34897cee9f
Make the del_procs, module finalize, and endpoint destructors be the same between trunk and v1.8, with one exception: the very beginning of v1.8 module_finalize calls del_procs for each proc to simulate/pretend the trunk/v1.9 PML behavior of calling del_procs before module_finalize. This commit was SVN r32437.
2337 строки
83 KiB
C
2337 строки
83 KiB
C
/* -*- Mode: C; c-basic-offset:4 ; indent-tabs-mode:nil -*- */
|
|
/*
|
|
* Copyright (c) 2004-2005 The Trustees of Indiana University and Indiana
|
|
* University Research and Technology
|
|
* Corporation. All rights reserved.
|
|
* Copyright (c) 2004-2008 The University of Tennessee and The University
|
|
* of Tennessee Research Foundation. All rights
|
|
* reserved.
|
|
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
|
|
* University of Stuttgart. All rights reserved.
|
|
* Copyright (c) 2004-2005 The Regents of the University of California.
|
|
* All rights reserved.
|
|
* Copyright (c) 2006 Sandia National Laboratories. All rights
|
|
* reserved.
|
|
* Copyright (c) 2009-2014 Cisco Systems, Inc. All rights reserved.
|
|
* Copyright (c) 2014 Los Alamos National Security, LLC. All rights
|
|
* reserved.
|
|
* $COPYRIGHT$
|
|
*
|
|
* Additional copyrights may follow
|
|
*
|
|
* $HEADER$
|
|
*/
|
|
|
|
#include "opal_config.h"
|
|
|
|
#include <errno.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <stdlib.h>
|
|
#include <time.h>
|
|
|
|
#include "opal/class/opal_bitmap.h"
|
|
#include "opal/prefetch.h"
|
|
#include "opal/util/output.h"
|
|
#include "opal/datatype/opal_convertor.h"
|
|
#include "opal/include/opal_stdint.h"
|
|
#include "opal/util/show_help.h"
|
|
|
|
#include "opal/mca/btl/btl.h"
|
|
#include "opal/mca/btl/base/btl_base_error.h"
|
|
#include "opal/mca/mpool/base/base.h"
|
|
#include "opal/mca/mpool/mpool.h"
|
|
|
|
#include "btl_usnic.h"
|
|
#include "btl_usnic_connectivity.h"
|
|
#include "btl_usnic_frag.h"
|
|
#include "btl_usnic_proc.h"
|
|
#include "btl_usnic_endpoint.h"
|
|
#include "btl_usnic_module.h"
|
|
#include "btl_usnic_util.h"
|
|
#include "btl_usnic_send.h"
|
|
#include "btl_usnic_ack.h"
|
|
#include "btl_usnic_hwloc.h"
|
|
#include "btl_usnic_stats.h"
|
|
|
|
static void
|
|
opal_btl_usnic_channel_finalize(
|
|
opal_btl_usnic_module_t *module,
|
|
struct opal_btl_usnic_channel_t *channel);
|
|
|
|
|
|
/* Compute and set the proper value for sfrag->sf_size. This must not be used
|
|
* during usnic_alloc, since the PML might change the segment size after
|
|
* usnic_alloc returns. */
|
|
static inline void compute_sf_size(opal_btl_usnic_send_frag_t *sfrag)
|
|
{
|
|
opal_btl_usnic_frag_t *frag;
|
|
|
|
frag = &sfrag->sf_base;
|
|
|
|
assert(frag->uf_base.des_local_count > 0);
|
|
assert(frag->uf_base.des_local_count <= 2);
|
|
|
|
/* belt and suspenders: second len should be zero if only one SGE */
|
|
assert(2 == frag->uf_base.des_local_count || 0 == frag->uf_local_seg[1].seg_len);
|
|
|
|
sfrag->sf_size = 0;
|
|
sfrag->sf_size += frag->uf_local_seg[0].seg_len;
|
|
sfrag->sf_size += frag->uf_local_seg[1].seg_len;
|
|
}
|
|
|
|
/*
|
|
* Loop over all procs sent to us in add_procs and see if we want to
|
|
* add a proc/endpoint for them.
|
|
*/
|
|
static int add_procs_create_endpoints(opal_btl_usnic_module_t *module,
|
|
size_t nprocs,
|
|
opal_proc_t **procs,
|
|
mca_btl_base_endpoint_t **endpoints)
|
|
{
|
|
int rc;
|
|
opal_proc_t* my_proc;
|
|
size_t num_created = 0;
|
|
|
|
/* get pointer to my proc structure */
|
|
my_proc = opal_proc_local_get();
|
|
if (NULL == my_proc) {
|
|
return OPAL_ERR_OUT_OF_RESOURCE;
|
|
}
|
|
|
|
/* Loop over the procs we were given */
|
|
for (size_t i = 0; i < nprocs; i++) {
|
|
struct opal_proc_t* opal_proc = procs[i];
|
|
opal_btl_usnic_proc_t* usnic_proc;
|
|
mca_btl_base_endpoint_t* usnic_endpoint;
|
|
|
|
endpoints[i] = NULL;
|
|
|
|
/* Do not create loopback usnic connections */
|
|
if (opal_proc == my_proc) {
|
|
continue;
|
|
}
|
|
|
|
/* usNIC does not support loopback to the same machine */
|
|
if (OPAL_PROC_ON_LOCAL_NODE(opal_proc->proc_flags)) {
|
|
continue;
|
|
}
|
|
|
|
/* Find (or create if it doesn't exist) this peer's proc.
|
|
This will receive the modex info for that proc. Note that
|
|
the proc is shared by all usnic modules that are trying
|
|
to reach this destination. */
|
|
usnic_proc = NULL;
|
|
rc = opal_btl_usnic_proc_match(opal_proc, module, &usnic_proc);
|
|
if (OPAL_ERR_UNREACH == rc) {
|
|
/* If the peer doesn't have usnic modex info, then we just
|
|
skip it */
|
|
continue;
|
|
} else if (OPAL_SUCCESS != rc) {
|
|
return OPAL_ERR_OUT_OF_RESOURCE;
|
|
}
|
|
|
|
/* Create the endpoint for this proc/module combination. If we cannot
|
|
* reach this proc via this module, move on to the next proc. */
|
|
usnic_endpoint = NULL;
|
|
rc = opal_btl_usnic_create_endpoint(module, usnic_proc,
|
|
&usnic_endpoint);
|
|
if (OPAL_SUCCESS != rc) {
|
|
opal_output_verbose(5, USNIC_OUT,
|
|
"btl:usnic:%s: unable to create endpoint for module=%p proc=%p\n",
|
|
__func__, (void *)module, (void *)usnic_proc);
|
|
OBJ_RELEASE(usnic_proc);
|
|
continue;
|
|
}
|
|
|
|
/* We like this new endpoint; save it */
|
|
opal_pointer_array_add(&module->all_procs, usnic_proc);
|
|
|
|
union ibv_gid gid = usnic_endpoint->endpoint_remote_addr.gid;
|
|
opal_output_verbose(5, USNIC_OUT,
|
|
"btl:usnic: new usnic peer endpoint: subnet = 0x%016" PRIx64 ", interface = 0x%016" PRIx64,
|
|
ntoh64(gid.global.subnet_prefix),
|
|
ntoh64(gid.global.interface_id));
|
|
|
|
endpoints[i] = usnic_endpoint;
|
|
++num_created;
|
|
}
|
|
|
|
opal_output_verbose(5, USNIC_OUT,
|
|
"btl:usnic: made %" PRIsize_t " endpoints",
|
|
num_created);
|
|
return OPAL_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Print a warning about how the remote peer was unreachable.
|
|
*
|
|
* This is a separate helper function simply because it's somewhat
|
|
* bulky to put inline.
|
|
*/
|
|
static void add_procs_warn_ah_fail(opal_btl_usnic_module_t *module,
|
|
opal_btl_usnic_endpoint_t *endpoint)
|
|
{
|
|
/* Only show the warning if it is enabled */
|
|
if (!mca_btl_usnic_component.show_route_failures) {
|
|
return;
|
|
}
|
|
|
|
char local[IPV4STRADDRLEN], remote[IPV4STRADDRLEN];
|
|
opal_btl_usnic_snprintf_ipv4_addr(local, sizeof(local),
|
|
module->local_addr.ipv4_addr,
|
|
module->local_addr.cidrmask);
|
|
opal_btl_usnic_snprintf_ipv4_addr(remote, sizeof(remote),
|
|
endpoint->endpoint_remote_addr.ipv4_addr,
|
|
endpoint->endpoint_remote_addr.cidrmask);
|
|
|
|
opal_output_verbose(15, USNIC_OUT,
|
|
"btl:usnic: %s/%s (%s) couldn't reach peer %s",
|
|
ibv_get_device_name(module->device),
|
|
module->if_name, local, remote);
|
|
opal_show_help("help-mpi-btl-usnic.txt", "create_ah failed",
|
|
true,
|
|
opal_process_info.nodename,
|
|
local,
|
|
module->if_name,
|
|
ibv_get_device_name(module->device),
|
|
endpoint->endpoint_proc->proc_opal->proc_hostname,
|
|
remote);
|
|
}
|
|
|
|
/* The call to ibv_create_ah() may initiate an ARP resolution, and may
|
|
* therefore take some time to complete. Hence, it will return 1 of 4
|
|
* things:
|
|
*
|
|
* 1. a valid new ah
|
|
* 2. NULL and errno == EAGAIN (ARP not complete; try again later)
|
|
* 3. NULL and errno == EADDRNOTAVAIL (unable to reach peer)
|
|
* 4. NULL and errno != (EAGAIN or ADDRNOTAVAIL) (fatal error)
|
|
*
|
|
* Since ibv_create_ah() is therefore effectively non-blocking, we
|
|
* gang all the endpoint ah creations here in this loop so that we can
|
|
* get some parallelization of ARP resolution.
