct mca_btl_base_module_t* btl,
mca_btl_base_descriptor_t* des)
{
mca_btl_openib_frag_t* frag = (mca_btl_openib_frag_t*)des;
/* is this fragment pointing at user memory? */
if(((MCA_BTL_OPENIB_FRAG_SEND_USER == frag->type) ||
(MCA_BTL_OPENIB_FRAG_RECV_USER == frag->type))
&& frag->registration != NULL) {
btl->btl_mpool->mpool_deregister(btl->btl_mpool,
(mca_mpool_base_registration_t*)
frag->registration);
frag->registration = NULL;
}
MCA_BTL_IB_FRAG_RETURN(((mca_btl_openib_module_t*) btl), frag);
return OMPI_SUCCESS;
}
/**
* register user buffer or pack
* data into pre-registered buffer and return a
* descriptor that can be
* used for send/put.
*
* @param btl (IN) BTL module
* @param peer (IN) BTL peer addressing
*
* prepare source's behavior depends on the following:
* Has a valid memory registration been passed to prepare_src?
* if so we attempt to use the pre-registered user-buffer, if the memory registration
* is too small (only a portion of the user buffer) then we must reregister the user buffer
* Has the user requested the memory to be left pinned?
* if so we insert the memory registration into a memory tree for later lookup, we
* may also remove a previous registration if a MRU (most recently used) list of
* registrations is full, this prevents resources from being exhausted.
* Is the requested size larger than the btl's max send size?
* if so and we aren't asked to leave the registration pinned, then we register the memory if
* the users buffer is contiguous
* Otherwise we choose from two free lists of pre-registered memory in which to pack the data into.
*
*/
mca_btl_base_descriptor_t* mca_btl_openib_prepare_src(
struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
mca_mpool_base_registration_t* registration,
struct ompi_convertor_t* convertor,
uint8_t order,
size_t reserve,
size_t* size
)
{
mca_btl_openib_module_t *openib_btl;
mca_btl_openib_frag_t *frag = NULL;
mca_btl_openib_reg_t *openib_reg;
struct iovec iov;
uint32_t iov_count = 1;
size_t max_data = *size;
int rc;
openib_btl = (mca_btl_openib_module_t*)btl;
if(ompi_convertor_need_buffers(convertor) == false && 0 == reserve) {
/* GMS bloody HACK! */
if(registration != NULL || max_data > btl->btl_max_send_size) {
MCA_BTL_IB_FRAG_ALLOC_SEND_USER(btl, frag, rc);
if(NULL == frag) {
return NULL;
}
iov.iov_len = max_data;
iov.iov_base = NULL;
ompi_convertor_pack(convertor, &iov, &iov_count, &max_data);
*size = max_data;
if(NULL == registration) {
rc = btl->btl_mpool->mpool_register(btl->btl_mpool,
iov.iov_base, max_data, 0, &registration);
if(OMPI_SUCCESS != rc || NULL == registration) {
MCA_BTL_IB_FRAG_RETURN(openib_btl, frag);
return NULL;
}
/* keep track of the registration we did */
frag->registration = (mca_btl_openib_reg_t*)registration;
}
openib_reg = (mca_btl_openib_reg_t*)registration;
frag->base.order = order;
frag->base.des_flags = 0;
frag->base.des_src = &frag->segment;
frag->base.des_src_cnt = 1;
frag->base.des_dst = NULL;
frag->base.des_dst_cnt = 0;
frag->base.des_flags = 0;
frag->sg_entry.length = max_data;
frag->sg_entry.lkey = openib_reg->mr->lkey;
frag->sg_entry.addr = (unsigned long)iov.iov_base;
frag->segment.seg_len = max_data;
frag->segment.seg_addr.pval = iov.iov_base;
frag->segment.seg_key.key32[0] = (uint32_t)frag->sg_entry.lkey;
assert(MCA_BTL_NO_ORDER == order);
BTL_VERBOSE(("frag->sg_entry.lkey = %lu .addr = %llu "
"frag->segment.seg_key.key32[0] = %lu",
frag->sg_entry.lkey, frag->sg_entry.addr,
frag->segment.seg_key.key32[0]));
return &frag->base;
}
}
assert(MCA_BTL_NO_ORDER == order);
if(max_data + reserve > btl->btl_max_send_size) {
max_data = btl->btl_max_send_size - reserve;
}
MCA_BTL_IB_FRAG_ALLOC_BY_SIZE(btl, frag, max_data + reserve, rc);
if(NULL == frag)
return NULL;
iov.iov_len = max_data;
iov.iov_base = (unsigned char*)frag->segment.seg_addr.pval + reserve;
rc = ompi_convertor_pack(convertor, &iov, &iov_count, &max_data);
*size = max_data;
frag->segment.seg_len = max_data + reserve;
frag->segment.seg_key.key32[0] = (uint32_t)frag->sg_entry.lkey;
/* frag->base.order = order; */
frag->base.des_src = &frag->segment;
frag->base.des_src_cnt = 1;
frag->base.des_dst = NULL;
frag->base.des_dst_cnt = 0;
frag->base.des_flags = 0;
frag->base.order = order;
return &frag->base;
}
/**
* Prepare the dst buffer
*
* @param btl (IN) BTL module
* @param peer (IN) BTL peer addressing
* prepare dest's behavior depends on the following:
* Has a valid memory registration been passed to prepare_src?
* if so we attempt to use the pre-registered user-buffer, if the memory registration
* is to small (only a portion of the user buffer) then we must reregister the user buffer
* Has the user requested the memory to be left pinned?
* if so we insert the memory registration into a memory tree for later lookup, we
* may also remove a previous registration if a MRU (most recently used) list of
* registrations is full, this prevents resources from being exhausted.
*/
mca_btl_base_descriptor_t* mca_btl_openib_prepare_dst(
struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
mca_mpool_base_registration_t* registration,
struct ompi_convertor_t* convertor,
uint8_t order,
size_t reserve,
size_t* size)
{
mca_btl_openib_module_t *openib_btl;
mca_btl_openib_frag_t *frag;
mca_btl_openib_reg_t *openib_reg;
int rc;
openib_btl = (mca_btl_openib_module_t*)btl;
MCA_BTL_IB_FRAG_ALLOC_RECV_USER(btl, frag, rc);
if(NULL == frag) {
return NULL;
}
ompi_convertor_get_current_pointer( convertor, (void**)&(frag->segment.seg_addr.pval) );
if(NULL == registration){
/* we didn't get a memory registration passed in, so we have to
* register the region ourselves
*/
rc = btl->btl_mpool->mpool_register(btl->btl_mpool,
frag->segment.seg_addr.pval, *size, 0, &registration);
if(OMPI_SUCCESS != rc || NULL == registration) {
MCA_BTL_IB_FRAG_RETURN(openib_btl, frag);
return NULL;
}
/* keep track of the registration we did */
frag->registration = (mca_btl_openib_reg_t*)registration;
}
openib_reg = (mca_btl_openib_reg_t*)registration;
frag->sg_entry.length = *size;
frag->sg_entry.lkey = openib_reg->mr->lkey;
frag->sg_entry.addr = (unsigned long) frag->segment.seg_addr.pval;
frag->segment.seg_len = *size;
frag->segment.seg_key.key32[0] = openib_reg->mr->rkey;
frag->base.order = order;
frag->base.des_dst = &frag->segment;
frag->base.des_dst_cnt = 1;
frag->base.des_src = NULL;
frag->base.des_src_cnt = 0;
frag->base.des_flags = 0;
BTL_VERBOSE(("frag->sg_entry.lkey = %lu .addr = %llu "
"frag->segment.seg_key.key32[0] = %lu",
frag->sg_entry.lkey, frag->sg_entry.addr,
frag->segment.seg_key.key32[0]));
return &frag->base;
}
static int mca_btl_finalize_hca(struct mca_btl_openib_hca_t *hca)
{
#if OMPI_HAVE_THREADS
int hca_to_remove;
#if OMPI_ENABLE_PROGRESS_THREADS == 1
if(hca->progress) {
hca->progress = false;
if (pthread_cancel(hca->thread.t_handle)) {
BTL_ERROR(("Failed to cancel OpenIB progress thread"));
}
opal_thread_join(&hca->thread, NULL);
}
if (ibv_destroy_comp_channel(hca->ib_channel)) {
BTL_VERBOSE(("Failed to close comp_channel"));
return OMPI_ERROR;
}
#endif
/* signaling to async_tread to stop poll for this hca */
if (mca_btl_openib_component.use_async_event_thread) {
hca_to_remove=-(hca->ib_dev_context->async_fd);
if (write(mca_btl_openib_component.async_pipe[1],
&hca_to_remove,sizeof(int))<0){
BTL_ERROR(("Failed to write to pipe"));
return OMPI_ERROR;
}
}
#endif
/* Release CQs */
if(hca->ib_cq[BTL_OPENIB_HP_CQ] != NULL) {
if (ibv_destroy_cq(hca->ib_cq[BTL_OPENIB_HP_CQ])) {