|
|
*/
|
|
static int add_procs_create_ahs(opal_btl_usnic_module_t *module,
|
|
size_t array_len,
|
|
struct mca_btl_base_endpoint_t **endpoints)
|
|
{
|
|
int ret = OPAL_SUCCESS;
|
|
size_t i;
|
|
size_t num_ah_left;
|
|
time_t ts_last_created;
|
|
struct ibv_ah_attr ah_attr;
|
|
|
|
/* memset the ah_attr to both silence valgrind warnings (since the
|
|
attr struct ends up getting written down an fd to the kernel)
|
|
and actually zero out all the fields that we don't care about
|
|
and want to be logically false. */
|
|
memset(&ah_attr, 0, sizeof(ah_attr));
|
|
ah_attr.is_global = 1;
|
|
ah_attr.port_num = 1;
|
|
|
|
/* Mark all endpoints as unreachable (this should already be done,
|
|
but just be defensive) */
|
|
for (num_ah_left = i = 0; i < array_len; i++) {
|
|
if (NULL != endpoints[i]) {
|
|
endpoints[i]->endpoint_remote_ah = NULL;
|
|
++num_ah_left;
|
|
}
|
|
}
|
|
|
|
ts_last_created = time(NULL);
|
|
while (num_ah_left > 0) {
|
|
for (i = 0; i < array_len; i++) {
|
|
if (NULL != endpoints[i] &&
|
|
NULL == endpoints[i]->endpoint_remote_ah) {
|
|
ah_attr.grh.dgid = endpoints[i]->endpoint_remote_addr.gid;
|
|
endpoints[i]->endpoint_remote_ah =
|
|
ibv_create_ah(module->pd, &ah_attr);
|
|
|
|
/* Got a successfully-created AH */
|
|
if (NULL != endpoints[i]->endpoint_remote_ah) {
|
|
ts_last_created = time(NULL);
|
|
--num_ah_left;
|
|
}
|
|
|
|
/* Got some kind of address failure. This usually
|
|
means that we couldn't find a route to that peer
|
|
(e.g., the networking is hosed between us). So
|
|
just mark that we can't reach this peer, and print
|
|
a pretty warning. */
|
|
else if (EADDRNOTAVAIL == errno ||
|
|
EHOSTUNREACH == errno) {
|
|
add_procs_warn_ah_fail(module, endpoints[i]);
|
|
|
|
OBJ_RELEASE(endpoints[i]);
|
|
endpoints[i] = NULL;
|
|
--num_ah_left;
|
|
}
|
|
|
|
/* Got some other kind of error -- give up on this
|
|
interface. */
|
|
else if (EAGAIN != errno) {
|
|
opal_show_help("help-mpi-btl-usnic.txt", "ibv API failed",
|
|
true,
|
|
opal_process_info.nodename,
|
|
ibv_get_device_name(module->device),
|
|
module->if_name,
|
|
"ibv_create_ah()", __FILE__, __LINE__,
|
|
"Failed to create an address handle");
|
|
ret = OPAL_ERR_OUT_OF_RESOURCE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Has it been too long since our last AH creation (ARP
|
|
resolution)? If so, we're probably never going to finish,
|
|
so just mark all remaining endpoints as unreachable and
|
|
bail. */
|
|
if (num_ah_left > 0 &&
|
|
time(NULL) > (ts_last_created +
|
|
mca_btl_usnic_component.arp_timeout)) {
|
|
opal_show_help("help-mpi-btl-usnic.txt", "ibv_create_ah timeout",
|
|
true,
|
|
opal_process_info.nodename,
|
|
ibv_get_device_name(module->device),
|
|
module->if_name,
|
|
mca_btl_usnic_component.arp_timeout);
|
|
break;
|
|
}
|
|
|
|
/* If we still have addresses that aren't resolved yet, sleep
|
|
a little to let kernel threads do some work behind the
|
|
scenes */
|
|
if (num_ah_left > 0) {
|
|
usleep(1);
|
|
}
|
|
}
|
|
|
|
/* Look through the list:
|
|
- If something went wrong above, free all endpoints.
|
|
- If an otherwise-valid endpoint has no AH, that means we timed
|
|
out trying to resolve it, so just release that endpoint. */
|
|
size_t num_created = 0;
|
|
for (i = 0; i < array_len; i++) {
|
|
if (NULL != endpoints[i]) {
|
|
if (OPAL_SUCCESS != ret ||
|
|
NULL == endpoints[i]->endpoint_remote_ah) {
|
|
OBJ_RELEASE(endpoints[i]);
|
|
endpoints[i] = NULL;
|
|
} else {
|
|
++num_created;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* All done */
|
|
opal_output_verbose(5, USNIC_OUT,
|
|
"btl:usnic: made %" PRIsize_t " address handles",
|
|
num_created);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Add procs to this BTL module, receiving endpoint information from
|
|
* the modex. This is done in 2 phases:
|
|
*
|
|
* 1. Find (or create) the remote proc, and create the associated
|
|
* endpoint.
|
|
* 2. Resolve the address handles for all remote endpoints.
|
|
*
|
|
* The second part is a separate loop from the first part to allow the
|
|
* address lookups to be done in parallel. This comes at a cost,
|
|
* however: we may determine during the 2nd part that we should tear
|
|
* down some or all the endpoints that we created in the 1st part.
|
|
* For example, ibv_create_ah() may fail in a fatal way (i.e., we
|
|
* should fail the entire add_procs()), or it may fail for one or more
|
|
* peers (i.e., we should just mark those peers as unreachable and not
|
|
* add a proc or endpoint for them).
|
|
*/
|
|
static int usnic_add_procs(struct mca_btl_base_module_t* base_module,
|
|
size_t nprocs,
|
|
struct opal_proc_t **procs,
|
|
struct mca_btl_base_endpoint_t** endpoints,
|
|
opal_bitmap_t* reachable)
|
|
{
|
|
opal_btl_usnic_module_t* module = (opal_btl_usnic_module_t*) base_module;
|
|
int rc;
|
|
|
|
/* First, create endpoints (and procs, if they're not already
|
|
created) for all the usnic-reachable procs we were given. */
|
|
rc = add_procs_create_endpoints(module, nprocs, procs, endpoints);
|
|
if (OPAL_SUCCESS != rc) {
|
|
goto fail;
|
|
}
|
|
|
|
/* Create address handles for all the newly-created endpoints */
|
|
rc = add_procs_create_ahs(module, nprocs, endpoints);
|
|
if (OPAL_SUCCESS != rc) {
|
|
goto fail;
|
|
}
|
|
|
|
/* Find all the endpoints with address handles and mark them as
|
|
reachable */
|
|
for (size_t i = 0; i < nprocs; ++i) {
|
|
if (NULL != endpoints[i] &&
|
|
NULL != endpoints[i]->endpoint_remote_ah) {
|
|
opal_bitmap_set_bit(reachable, i);
|
|
}
|
|
}
|
|
|
|
/* This is fairly gross, but we need to output the connectivity
|
|
map after add_procs() has been called on all existing usnic
|
|
modules. The only way I can think to do that is to count each
|
|
time add_procs() is called, and when we're at a multiple of
|
|
component.num_modules (i.e., add_procs() has been called on
|
|
each module -- both during MPI_INIT and dynamic process cases),
|
|
call the function to output the map. */
|
|
static int num_times_add_procs_called = 0;
|
|
++num_times_add_procs_called;
|
|
if (0 == (num_times_add_procs_called %
|
|
mca_btl_usnic_component.num_modules)) {
|
|
opal_btl_usnic_connectivity_map();
|
|
}
|
|
|
|
return OPAL_SUCCESS;
|
|
|
|
fail:
|
|
/* If we get here, it means something went terribly wrong. Scorch
|
|
the earth: destroy all endpoints and say that nothing was
|
|
reachable. */
|
|
for (size_t i = 0; i < nprocs; ++i) {
|
|
if (NULL != endpoints[i]) {
|
|
OBJ_RELEASE(endpoints[i]);
|
|
endpoints[i] = NULL;
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Delete the proc as reachable from this module. If there are
|
|
* multiple usnic modules in a process, we'll come through here
|
|
* multiple times to remove each proc. The OBJ reference counts
|
|
* will make all the details work out.
|
|
*/
|
|
static int usnic_del_procs(struct mca_btl_base_module_t *base_module,
|
|
size_t nprocs,
|
|
struct opal_proc_t **procs,
|
|
struct mca_btl_base_endpoint_t **peers)
|
|
{
|
|
size_t i, j;
|
|
opal_btl_usnic_module_t *module;
|
|
opal_btl_usnic_endpoint_t *endpoint;
|
|
int index;
|
|
|
|
module = (struct opal_btl_usnic_module_t *)base_module;
|
|
|
|
for (i = 0; i < nprocs; i++) {
|
|
opal_btl_usnic_proc_t* proc =
|
|
opal_btl_usnic_proc_lookup_ompi(procs[i]);
|
|
if (NULL != proc) {
|
|
|
|
/* find endpoint for this module */
|
|
for (j = 0; j < proc->proc_endpoint_count; ++j) {
|
|
endpoint = proc->proc_endpoints[j];
|
|
if (NULL != endpoint && endpoint->endpoint_module == module) {
|
|
|
|
/* This call to usnic_del_procs is actually an
|
|
* implicit ACK of every packet we have ever sent
|
|
* ***because it is only ever invoked after an
|
|
* OOB/grpcomm barrier (in MPI_COMM_DISCONNECT and
|
|
* MPI_FINALIZE)***, so call handle_ack (via
|
|
* flush_endpoint) to do all the ACK processing
|
|
* and release all the data that needs
|
|
* releasing. */
|
|
if (!ENDPOINT_DRAINED(endpoint)) {
|
|
opal_btl_usnic_flush_endpoint(endpoint);
|
|
}
|
|
|
|
/* We're all done with this endpoint */
|
|
OBJ_RELEASE(endpoint);
|
|
|
|
break; /* done once we found match */
|
|
}
|
|
}
|
|
|
|
/* remove proc from this module, and decrement its refcount */
|
|
for (index = 0; index < module->all_procs.size; ++index) {
|
|
if (opal_pointer_array_get_item(&module->all_procs, index) ==
|
|
proc) {
|
|
OBJ_RELEASE(proc);
|
|
opal_pointer_array_set_item(&module->all_procs, index,
|
|
NULL);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return OPAL_SUCCESS;
|
|
}
|
|
|
|
|
|
/*
|
|
* Let the PML register a callback function with me
|
|
*/
|
|
static int usnic_register_pml_err_cb(struct mca_btl_base_module_t* btl,
|
|
mca_btl_base_module_error_cb_fn_t cbfunc)
|
|
{
|
|
opal_btl_usnic_module_t *module = (opal_btl_usnic_module_t*) btl;
|
|
|
|
module->pml_error_callback = cbfunc;
|
|
|
|
return OPAL_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* Allocate control messages or eager frags if BTL does not have
|
|
* INPLACE flag. To be clear: max it will ever alloc is eager_limit.
|
|
* THEREFORE: eager_limit is the max that ALLOC must always be able to
|
|
* alloc.
|
|
* --> Contraction in the btl.h documentation.
|
|
*/
|
|
static mca_btl_base_descriptor_t*
|
|
usnic_alloc(struct mca_btl_base_module_t* btl,
|
|
struct mca_btl_base_endpoint_t* endpoint,
|
|
uint8_t order,
|
|
size_t size,
|
|
uint32_t flags)
|
|
{
|
|
opal_btl_usnic_send_frag_t *frag;
|
|
opal_btl_usnic_module_t *module = (opal_btl_usnic_module_t*) btl;
|
|
mca_btl_base_descriptor_t *desc;
|
|
|
|
|
|
/* small is easy, just allocate a small segment */
|
|
if (OPAL_LIKELY(size <= module->max_frag_payload)) {
|
|
opal_btl_usnic_small_send_frag_t *sfrag;
|
|
|
|
sfrag = opal_btl_usnic_small_send_frag_alloc(module);
|
|
if (NULL == sfrag) {
|
|
return NULL;
|
|
}
|
|
frag = &sfrag->ssf_base;
|
|
|
|
/* between MTU and eager limit, we need to allocate a buffer
|
|
* which can hold the data. We will allocate a
|
|
* large fragment, and attach the buffer to it.
|
|
*/
|
|
} else {
|
|
opal_btl_usnic_large_send_frag_t *lfrag;
|
|
|
|
/* truncate to eager_limit */
|
|
if (OPAL_UNLIKELY(size > module->super.btl_eager_limit)) {
|
|
size = module->super.btl_eager_limit;
|
|
}
|
|
|
|
lfrag = opal_btl_usnic_large_send_frag_alloc(module);
|
|
if (OPAL_UNLIKELY(NULL == lfrag)) {
|
|
return NULL;
|
|
}
|
|
frag = &lfrag->lsf_base;
|
|
|
|
assert(size > 0);
|
|
lfrag->lsf_buffer = malloc(size);
|
|
if (OPAL_UNLIKELY(NULL == lfrag->lsf_buffer)) {
|
|
opal_btl_usnic_frag_return(module, &lfrag->lsf_base.sf_base);
|
|
return NULL;
|
|
}
|
|
|
|
/* pointer to buffer for caller */
|
|
frag->sf_base.uf_base.des_local[0].seg_addr.pval = lfrag->lsf_buffer;
|
|
|
|
MSGDEBUG1_OUT("usnic_alloc: packing frag %p on the fly", (void *)frag);
|
|
lfrag->lsf_pack_on_the_fly = true;
|
|
}
|
|
|
|
#if MSGDEBUG2
|
|
opal_output(0, "usnic_alloc: %s frag=%p, size=%d, flags=0x%x\n",
|
|
(size <= module->max_frag_payload)?"small":"large",
|
|
(void *)frag, (int)size, flags);
|
|
#endif
|
|
|
|
/* set endpoint */
|
|
frag->sf_endpoint = endpoint;
|
|
|
|
/* set up descriptor */
|
|
desc = &frag->sf_base.uf_base;
|
|
desc->des_flags = flags;
|
|
desc->des_local[0].seg_len = size;
|
|
desc->des_local_count = 1;
|
|
|
|
return desc;
|
|
}
|
|
|
|
|
|
/**
|
|
* Return an allocated fragment
|
|
*
|
|
* Return the send fragment to the appropriate list
|
|
*/
|
|
static int usnic_free(struct mca_btl_base_module_t* btl,
|
|
mca_btl_base_descriptor_t* des)
|
|
{
|
|
opal_btl_usnic_frag_t* frag = (opal_btl_usnic_frag_t*)des;
|
|
|
|
#if MSGDEBUG2
|
|
opal_output(0, "usnic_free: %p (%s)\n", (void*)frag,
|
|
usnic_frag_type(frag->uf_type));
|
|
#endif
|
|
/* calling free routine gives us ownership - we need to make sure
|
|
* the flag is set for lower layers.
|
|
*/
|
|
frag->uf_base.des_flags |= MCA_BTL_DES_FLAGS_BTL_OWNERSHIP;
|
|
|
|
opal_btl_usnic_frag_return_cond((struct opal_btl_usnic_module_t *)btl,
|
|
frag);
|
|
|
|
return OPAL_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Notes from george:
|
|
*
|
|
* - BTL ALLOC: allocating control messages or eager frags if BTL
|
|
does not have INPLACE flag. To be clear: max it will ever alloc
|
|
is eager_limit. THEREFORE: eager_limit is the max that ALLOC
|
|
must always be able to alloc.
|
|
--> Contraction in the btl.h documentation.
|
|
*
|
|
* - BTL PREPARE SRC: max_send_size frags go through here. Can return
|
|
a smaller size than was asked for.
|
|
*
|
|
* - BTL PREPARE DEST: not used if you don't have PUT/GET
|
|
*
|
|
* - BTL SEND: will be used after ALLOC / PREPARE
|
|
*/
|
|
|
|
/* Responsible for handling "small" frags (reserve + *size <= max_frag_payload)
|
|
* in the same manner as btl_prepare_src. Must return a smaller amount than
|
|
* requested if the given convertor cannot process the entire (*size).
|
|
*/
|
|
static inline
|
|
opal_btl_usnic_send_frag_t *
|
|
prepare_src_small(
|
|
struct opal_btl_usnic_module_t* module,
|
|
struct mca_btl_base_endpoint_t* endpoint,
|
|
struct mca_mpool_base_registration_t* registration,
|
|
struct opal_convertor_t* convertor,
|
|
uint8_t order,
|
|
size_t reserve,
|
|
size_t* size,
|
|
uint32_t flags)
|
|
{
|
|
opal_btl_usnic_send_frag_t *frag;
|
|
opal_btl_usnic_small_send_frag_t *sfrag;
|
|
size_t payload_len;
|
|
|
|
payload_len = *size + reserve;
|
|
assert(payload_len <= module->max_frag_payload); /* precondition */
|
|
|
|
sfrag = opal_btl_usnic_small_send_frag_alloc(module);
|
|
if (OPAL_UNLIKELY(NULL == sfrag)) {
|
|
return NULL;
|
|
}
|
|
frag = &sfrag->ssf_base;
|
|
|
|
/* In the case of a convertor, we will copy the data in now, since that is
|
|
* the cheapest way to discover how much we can actually send (since we know
|
|
* we will pack it anyway later). The alternative is to do all of the
|
|
* following:
|
|
* 1) clone_with_position(convertor) and see where the new position ends up
|
|
* actually being (see opal_btl_usnic_convertor_pack_peek). Otherwise we
|
|
* aren't fulfilling our contract w.r.t. (*size).
|
|
* 2) Add a bunch of branches checking for different cases, both here and in
|
|
* progress_sends
|
|
* 3) If we choose to defer the packing, we must clone the convertor because
|
|
* the PML owns it and might reuse it for another prepare_src call.
|
|
*
|
|
* Two convertor clones is likely to be at least as slow as just copying the
|
|
* data and might consume a similar amount of memory. Plus we still have to
|
|
* pack it later to send it.
|
|
*
|
|
* The reason we do not copy non-convertor buffer at this point is because
|
|
* we might still use INLINE for the send, and in that case we do not want
|
|
* to copy the data at all.
|
|
*/
|
|
if (OPAL_UNLIKELY(opal_convertor_need_buffers(convertor))) {
|
|
/* put user data just after end of 1st seg (upper layer header) */
|
|
assert(payload_len <= module->max_frag_payload);
|
|
usnic_convertor_pack_simple(
|
|
convertor,
|
|
(IOVBASE_TYPE*)(intptr_t)(frag->sf_base.uf_local_seg[0].seg_addr.lval + reserve),
|
|
*size,
|
|
size);
|
|
payload_len = reserve + *size;
|
|
frag->sf_base.uf_base.des_local_count = 1;
|
|
/* PML will copy header into beginning of segment */
|
|
frag->sf_base.uf_local_seg[0].seg_len = payload_len;
|
|
} else {
|
|
opal_convertor_get_current_pointer(convertor,
|
|
&sfrag->ssf_base.sf_base.uf_local_seg[1].seg_addr.pval);
|
|
frag->sf_base.uf_base.des_local_count = 2;
|
|
frag->sf_base.uf_local_seg[0].seg_len = reserve;
|
|
frag->sf_base.uf_local_seg[1].seg_len = *size;
|
|
}
|
|
|
|
frag->sf_base.uf_base.des_flags = flags;
|
|
frag->sf_endpoint = endpoint;
|
|
|
|
return frag;
|
|
}
|
|
|
|
/* Packs data from the given large send frag into single new segment and
|
|
* returns a pointer to it. The packed data comes first from SG[0] (PML
|
|
* header) and then second from either SG[1] (if seg_addr is non-NULL) or from
|
|
* the convertor contained in the frag.