BTL_VERBOSE(("Failed to close HP CQ"));
return OMPI_ERROR;
}
}
if(hca->ib_cq[BTL_OPENIB_LP_CQ] != NULL) {
if (ibv_destroy_cq(hca->ib_cq[BTL_OPENIB_LP_CQ])) {
BTL_VERBOSE(("Failed to close LP CQ"));
return OMPI_ERROR;
}
}
if (OMPI_SUCCESS != mca_mpool_base_module_destroy(hca->mpool)) {
BTL_VERBOSE(("Failed to release mpool"));
return OMPI_ERROR;
}
if (ibv_dealloc_pd(hca->ib_pd)) {
BTL_VERBOSE(("Warning! Failed to release PD"));
return OMPI_ERROR;
}
if (ibv_close_device(hca->ib_dev_context)) {
if (ompi_mpi_leave_pinned || ompi_mpi_leave_pinned_pipeline) {
BTL_VERBOSE(("Warning! Failed to close HCA"));
return OMPI_SUCCESS;
} else {
BTL_ERROR(("Error! Failed to close HCA"));
return OMPI_ERROR;
}
}
OBJ_DESTRUCT(&hca->hca_lock);
free(hca);
return OMPI_SUCCESS;
}
int mca_btl_openib_finalize(struct mca_btl_base_module_t* btl)
{
mca_btl_openib_module_t* openib_btl;
mca_btl_openib_endpoint_t* endpoint;
int ep_index, rdma_index, i;
int qp;
/* return OMPI_SUCCESS; */
openib_btl = (mca_btl_openib_module_t*) btl;
/* Remove the btl from component list */
if ( mca_btl_openib_component.ib_num_btls > 1 ) {
for(i = 0; i < mca_btl_openib_component.ib_num_btls; i++){
if (mca_btl_openib_component.openib_btls[i] == openib_btl){
mca_btl_openib_component.openib_btls[i] =
mca_btl_openib_component.openib_btls[mca_btl_openib_component.ib_num_btls-1];
break;
}
}
}
mca_btl_openib_component.ib_num_btls--;
/* Release eager RDMAs */
for(rdma_index=0;
rdma_index < orte_pointer_array_get_size(openib_btl->eager_rdma_buffers);
rdma_index++) {
endpoint=orte_pointer_array_get_item(openib_btl->eager_rdma_buffers,rdma_index);
if(!endpoint) {
continue;
}
OBJ_RELEASE(endpoint);
}
/* Release all QPs */
for(ep_index=0;
ep_index < orte_pointer_array_get_size(openib_btl->hca->endpoints);
ep_index++) {
endpoint=orte_pointer_array_get_item(openib_btl->hca->endpoints,
ep_index);
if(!endpoint) {
BTL_VERBOSE(("In finalize, got another null endpoint\n"));
continue;
}
if(endpoint->endpoint_btl != openib_btl)
continue;
OBJ_RELEASE(endpoint);
}
/* Release SRQ resources */
for(qp = 0; qp < mca_btl_openib_component.num_qps; qp++) {
if(BTL_OPENIB_QP_TYPE_SRQ(qp)){
MCA_BTL_OPENIB_CLEAN_PENDING_FRAGS(openib_btl,
&openib_btl->qps[qp].u.srq_qp.pending_frags);
if (ibv_destroy_srq(openib_btl->qps[qp].u.srq_qp.srq)){
BTL_VERBOSE(("Failed to close SRQ %d", qp));
return OMPI_ERROR;
}
/* Destroy free lists */
OBJ_DESTRUCT(&openib_btl->qps[qp].u.srq_qp.pending_frags);
OBJ_DESTRUCT(&openib_btl->qps[qp].send_free);
OBJ_DESTRUCT(&openib_btl->qps[qp].recv_free);
} else {
/* Destroy free lists */
OBJ_DESTRUCT(&openib_btl->qps[qp].send_free);
OBJ_DESTRUCT(&openib_btl->qps[qp].recv_free);
}
}
OBJ_DESTRUCT(&openib_btl->send_free_control);
OBJ_DESTRUCT(&openib_btl->send_user_free);
OBJ_DESTRUCT(&openib_btl->recv_user_free);
/* Release pending lists */
if (!(--openib_btl->hca->btls)) {
/* All btls for the HCA were closed
* Now we can close the HCA
*/
if (OMPI_SUCCESS != mca_btl_finalize_hca(openib_btl->hca)) {
BTL_VERBOSE(("Failed to close HCA"));