|
|
*
|
|
* The frag's bookkeeping data will be updated appropriately. */
|
|
static
|
|
opal_btl_usnic_chunk_segment_t *
|
|
pack_chunk_seg_from_frag(
|
|
struct opal_btl_usnic_module_t* module,
|
|
opal_btl_usnic_large_send_frag_t *lfrag)
|
|
{
|
|
opal_btl_usnic_chunk_segment_t *seg;
|
|
uint8_t *copyptr;
|
|
size_t copylen;
|
|
size_t seg_space;
|
|
size_t max_data;
|
|
|
|
assert(NULL != lfrag);
|
|
/* never should be attempting to pack if we've already packed everything */
|
|
assert(lfrag->lsf_pack_bytes_left > 0);
|
|
|
|
seg = opal_btl_usnic_chunk_segment_alloc(module);
|
|
if (OPAL_UNLIKELY(NULL == seg)) {
|
|
/* TODO look at ways to deal with this case more gracefully, possibly as
|
|
* part of capping the overall BTL memory consumption. Watch out for
|
|
* possible MPI-layer deadlock. */
|
|
BTL_ERROR(("chunk segment allocation error"));
|
|
abort(); /* XXX */
|
|
}
|
|
|
|
seg_space = module->max_chunk_payload;
|
|
copyptr = seg->ss_base.us_payload.raw;
|
|
|
|
/* Keep copying in as long as we have space, there is data to be copied, and
|
|
* we aren't using a convertor (SG[1] will be NULL if we have a convertor).
|
|
*/
|
|
while (seg_space > 0 &&
|
|
lfrag->lsf_pack_bytes_left > 0 &&
|
|
NULL != lfrag->lsf_cur_ptr) {
|
|
if (seg_space > lfrag->lsf_bytes_left_in_sge) {
|
|
copylen = lfrag->lsf_bytes_left_in_sge;
|
|
} else {
|
|
copylen = seg_space;
|
|
}
|
|
|
|
memcpy(copyptr, lfrag->lsf_cur_ptr, copylen);
|
|
seg_space -= copylen;
|
|
copyptr += copylen;
|
|
lfrag->lsf_bytes_left_in_sge -= copylen;
|
|
lfrag->lsf_pack_bytes_left -= copylen;
|
|
if (lfrag->lsf_bytes_left_in_sge > 0) {
|
|
lfrag->lsf_cur_ptr += copylen;
|
|
} else {
|
|
++lfrag->lsf_cur_sge;
|
|
lfrag->lsf_cur_ptr =
|
|
lfrag->lsf_des_src[lfrag->lsf_cur_sge].seg_addr.pval;
|
|
lfrag->lsf_bytes_left_in_sge =
|
|
lfrag->lsf_des_src[lfrag->lsf_cur_sge].seg_len;
|
|
}
|
|
}
|
|
|
|
if (seg_space > 0 && lfrag->lsf_pack_bytes_left > 0) {
|
|
/* the remaining bytes come from a convertor; pack using it */
|
|
assert(NULL == lfrag->lsf_cur_ptr);
|
|
assert(1 == lfrag->lsf_cur_sge);
|
|
|
|
copylen = lfrag->lsf_pack_bytes_left;
|
|
if (copylen > seg_space) {
|
|
copylen = seg_space;
|
|
}
|
|
usnic_convertor_pack_simple(&lfrag->lsf_base.sf_convertor, copyptr,
|
|
copylen, &max_data);
|
|
seg_space -= max_data;
|
|
lfrag->lsf_bytes_left_in_sge -= max_data;
|
|
lfrag->lsf_pack_bytes_left -= max_data;
|
|
}
|
|
|
|
MSGDEBUG1_OUT("%s: packed seg=%p, frag=%p, payload=%zd\n",
|
|
__func__, (void *)seg, (void *)lfrag,
|
|
(module->max_chunk_payload - seg_space));
|
|
|
|
assert(lfrag->lsf_cur_sge <= 2);
|
|
assert(seg_space < module->max_chunk_payload); /* must make progress */
|
|
|
|
seg->ss_parent_frag = &lfrag->lsf_base;
|
|
seg->ss_base.us_sg_entry[0].length = module->max_chunk_payload - seg_space;
|
|
|
|
return seg;
|
|
}
|
|
|
|
static
|
|
void *
|
|
pack_chunk_seg_chain_with_reserve(
|
|
struct opal_btl_usnic_module_t* module,
|
|
opal_btl_usnic_large_send_frag_t *lfrag,
|
|
size_t reserve_len,
|
|
opal_convertor_t *convertor,
|
|
size_t max_convertor_bytes,
|
|
size_t *convertor_bytes_packed)
|
|
{
|
|
opal_btl_usnic_chunk_segment_t *seg;
|
|
void *ret_ptr = NULL;
|
|
int n_segs;
|
|
uint8_t *copyptr;
|
|
size_t copylen;
|
|
size_t seg_space;
|
|
size_t max_data;
|
|
bool first_pass;
|
|
|
|
assert(NULL != lfrag);
|
|
assert(NULL != convertor_bytes_packed);
|
|
|
|
n_segs = 0;
|
|
*convertor_bytes_packed = 0;
|
|
|
|
first_pass = true;
|
|
while (*convertor_bytes_packed < max_convertor_bytes ||
|
|
first_pass) {
|
|
seg = opal_btl_usnic_chunk_segment_alloc(module);
|
|
if (OPAL_UNLIKELY(NULL == seg)) {
|
|
BTL_ERROR(("chunk segment allocation error"));
|
|
abort(); /* XXX */
|
|
}
|
|
++n_segs;
|
|
|
|
seg_space = module->max_chunk_payload;
|
|
copyptr = seg->ss_base.us_payload.raw;
|
|
|
|
if (first_pass && reserve_len > 0) {
|
|
/* logic could accommodate >max, but currently doesn't */
|
|
assert(reserve_len <= module->max_chunk_payload);
|
|
ret_ptr = copyptr;
|
|
seg_space -= reserve_len;
|
|
copyptr += reserve_len;
|
|
}
|
|
|
|
/* now pack any convertor data */
|
|
if (*convertor_bytes_packed < max_convertor_bytes && seg_space > 0) {
|
|
copylen = max_convertor_bytes - *convertor_bytes_packed;
|
|
if (copylen > seg_space) {
|
|
copylen = seg_space;
|
|
}
|
|
usnic_convertor_pack_simple(convertor, copyptr, copylen, &max_data);
|
|
seg_space -= max_data;
|
|
*convertor_bytes_packed += max_data;
|
|
|
|
/* If unable to pack any of the remaining bytes, release the
|
|
* most recently allocated segment and finish processing.
|
|
*/
|
|
if (seg_space == module->max_chunk_payload) {
|
|
assert(max_data == 0); /* only way this can happen */
|
|
opal_btl_usnic_chunk_segment_return(module, seg);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* bozo checks */
|
|
assert(seg_space >= 0);
|
|
assert(seg_space < module->max_chunk_payload);
|
|
|
|
/* append segment of data to chain to send */
|
|
seg->ss_parent_frag = &lfrag->lsf_base;
|
|
seg->ss_base.us_sg_entry[0].length = module->max_chunk_payload - seg_space;
|
|
opal_list_append(&lfrag->lsf_seg_chain, &seg->ss_base.us_list.super);
|
|
|
|
#if MSGDEBUG1
|
|
opal_output(0, "%s: appending seg=%p, frag=%p, payload=%zd\n",
|
|
__func__, (void *)seg, (void *)lfrag,
|
|
(module->max_chunk_payload - seg_space));
|
|
#endif
|
|
|
|
first_pass = false;
|
|
}
|
|
|
|
return ret_ptr;
|
|
}
|
|
|
|
/* Responsible for handling "large" frags (reserve + *size > max_frag_payload)
|
|
* in the same manner as btl_prepare_src. Must return a smaller amount than
|
|
* requested if the given convertor cannot process the entire (*size).