return OMPI_ERROR;
}
}
#if OMPI_HAVE_THREADS
if (mca_btl_openib_component.use_async_event_thread &&
! mca_btl_openib_component.ib_num_btls) {
/* signaling to async_tread to stop */
int async_command=0;
if (write(mca_btl_openib_component.async_pipe[1],
&async_command,sizeof(int))<0){
BTL_ERROR(("Failed to write to pipe"));
return OMPI_ERROR;
}
if (pthread_join(mca_btl_openib_component.async_thread, NULL)) {
BTL_ERROR(("Failed to stop OpenIB async event thread"));
return OMPI_ERROR;
}
}
#endif
OBJ_DESTRUCT(&openib_btl->ib_lock);
free(openib_btl);
BTL_VERBOSE(("Success in closing BTL resources"));
return OMPI_SUCCESS;
}
/*
* Initiate a send.
*/
int mca_btl_openib_send(
struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
struct mca_btl_base_descriptor_t* descriptor,
mca_btl_base_tag_t tag)
{
mca_btl_openib_frag_t* frag = (mca_btl_openib_frag_t*)descriptor;
assert(frag->type == MCA_BTL_OPENIB_FRAG_SEND);
frag->endpoint = endpoint;
frag->hdr->tag = tag;
frag->wr_desc.sr_desc.opcode = IBV_WR_SEND;
return mca_btl_openib_endpoint_send(endpoint, frag);
}
/*
* RDMA WRITE local buffer to remote buffer address.
*/
int mca_btl_openib_put( mca_btl_base_module_t* btl,
mca_btl_base_endpoint_t* endpoint,
mca_btl_base_descriptor_t* descriptor)
{
int rc = OMPI_SUCCESS;
struct ibv_send_wr* bad_wr;
mca_btl_openib_frag_t* frag = (mca_btl_openib_frag_t*) descriptor;
/* mca_btl_openib_module_t* openib_btl = (mca_btl_openib_module_t*) btl; */
int qp = frag->base.order;
if(MCA_BTL_NO_ORDER == qp)
qp = mca_btl_openib_component.rdma_qp;
/* setup for queued requests */
frag->endpoint = endpoint;
frag->wr_desc.sr_desc.opcode = IBV_WR_RDMA_WRITE;
/* check for a send wqe */
if (OPAL_THREAD_ADD32(&endpoint->qps[qp].sd_wqe,-1) < 0) {
OPAL_THREAD_ADD32(&endpoint->qps[qp].sd_wqe,1);
OPAL_THREAD_LOCK(&endpoint->endpoint_lock);
opal_list_append(&endpoint->pending_put_frags, (opal_list_item_t *)frag);
OPAL_THREAD_UNLOCK(&endpoint->endpoint_lock);
return rc;
/* post descriptor */
} else {
int ib_rc;
frag->wr_desc.sr_desc.send_flags = IBV_SEND_SIGNALED;
#if OMPI_ENABLE_HETEROGENEOUS_SUPPORT
if ((endpoint->endpoint_proc->proc_ompi->proc_arch & OMPI_ARCH_ISBIGENDIAN) !=
(ompi_proc_local()->proc_arch & OMPI_ARCH_ISBIGENDIAN)) {
frag->wr_desc.sr_desc.wr.rdma.remote_addr = opal_swap_bytes8(frag->base.des_dst->seg_addr.lval);
frag->wr_desc.sr_desc.wr.rdma.rkey = opal_swap_bytes4(frag->base.des_dst->seg_key.key32[0]);
} else
#endif
{
frag->wr_desc.sr_desc.wr.rdma.remote_addr = frag->base.des_dst->seg_addr.lval;
frag->wr_desc.sr_desc.wr.rdma.rkey = frag->base.des_dst->seg_key.key32[0];
}
frag->sg_entry.addr = (unsigned long) frag->base.des_src->seg_addr.pval;
frag->sg_entry.length = frag->base.des_src->seg_len;
frag->base.order = qp;
ib_rc = ibv_post_send(endpoint->qps[qp].lcl_qp, &frag->wr_desc.sr_desc, &bad_wr);
if(ib_rc)
rc = OMPI_ERROR;
/* mca_btl_openib_post_srr_all(openib_btl, 1); */
/* mca_btl_openib_endpoint_post_rr_all(endpoint, 1); */
}
return rc;
}
/*
* RDMA READ remote buffer to local buffer address.