|
|
*/
|
|
static
|
|
opal_btl_usnic_send_frag_t *
|
|
prepare_src_large(
|
|
struct opal_btl_usnic_module_t* module,
|
|
struct mca_btl_base_endpoint_t* endpoint,
|
|
struct mca_mpool_base_registration_t* registration,
|
|
struct opal_convertor_t* convertor,
|
|
uint8_t order,
|
|
size_t reserve,
|
|
size_t* size,
|
|
uint32_t flags)
|
|
{
|
|
opal_btl_usnic_send_frag_t *frag;
|
|
opal_btl_usnic_large_send_frag_t *lfrag;
|
|
int rc;
|
|
|
|
/* Get holder for the msg */
|
|
lfrag = opal_btl_usnic_large_send_frag_alloc(module);
|
|
if (OPAL_UNLIKELY(NULL == lfrag)) {
|
|
return NULL;
|
|
}
|
|
frag = &lfrag->lsf_base;
|
|
|
|
/* The header location goes in SG[0], payload in SG[1]. If we are using a
|
|
* convertor then SG[1].seg_len is accurate but seg_addr is NULL. */
|
|
frag->sf_base.uf_base.des_local_count = 2;
|
|
|
|
/* stash header location, PML will write here */
|
|
frag->sf_base.uf_local_seg[0].seg_addr.pval = &lfrag->lsf_ompi_header;
|
|
frag->sf_base.uf_local_seg[0].seg_len = reserve;
|
|
/* make sure upper header small enough */
|
|
assert(reserve <= sizeof(lfrag->lsf_ompi_header));
|
|
|
|
if (OPAL_UNLIKELY(opal_convertor_need_buffers(convertor))) {
|
|
/* threshold == -1 means always pack eagerly */
|
|
if (mca_btl_usnic_component.pack_lazy_threshold >= 0 &&
|
|
*size >= (size_t)mca_btl_usnic_component.pack_lazy_threshold) {
|
|
MSGDEBUG1_OUT("packing frag %p on the fly", (void *)frag);
|
|
lfrag->lsf_pack_on_the_fly = true;
|
|
|
|
/* tell the PML we will absorb as much as possible while still
|
|
* respecting indivisible element boundaries in the convertor */
|
|
*size = opal_btl_usnic_convertor_pack_peek(convertor, *size);
|
|
|
|
/* Clone the convertor b/c we (the BTL) don't own it and the PML
|
|
* might mutate it after we return from this function. */
|
|
rc = opal_convertor_clone(convertor, &frag->sf_convertor,
|
|
/*copy_stack=*/true);
|
|
if (OPAL_UNLIKELY(OPAL_SUCCESS != rc)) {
|
|
BTL_ERROR(("unexpected convertor clone error"));
|
|
abort(); /* XXX */
|
|
}
|
|
}
|
|
else {
|
|
/* pack everything in the convertor into a chain of segments now,
|
|
* leaving space for the PML header in the first segment */
|
|
lfrag->lsf_base.sf_base.uf_local_seg[0].seg_addr.pval =
|
|
pack_chunk_seg_chain_with_reserve(module, lfrag, reserve,
|
|
convertor, *size, size);
|
|
}
|
|
|
|
/* We set SG[1] to {NULL,bytes_packed} so that various calculations
|
|
* by both PML and this BTL will be correct. For example, the PML adds
|
|
* up the bytes in the descriptor segments to determine if an MPI-level
|
|
* request is complete or not. */
|
|
frag->sf_base.uf_local_seg[1].seg_addr.pval = NULL;
|
|
frag->sf_base.uf_local_seg[1].seg_len = *size;
|
|
} else {
|
|
/* convertor not needed, just save the payload pointer in SG[1] */
|
|
lfrag->lsf_pack_on_the_fly = true;
|
|
opal_convertor_get_current_pointer(convertor,
|
|
&frag->sf_base.uf_local_seg[1].seg_addr.pval);
|
|
frag->sf_base.uf_local_seg[1].seg_len = *size;
|
|
}
|
|
|
|
frag->sf_base.uf_base.des_flags = flags;
|
|
frag->sf_endpoint = endpoint;
|
|
|
|
return frag;
|
|
}
|
|
|
|
|
|
/**
|
|
* Note the "user" data the PML wishes to communicate and return a descriptor
|
|
* that can be used for send or put. We create a frag (which is also a
|
|
* descriptor by virtue of its base class) and populate it with enough
|
|
* source information to complete a future send/put.
|
|
*
|
|
* We will create either a small send frag if < than an MTU, otherwise a large
|
|
* send frag. The convertor will be saved for deferred packing if the user
|
|
* buffer is noncontiguous. Otherwise it will be saved in one of the
|
|
* descriptor's SGEs.
|
|
*
|
|
* NOTE that the *only* reason this routine is allowed to return a size smaller
|
|
* than was requested is if the convertor cannot process the entire amount.
|
|
*/
|
|
static mca_btl_base_descriptor_t*
|
|
usnic_prepare_src(
|
|
struct mca_btl_base_module_t* base_module,
|
|
struct mca_btl_base_endpoint_t* endpoint,
|
|
struct mca_mpool_base_registration_t* registration,
|
|
struct opal_convertor_t* convertor,
|
|
uint8_t order,
|
|
size_t reserve,
|
|
size_t* size,
|
|
uint32_t flags)
|
|
{
|
|
opal_btl_usnic_module_t *module = (opal_btl_usnic_module_t*) base_module;
|
|
opal_btl_usnic_send_frag_t *frag;
|
|
uint32_t payload_len;
|
|
#if MSGDEBUG2
|
|
size_t osize = *size;
|
|
#endif
|
|
|
|
/* Do we need to check the connectivity? If enabled, we'll check
|
|
the connectivity at either first send to peer X or first ACK to
|
|
peer X. */
|
|
opal_btl_usnic_check_connectivity(module, endpoint);
|
|
|
|
/*
|
|
* if total payload len fits in one MTU use small send, else large
|
|
*/
|
|
payload_len = *size + reserve;
|
|
if (payload_len <= module->max_frag_payload) {
|
|
frag = prepare_src_small(module, endpoint, registration, convertor,
|
|
order, reserve, size, flags);
|
|
} else {
|
|
frag = prepare_src_large(module, endpoint, registration, convertor,
|
|
order, reserve, size, flags);
|
|
}
|
|
|
|
#if MSGDEBUG2
|
|
opal_output(0, "prep_src: %s %s frag %p, size=%d+%u (was %u), conv=%p\n",
|
|
module->device->name,
|
|
(reserve + *size) <= module->max_frag_payload?"small":"large",
|
|
(void *)frag, (int)reserve, (unsigned)*size, (unsigned)osize,
|
|
(void *)convertor);
|
|
#if MSGDEBUG1
|
|
{
|
|
unsigned i;
|
|
mca_btl_base_descriptor_t *desc = &frag->sf_base.uf_base;
|
|
for (i=0; i<desc->des_local_count; ++i) {
|
|
opal_output(0, " %d: ptr:%p len:%d\n", i,
|
|
(void *)desc->des_local[i].seg_addr.pval,
|
|
desc->des_local[i].seg_len);
|
|
}
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
return &frag->sf_base.uf_base;
|
|
}
|
|
|
|
static mca_btl_base_descriptor_t*
|
|
usnic_prepare_dst(
|
|
struct mca_btl_base_module_t* base_module,
|
|
struct mca_btl_base_endpoint_t* endpoint,
|
|
struct mca_mpool_base_registration_t* registration,
|
|
struct opal_convertor_t* convertor,
|
|
uint8_t order,
|
|
size_t reserve,
|
|
size_t* size,
|
|
uint32_t flags)
|
|
{
|
|
opal_btl_usnic_put_dest_frag_t *pfrag;
|
|
opal_btl_usnic_module_t *module;
|
|
void *data_ptr;
|
|
|
|
module = (opal_btl_usnic_module_t *)base_module;
|
|
|
|
/* allocate a fragment for this */
|
|
pfrag = (opal_btl_usnic_put_dest_frag_t *)
|
|
opal_btl_usnic_put_dest_frag_alloc(module);
|
|
if (NULL == pfrag) {
|
|
return NULL;
|
|
}
|
|
|
|
/* find start of the data */
|
|
opal_convertor_get_current_pointer(convertor, (void **) &data_ptr);
|
|
|
|
/* make a seg entry pointing at data_ptr */
|
|
pfrag->uf_remote_seg[0].seg_addr.pval = data_ptr;
|
|
pfrag->uf_remote_seg[0].seg_len = *size;
|
|
|
|
pfrag->uf_base.order = order;
|
|
pfrag->uf_base.des_flags = flags;
|
|
|
|
#if MSGDEBUG2
|
|
opal_output(0, "prep_dst size=%d, addr=%p, pfrag=%p\n", (int)*size,
|
|
data_ptr, (void *)pfrag);
|
|
#endif
|
|
|
|
return &pfrag->uf_base;
|
|
}
|
|
|
|
|
|
/*
|
|
* Emulate an RDMA put. We'll send the remote address
|
|
* across to the other side so it will know where to put the data
|
|
*/
|
|
static int
|
|
usnic_put(
|
|
struct mca_btl_base_module_t *btl,
|
|
struct mca_btl_base_endpoint_t *endpoint,
|
|
struct mca_btl_base_descriptor_t *desc)
|
|
{
|
|
int rc;
|
|
opal_btl_usnic_send_frag_t *frag;
|
|
|
|
frag = (opal_btl_usnic_send_frag_t *)desc;
|
|
|
|
compute_sf_size(frag);
|
|
frag->sf_ack_bytes_left = frag->sf_size;
|
|
|
|
#if MSGDEBUG2
|
|
opal_output(0, "usnic_put, frag=%p, size=%d\n", (void *)frag,
|
|
(int)frag->sf_size);
|
|
#if MSGDEBUG1
|
|
{ unsigned i;
|
|
for (i=0; i<desc->des_local_count; ++i) {
|
|
opal_output(0, " %d: ptr:%p len:%d%s\n", i,
|
|
desc->des_local[i].seg_addr.pval,
|
|
desc->des_local[i].seg_len,
|
|
(i==0)?" (source)":"");
|
|
}
|
|
for (i=0; i<desc->des_remote_count; ++i) {
|
|
opal_output(0, " %d: ptr:%p len:%d%s\n", i,
|
|
desc->des_remote[i].seg_addr.pval,
|
|
desc->des_remote[i].seg_len,
|
|
(i==0)?" (dest)":"");
|
|
}
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
/* copy out address - why does he not use our provided holder? */
|
|
frag->sf_base.uf_remote_seg[0].seg_addr.pval = desc->des_remote->seg_addr.pval;
|
|
|
|
rc = opal_btl_usnic_finish_put_or_send((opal_btl_usnic_module_t *)btl,
|
|
(opal_btl_usnic_endpoint_t *)endpoint,
|
|
frag,
|
|
/*tag=*/MCA_BTL_NO_ORDER);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int usnic_finalize(struct mca_btl_base_module_t* btl)
|
|
{
|
|
int i;
|
|
int rc;
|
|
opal_btl_usnic_module_t* module = (opal_btl_usnic_module_t*)btl;
|
|
|
|
if (module->device_async_event_active) {
|
|
opal_event_del(&(module->device_async_event));
|
|
module->device_async_event_active = false;
|
|
}
|
|
|
|
opal_btl_usnic_channel_finalize(module,
|
|
&module->mod_channels[USNIC_DATA_CHANNEL]);
|
|
opal_btl_usnic_channel_finalize(module,
|
|
&module->mod_channels[USNIC_PRIORITY_CHANNEL]);
|
|
|
|
/* Shutdown the stats on this module */
|
|
opal_btl_usnic_stats_finalize(module);
|
|
|
|
/* Note that usnic_del_procs will have been called for *all* procs
|
|
by this point, so the module->all_endpoints list will be empty.
|
|
Destruct it. */
|
|
opal_mutex_lock(&module->all_endpoints_lock);
|
|
OBJ_DESTRUCT(&(module->all_endpoints));
|
|
module->all_endpoints_constructed = false;
|
|
opal_mutex_unlock(&module->all_endpoints_lock);
|
|
|
|
/* _flush_endpoint should have emptied this list */
|
|
assert(opal_list_is_empty(&(module->pending_resend_segs)));
|
|
OBJ_DESTRUCT(&module->pending_resend_segs);
|
|
|
|
/* Similarly, empty the endpoints_that_need_acks list so that
|
|
endpoints don't still have an endpoint_ack_li item still in
|
|
use */
|
|
while (!opal_list_is_empty(&(module->endpoints_that_need_acks))) {
|
|
(void) opal_list_remove_first(&(module->endpoints_that_need_acks));
|
|
}
|
|
OBJ_DESTRUCT(&module->endpoints_that_need_acks);
|
|
|
|
/* Note that usnic_del_procs will have been called for *all* procs
|
|
by this point, so the module->all_procs list will be empty.
|
|
Destruct it. */
|
|
OBJ_DESTRUCT(&module->all_procs);
|
|
|
|
for (i = module->first_pool; i <= module->last_pool; ++i) {
|
|
OBJ_DESTRUCT(&module->module_recv_buffers[i]);
|
|
}
|
|
free(module->module_recv_buffers);
|
|
|
|
OBJ_DESTRUCT(&module->ack_segs);
|
|
OBJ_DESTRUCT(&module->endpoints_with_sends);
|
|
OBJ_DESTRUCT(&module->small_send_frags);
|
|
OBJ_DESTRUCT(&module->large_send_frags);
|
|
OBJ_DESTRUCT(&module->put_dest_frags);
|
|
OBJ_DESTRUCT(&module->chunk_segs);
|
|
OBJ_DESTRUCT(&module->senders);
|
|
|
|
mca_mpool_base_module_destroy(module->super.btl_mpool);
|
|
|
|
/* destroy the PD after all the CQs and AHs have been destroyed, otherwise
|
|
* we get a minor leak in libusnic_verbs */
|
|
rc = ibv_dealloc_pd(module->pd);
|
|
if (rc) {
|
|
BTL_ERROR(("failed to ibv_dealloc_pd, err=%d (%s)", rc, strerror(rc)));
|
|
}
|
|
|
|
rc = ibv_close_device(module->device_context);
|
|
if (-1 == rc) {
|
|
BTL_ERROR(("failed to ibv_close_device"));
|
|
}
|
|
|
|
return OPAL_SUCCESS;
|
|
}
|
|
|
|
static void
|
|
usnic_do_resends(
|
|
opal_btl_usnic_module_t *module)
|
|
{
|
|
opal_btl_usnic_send_segment_t *sseg;
|
|
opal_btl_usnic_endpoint_t *endpoint;
|
|
struct opal_btl_usnic_channel_t *data_channel;
|
|
int ret;
|
|
|
|
data_channel = &module->mod_channels[USNIC_DATA_CHANNEL];
|
|
|
|
while (((size_t)data_channel->sd_wqe > 0) &&
|
|
!opal_list_is_empty(&module->pending_resend_segs)) {
|
|
|
|
/*
|
|
* If a segment is on the re-send list, it will not
|
|
* be in the retransmit hotel. Post the segment, then check it in.
|
|
*/
|
|
sseg = (opal_btl_usnic_send_segment_t *)
|
|
opal_list_remove_first(&module->pending_resend_segs);
|
|
endpoint = sseg->ss_parent_frag->sf_endpoint;
|
|
|
|
/* clobber any stale piggy-backed ACK */
|
|
sseg->ss_base.us_btl_header->ack_present = 0;
|
|
|
|
/* Only post this segment if not already posted */
|
|
if (sseg->ss_send_posted == 0) {
|
|
|
|
/* resends are always standard segments */
|
|
sseg->ss_channel = USNIC_DATA_CHANNEL;
|
|
|
|
/* re-send the segment */
|
|
opal_btl_usnic_post_segment(module, endpoint, sseg);
|
|
|
|
/* consume a send credit for this endpoint. May send us
|
|
* negative, oh well... This is because the completion routine
|
|
* always increments send credits, and we must balance.
|
|
* Alternative is to mark this as a retrans segment and check in
|
|
* completion, but this ugly way avoids extra checks in the
|
|
* critical path. And, really, respects the concept of send
|
|
* credits more.
|
|
*/
|
|
--endpoint->endpoint_send_credits;
|
|
++module->stats.num_resends;
|
|
}
|
|
|
|
/* restart the retrans timer */
|
|
ret = opal_hotel_checkin(&endpoint->endpoint_hotel,
|
|
sseg, &sseg->ss_hotel_room);
|
|
if (OPAL_UNLIKELY(OPAL_SUCCESS != ret)) {
|
|
BTL_ERROR(("hotel checkin failed\n"));
|
|
abort(); /* should not be possible */
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Given a large send frag (which is at the head of the given endpoint's send
|
|
* queue), generate a new segment, fill it with data, and
|
|
* endpoint_send_segment() it. Takes care of subsequent frag
|
|
* cleanup/bookkeeping (dequeue, descriptor callback, etc.) if this frag was
|
|
* completed by this segment.
|
|
*/
|
|
static void
|
|
usnic_handle_large_send(
|
|
opal_btl_usnic_module_t *module,
|
|
opal_btl_usnic_endpoint_t *endpoint,
|
|
opal_btl_usnic_send_frag_t *frag)
|
|
{
|
|
opal_btl_usnic_large_send_frag_t *lfrag;
|
|
opal_btl_usnic_btl_chunk_header_t *chp;
|
|
opal_btl_usnic_send_segment_t *sseg;
|
|
size_t payload_len;
|
|
|
|
assert(frag->sf_base.uf_type == OPAL_BTL_USNIC_FRAG_LARGE_SEND);
|
|
lfrag = (opal_btl_usnic_large_send_frag_t *)frag;
|
|
if (lfrag->lsf_cur_offset == 0) {
|
|
/* assign a fragment ID */
|
|
do {
|
|
lfrag->lsf_frag_id = endpoint->endpoint_next_frag_id++;
|
|
} while (lfrag->lsf_frag_id == 0);
|
|
}
|
|
|
|
if (lfrag->lsf_pack_on_the_fly) {
|
|
assert(opal_list_is_empty(&lfrag->lsf_seg_chain));
|
|
|
|
/* just pack a single chunk segment and put it on the list */
|
|
sseg = pack_chunk_seg_from_frag(module, lfrag);
|
|
} else {
|
|
/* data was pre-packed in prepare_src */
|
|
sseg = (opal_btl_usnic_send_segment_t *)
|
|
opal_list_remove_first(&lfrag->lsf_seg_chain);
|
|
}
|
|
|
|
assert(NULL != sseg);
|
|
payload_len = sseg->ss_base.us_sg_entry[0].length;
|
|
|
|
assert(payload_len > 0); /* must have made progress */
|
|
assert(payload_len <= module->max_chunk_payload);
|
|
assert(lfrag->lsf_bytes_left >= payload_len);
|
|
|
|
/* set actual packet length for verbs */
|
|
assert(1 == sseg->ss_send_desc.num_sge); /* chunk invariant */
|
|
sseg->ss_base.us_sg_entry[0].length =
|
|
sizeof(opal_btl_usnic_btl_chunk_header_t) + payload_len;
|
|
lfrag->lsf_bytes_left -= payload_len;
|
|
|
|
/* fill in the chunk's BTL header with frag info */
|
|
chp = sseg->ss_base.us_btl_chunk_header;
|
|
chp->ch_frag_id = lfrag->lsf_frag_id;
|
|
chp->ch_frag_size = lfrag->lsf_base.sf_size;
|
|
chp->ch_frag_offset = lfrag->lsf_cur_offset;
|
|
chp->ch_hdr.tag = lfrag->lsf_tag;
|
|
|
|
/* payload length into the header*/
|
|
sseg->ss_base.us_btl_header->payload_len = payload_len;
|
|
|
|
/* do the send */
|
|
opal_btl_usnic_endpoint_send_segment(module, sseg);
|
|
|
|
/* do fragment bookkeeping */
|
|
lfrag->lsf_cur_offset += payload_len;
|
|
|
|
#if MSGDEBUG1
|
|
opal_output(0, "%s: payload_len=%zd, bytes_left=%zd on_the_fly=%s\n",
|
|
__func__, payload_len, lfrag->lsf_bytes_left,
|
|
lfrag->lsf_pack_on_the_fly?"true":"false");
|
|
#endif
|
|
/* done with fragment? */
|
|
if (lfrag->lsf_bytes_left == 0) {
|
|
|
|
/* remove this frag from sending list now because upper layer may
|
|
* decide to put it on some other list in the callback
|
|
*/
|
|
opal_list_remove_item(&endpoint->endpoint_frag_send_queue,
|
|
&frag->sf_base.uf_base.super.super);
|
|
|
|
/* only callback now if this was not a PUT and we own the fragment,
|
|
* otherwise we need to wait until last byte is ACKed
|
|
*/
|
|
if (frag->sf_base.uf_remote_seg[0].seg_addr.pval == NULL &&
|
|
(frag->sf_base.uf_base.des_flags &
|
|
MCA_BTL_DES_FLAGS_BTL_OWNERSHIP)) {
|
|
|
|
OPAL_BTL_USNIC_DO_SEND_FRAG_CB(module, frag, "large");
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Progress the send engine.