*/
int mca_btl_openib_get( mca_btl_base_module_t* btl,
mca_btl_base_endpoint_t* endpoint,
mca_btl_base_descriptor_t* descriptor)
{
int rc;
struct ibv_send_wr* bad_wr;
mca_btl_openib_frag_t* frag = (mca_btl_openib_frag_t*) descriptor;
/* mca_btl_openib_module_t* openib_btl = (mca_btl_openib_module_t*) btl; */
int qp = frag->base.order;
frag->endpoint = endpoint;
frag->wr_desc.sr_desc.opcode = IBV_WR_RDMA_READ;
if(MCA_BTL_NO_ORDER == qp)
qp = mca_btl_openib_component.rdma_qp;
/* check for a send wqe */
if (OPAL_THREAD_ADD32(&endpoint->qps[qp].sd_wqe,-1) < 0) {
OPAL_THREAD_ADD32(&endpoint->qps[qp].sd_wqe,1);
OPAL_THREAD_LOCK(&endpoint->endpoint_lock);
opal_list_append(&endpoint->pending_get_frags, (opal_list_item_t*)frag);
OPAL_THREAD_UNLOCK(&endpoint->endpoint_lock);
return OMPI_SUCCESS;
/* check for a get token */
} else if(OPAL_THREAD_ADD32(&endpoint->get_tokens,-1) < 0) {
OPAL_THREAD_ADD32(&endpoint->qps[qp].sd_wqe,1);
OPAL_THREAD_ADD32(&endpoint->get_tokens,1);
OPAL_THREAD_LOCK(&endpoint->endpoint_lock);
opal_list_append(&endpoint->pending_get_frags, (opal_list_item_t*)frag);
OPAL_THREAD_UNLOCK(&endpoint->endpoint_lock);
return OMPI_SUCCESS;
} else {
frag->wr_desc.sr_desc.send_flags = IBV_SEND_SIGNALED;
#if OMPI_ENABLE_HETEROGENEOUS_SUPPORT
if ((endpoint->endpoint_proc->proc_ompi->proc_arch & OMPI_ARCH_ISBIGENDIAN) !=
(ompi_proc_local()->proc_arch & OMPI_ARCH_ISBIGENDIAN)) {
frag->wr_desc.sr_desc.wr.rdma.remote_addr = opal_swap_bytes8(frag->base.des_src->seg_addr.lval);
frag->wr_desc.sr_desc.wr.rdma.rkey = opal_swap_bytes4(frag->base.des_src->seg_key.key32[0]);
} else
#endif
{
frag->wr_desc.sr_desc.wr.rdma.remote_addr = frag->base.des_src->seg_addr.lval;
frag->wr_desc.sr_desc.wr.rdma.rkey = frag->base.des_src->seg_key.key32[0];
}
frag->sg_entry.addr = (unsigned long) frag->base.des_dst->seg_addr.pval;
frag->sg_entry.length = frag->base.des_dst->seg_len;
frag->base.order = qp;
if(ibv_post_send(endpoint->qps[qp].lcl_qp, &frag->wr_desc.sr_desc, &bad_wr)){
BTL_ERROR(("error posting send request errno (%d) says %s",
errno, strerror(errno)));
rc = ORTE_ERROR;
} else {
rc = ORTE_SUCCESS;
}
#if 0
mca_btl_openib_post_srr_all(openib_btl, 1);
mca_btl_openib_endpoint_post_rr_all(endpoint, 1);
#endif
}
return rc;
}
int mca_btl_openib_ft_event(int state) {
if(OPAL_CRS_CHECKPOINT == state) {
;
}
else if(OPAL_CRS_CONTINUE == state) {
;
}
else if(OPAL_CRS_RESTART == state) {
;
}
else if(OPAL_CRS_TERM == state ) {
;
}
else {
;
}
return OMPI_SUCCESS;
}