|
|
* Should only ever be called from usnic_component_progress() to
|
|
* avoid re-entrancy issues.
|
|
*/
|
|
void
|
|
opal_btl_usnic_module_progress_sends(
|
|
opal_btl_usnic_module_t *module)
|
|
{
|
|
opal_btl_usnic_send_frag_t *frag;
|
|
opal_btl_usnic_send_segment_t *sseg;
|
|
opal_btl_usnic_endpoint_t *endpoint;
|
|
struct opal_btl_usnic_channel_t *data_channel;
|
|
struct opal_btl_usnic_channel_t *prio_channel;
|
|
|
|
/*
|
|
* Post all the sends that we can
|
|
* resends 1st priority
|
|
* ACKs 2nd priority
|
|
* new sends 3rd
|
|
*/
|
|
data_channel = &module->mod_channels[USNIC_DATA_CHANNEL];
|
|
prio_channel = &module->mod_channels[USNIC_PRIORITY_CHANNEL];
|
|
|
|
/*
|
|
* Handle all the retransmits we can
|
|
*/
|
|
if (OPAL_UNLIKELY(!opal_list_is_empty(&module->pending_resend_segs))) {
|
|
usnic_do_resends(module);
|
|
}
|
|
|
|
/*
|
|
* Keep sending as long as there are WQEs and something to do
|
|
*/
|
|
while (((size_t) data_channel->sd_wqe > 0) &&
|
|
!opal_list_is_empty(&module->endpoints_with_sends)) {
|
|
opal_btl_usnic_small_send_frag_t *sfrag;
|
|
size_t payload_len;
|
|
|
|
/*
|
|
* Grab the first endpoint with a pending send. Presence on this
|
|
* list means there is a fragment with data ready to go and
|
|
* the endpoint's send window is open, and the endpoint has send
|
|
* credits.
|
|
*/
|
|
|
|
endpoint = (opal_btl_usnic_endpoint_t *)
|
|
opal_list_get_first(&module->endpoints_with_sends);
|
|
frag = (opal_btl_usnic_send_frag_t *)
|
|
opal_list_get_first(&endpoint->endpoint_frag_send_queue);
|
|
|
|
/*
|
|
* small send? (fragment fits in one segment)
|
|
* Send ptr and length will be in uf_local_seg[0]
|
|
*/
|
|
if (frag->sf_base.uf_type == OPAL_BTL_USNIC_FRAG_SMALL_SEND) {
|
|
|
|
/* remove this frag from sending list now because upper layer may
|
|
* decide to put it on some other list in the callback
|
|
*/
|
|
opal_list_remove_item(&endpoint->endpoint_frag_send_queue,
|
|
&frag->sf_base.uf_base.super.super);
|
|
|
|
sfrag = (opal_btl_usnic_small_send_frag_t *)frag;
|
|
sseg = &sfrag->ssf_segment;
|
|
|
|
/* get payload len from segment */
|
|
payload_len = sfrag->ssf_base.sf_size;
|
|
sseg->ss_base.us_btl_header->payload_len = payload_len;
|
|
|
|
#if MSGDEBUG1
|
|
opal_output(0, "progress send small, frag=%p, ptr=%p, payload=%zd, len=%"PRIu32", ep=%p, tag=%d\n",
|
|
(void *)frag,
|
|
(void *)sseg->ss_base.us_sg_entry[0].addr, payload_len,
|
|
sseg->ss_base.us_sg_entry[0].length,
|
|
(void *)frag->sf_endpoint,
|
|
sseg->ss_base.us_btl_header->tag);
|
|
#endif
|
|
|
|
/* post the send */
|
|
opal_btl_usnic_endpoint_send_segment(module, sseg);
|
|
|
|
/* don't do callback yet if this is a put */
|
|
if (frag->sf_base.uf_remote_seg[0].seg_addr.pval == NULL) {
|
|
/* we have copied the data, perform a callback if
|
|
* we own the fragment and callback is requested.
|
|
* If we don't own the fragment, we cannot callback yet
|
|
* because we are not done with the segment inside.
|
|
* (ACK not received yet)
|
|
*/
|
|
if ((frag->sf_base.uf_base.des_flags &
|
|
(MCA_BTL_DES_SEND_ALWAYS_CALLBACK |
|
|
MCA_BTL_DES_FLAGS_BTL_OWNERSHIP)) ==
|
|
(MCA_BTL_DES_SEND_ALWAYS_CALLBACK |
|
|
MCA_BTL_DES_FLAGS_BTL_OWNERSHIP)) {
|
|
OPAL_BTL_USNIC_DO_SEND_FRAG_CB(module, frag, "small");
|
|
}
|
|
}
|
|
|
|
/* Large sends... */
|
|
} else {
|
|
usnic_handle_large_send(module, endpoint, frag);
|
|
}
|
|
|
|
/* If no more sends or endpoint send window is closed,
|
|
* or no more send credits, remove from send list
|
|
*/
|
|
if (opal_list_is_empty(&endpoint->endpoint_frag_send_queue) ||
|
|
endpoint->endpoint_send_credits <= 0 ||
|
|
!WINDOW_OPEN(endpoint)) {
|
|
|
|
opal_list_remove_item(&module->endpoints_with_sends,
|
|
&endpoint->super);
|
|
endpoint->endpoint_ready_to_send = false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle any ACKs that need to be sent
|
|
*/
|
|
endpoint = opal_btl_usnic_get_first_endpoint_needing_ack(module);
|
|
while (((size_t)prio_channel->sd_wqe) > 0 && endpoint != NULL) {
|
|
opal_btl_usnic_endpoint_t *next_endpoint;
|
|
|
|
/* get next in list */
|
|
next_endpoint = opal_btl_usnic_get_next_endpoint_needing_ack(endpoint);
|
|
|
|
/* Is it time to send ACK? */
|
|
if (endpoint->endpoint_acktime == 0 ||
|
|
endpoint->endpoint_acktime <= get_nsec()) {
|
|
opal_btl_usnic_ack_send(module, endpoint);
|
|
opal_btl_usnic_remove_from_endpoints_needing_ack(endpoint);
|
|
}
|
|
|
|
endpoint = next_endpoint;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initiate a send.
|
|
*
|
|
* Send completion callbacks can be done from a few different places.
|
|
*
|
|
* If this is a send from a fragment we do not own, we always have
|
|
* to wait for the last ACK of the fragment, because we cannot allow
|
|
* the fragment to be re-used until we know we have no more retransmits to do.
|
|
*
|
|
* If this is a send from a fragment we own, and we know we have copied the
|
|
* data from the user's buffer, we can perform the callback immediately
|
|
* (or possibly not at all, simply returning "1" to indicate completion).
|
|
*
|
|
* If this is a send from a fragment we own and we have not yet copied out
|
|
* all the data (as is the case in a large send) then we defer the callback
|
|
* until the last of the data has been copied out by routines called
|
|
* from opal_btl_usnic_progress_sends()
|
|
*/
|
|
static int
|
|
usnic_send(
|
|
struct mca_btl_base_module_t* base_module,
|
|
struct mca_btl_base_endpoint_t* base_endpoint,
|
|
struct mca_btl_base_descriptor_t* descriptor,
|
|
mca_btl_base_tag_t tag)
|
|
{
|
|
int rc;
|
|
opal_btl_usnic_send_frag_t *frag;
|
|
opal_btl_usnic_small_send_frag_t *sfrag;
|
|
opal_btl_usnic_endpoint_t *endpoint;
|
|
opal_btl_usnic_module_t *module;
|
|
opal_btl_usnic_send_segment_t *sseg;
|
|
|
|
endpoint = (opal_btl_usnic_endpoint_t *)base_endpoint;
|
|
module = (opal_btl_usnic_module_t *)base_module;
|
|
frag = (opal_btl_usnic_send_frag_t*) descriptor;
|
|
|
|
assert(frag->sf_endpoint == endpoint);
|
|
frag->sf_base.uf_remote_seg[0].seg_addr.pval = NULL; /* not a PUT */
|
|
|
|
compute_sf_size(frag);
|
|
frag->sf_ack_bytes_left = frag->sf_size;
|
|
|
|
#if MSGDEBUG2
|
|
opal_output(0, "usnic_send: frag=%p, endpoint=%p, tag=%d, sf_size=%d\n",
|
|
(void *)frag, (void *)endpoint,
|
|
tag, (int)frag->sf_size);
|
|
#if MSGDEBUG1
|
|
{ unsigned i;
|
|
opal_output(0, " descriptor->des_flags=0x%x\n", descriptor->des_flags);
|
|
for (i=0; i<descriptor->des_local_count; ++i) {
|
|
opal_output(0, " %d: ptr:%p len:%d\n", i,
|
|
descriptor->des_local[i].seg_addr.pval,
|
|
descriptor->des_local[i].seg_len);
|
|
}
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
/*
|
|
* If this fragment is small enough to inline,
|
|
* and we have enough send WQEs,
|
|
* then inline and fastpath it
|
|
*/
|
|
if (frag->sf_base.uf_type == OPAL_BTL_USNIC_FRAG_SMALL_SEND &&
|
|
frag->sf_ack_bytes_left < module->max_tiny_payload &&
|
|
WINDOW_OPEN(endpoint) &&
|
|
(module->mod_channels[USNIC_PRIORITY_CHANNEL].sd_wqe >=
|
|
module->mod_channels[USNIC_PRIORITY_CHANNEL].fastsend_wqe_thresh)) {
|
|
size_t payload_len;
|
|
|
|
sfrag = (opal_btl_usnic_small_send_frag_t *)frag;
|
|
sseg = &sfrag->ssf_segment;
|
|
|
|
payload_len = frag->sf_ack_bytes_left;
|
|
sseg->ss_base.us_btl_header->payload_len = payload_len;
|
|
|
|
/* fix up verbs SG entries */
|
|
sseg->ss_base.us_sg_entry[0].length =
|
|
sizeof(opal_btl_usnic_btl_header_t) +
|
|
frag->sf_base.uf_local_seg[0].seg_len;
|
|
|
|
if (frag->sf_base.uf_base.des_local_count > 1) {
|
|
|
|
/* only briefly, we will set it back to 1 before release */
|
|
sseg->ss_send_desc.num_sge = 2;
|
|
sseg->ss_base.us_sg_entry[1].addr =
|
|
frag->sf_base.uf_local_seg[1].seg_addr.lval,
|
|
sseg->ss_base.us_sg_entry[1].length =
|
|
frag->sf_base.uf_local_seg[1].seg_len;
|
|
} else {
|
|
sseg->ss_send_desc.num_sge = 1;
|
|
}
|
|
|
|
sseg->ss_send_desc.send_flags |= IBV_SEND_INLINE;
|
|
sseg->ss_channel = USNIC_PRIORITY_CHANNEL;
|
|
sseg->ss_base.us_btl_header->tag = tag;
|
|
#if MSGDEBUG1
|
|
opal_output(0, "INLINE send, sseg=%p", (void *)sseg);
|
|
#endif
|
|
|
|
/* post the segment now */
|
|
opal_btl_usnic_endpoint_send_segment(module, sseg);
|
|
|
|
/* make a copy of the data for retrans */
|
|
if (frag->sf_base.uf_base.des_local_count > 1) {
|
|
memcpy(((char *)(intptr_t)frag->sf_base.uf_local_seg[0].seg_addr.lval +
|
|
frag->sf_base.uf_local_seg[0].seg_len),
|
|
frag->sf_base.uf_local_seg[1].seg_addr.pval,
|
|
frag->sf_base.uf_local_seg[1].seg_len);
|
|
/* update 1st segment length */
|
|
frag->sf_base.uf_base.des_local_count = 1;
|
|
frag->sf_base.uf_local_seg[0].seg_len +=
|
|
frag->sf_base.uf_local_seg[1].seg_len;
|
|
/* set up VERBS SG list */
|
|
/* this maintains invariant that num_sge=1 */
|
|
sseg->ss_send_desc.num_sge = 1;
|
|
sseg->ss_base.us_sg_entry[0].length =
|
|
sizeof(opal_btl_usnic_btl_header_t) + frag->sf_size;
|
|
}
|
|
|
|
/* If we own the frag and callback was requested, callback now,
|
|
* else just return 1 to show completion.
|
|
* If we don't own the frag, need to wait for ACK before
|
|
* performing callback on the frag
|
|
*/
|
|
if (descriptor->des_flags & MCA_BTL_DES_FLAGS_BTL_OWNERSHIP) {
|
|
if (descriptor->des_flags & MCA_BTL_DES_SEND_ALWAYS_CALLBACK) {
|
|
OPAL_BTL_USNIC_DO_SEND_FRAG_CB(module, frag, "immediate small");
|
|
rc = 0;
|
|
} else {
|
|
#if MSGDEBUG1
|
|
opal_output(0, "skipping callback for frag %p, returning 1\n", (void *)frag);
|
|
#endif
|
|
rc = 1;
|
|
++module->stats.pml_send_callbacks; /* returning "1" is an implicit CB */
|
|
}
|
|
} else {
|
|
#if MSGDEBUG1
|
|
opal_output(0, "don't own descriptor, defer callback for frag %p\n", (void *)frag);
|
|
#endif
|
|
descriptor->des_flags |= MCA_BTL_DES_SEND_ALWAYS_CALLBACK;
|
|
rc = 0;
|
|
}
|
|
} else {
|
|
/*
|
|
* We move this off to another function because having it inside
|
|
* this function seems to add a little latency, likely due to inlines
|
|
* making the function too big. In fact, the routine had to go to
|
|
* another file entirely, else the compiler tried to be helpful
|
|
* and inline all by itself.
|
|
*/
|
|
rc = opal_btl_usnic_finish_put_or_send(module, endpoint, frag, tag);
|
|
/* FIXME can we clarify flag set/clear ordering? */
|
|
frag->sf_base.uf_base.des_flags |= MCA_BTL_DES_SEND_ALWAYS_CALLBACK;
|
|
}
|
|
|
|
++module->stats.pml_module_sends;
|
|
|
|
return rc;
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* Initiate an immediate send
|
|
*/
|
|
static int usnic_sendi(struct mca_btl_base_module_t* btl,
|
|
struct mca_btl_base_endpoint_t* endpoint,
|
|
struct opal_convertor_t* convertor,
|
|
void* header,
|
|
size_t header_size,
|
|
size_t payload_size,
|
|
uint8_t order,
|
|
uint32_t flags,
|
|
mca_btl_base_tag_t tag,
|
|
mca_btl_base_descriptor_t** descriptor)
|
|
{
|
|
/* JMS write me */
|
|
return OPAL_ERROR;
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
* RDMA Memory Pool (de)register callbacks
|
|
*/
|
|
static int usnic_reg_mr(void* reg_data, void* base, size_t size,
|
|
mca_mpool_base_registration_t* reg)
|
|
{
|
|
opal_btl_usnic_module_t* mod = (opal_btl_usnic_module_t*)reg_data;
|
|
opal_btl_usnic_reg_t* ud_reg = (opal_btl_usnic_reg_t*)reg;
|
|
|
|
ud_reg->mr = ibv_reg_mr(mod->pd, base, size, IBV_ACCESS_LOCAL_WRITE |
|
|
IBV_ACCESS_REMOTE_WRITE | IBV_ACCESS_REMOTE_READ);
|
|
|
|
if (NULL == ud_reg->mr) {
|
|
return OPAL_ERR_OUT_OF_RESOURCE;
|
|
}
|
|
|
|
return OPAL_SUCCESS;
|
|
}
|
|
|
|
|
|
static int usnic_dereg_mr(void* reg_data,
|
|
mca_mpool_base_registration_t* reg)
|
|
{
|
|
opal_btl_usnic_reg_t* ud_reg = (opal_btl_usnic_reg_t*)reg;
|
|
|
|
if (ud_reg->mr != NULL) {
|
|
if (ibv_dereg_mr(ud_reg->mr)) {
|
|
opal_output(0, "%s: error unpinning UD memory mr=%p: %s\n",
|
|
__func__, (void*) ud_reg->mr, strerror(errno));
|
|
return OPAL_ERROR;
|
|
}
|
|
}
|
|
|
|
ud_reg->mr = NULL;
|
|
return OPAL_SUCCESS;
|
|
}
|
|
|
|
|
|
/*
|
|
* Called back by libevent if an async event occurs on the device
|
|
*/
|
|
static void module_async_event_callback(int fd, short flags, void *arg)
|
|
{
|
|
bool got_event = false;
|
|
bool fatal = false;
|
|
opal_btl_usnic_module_t *module = (opal_btl_usnic_module_t*) arg;
|
|
struct ibv_async_event event;
|
|
|
|
/* Get the async event */
|
|
if (0 != ibv_get_async_event(module->device_context, &event)) {
|
|
/* This shouldn't happen. If it does, treat this as a fatal
|
|
error. */
|
|
fatal = true;
|
|
} else {
|
|
got_event = true;
|
|
}
|
|
|
|
/* Process the event */
|
|
if (got_event) {
|
|
switch (event.event_type) {
|
|
case IBV_EVENT_PORT_ACTIVE:
|
|
/* This event should never happen, because OMPI will
|
|
ignore ports that are down, and we should only get this
|
|
event if a port *was* down and is now *up*. But if we
|
|
ever do get it, it should be a harmless event -- just
|
|
ignore it. */
|
|
opal_output_verbose(10, USNIC_OUT,
|
|
"btl:usnic: got IBV_EVENT_PORT_ACTIVE on %s:%d",
|
|
ibv_get_device_name(module->device),
|
|
module->port_num);
|
|
break;
|
|
|
|
case IBV_EVENT_QP_FATAL:
|
|
case IBV_EVENT_PORT_ERR:
|
|
#if HAVE_DECL_IBV_EVENT_GID_CHANGE
|
|
case IBV_EVENT_GID_CHANGE:
|
|
#endif
|
|
default:
|
|
/* For the moment, these are the only other cases
|
|
usnic_verbs.ko will report to us. However, they're
|
|
only listed here for completeness. We currently abort
|
|
if any async event other than PORT_ACTIVE occurs. */
|
|
|
|
opal_show_help("help-mpi-btl-usnic.txt", "async event",
|
|
true,
|
|
opal_process_info.nodename,
|
|
ibv_get_device_name(module->device),
|
|
module->if_name,
|
|
ibv_event_type_str(event.event_type),
|
|
event.event_type);
|
|
|
|
fatal = true;
|
|
break;
|
|
}
|
|
|
|
/* Ack the event back to verbs */
|
|
ibv_ack_async_event(&event);
|
|
}
|
|
|
|
/* If this is fatal, invoke the upper layer error handler to abort
|
|
the job */
|
|
if (fatal) {
|
|
opal_btl_usnic_exit(module);
|
|
/* Does not return */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create a single UD queue pair.
|
|
*/
|
|
static int
|
|
init_qp(
|
|
opal_btl_usnic_module_t* module,
|
|
struct opal_btl_usnic_channel_t *channel)
|
|
{
|
|
struct ibv_qp_attr qp_attr;
|
|
struct ibv_qp_init_attr qp_init_attr;
|
|
|
|
/* memset to both silence valgrind warnings (since the attr struct
|
|
ends up getting written down an fd to the kernel) and actually
|
|
zero out all the fields that we don't care about / want to be
|
|
logically false. */
|
|
memset(&qp_init_attr, 0, sizeof(qp_init_attr));
|
|
|
|
qp_init_attr.send_cq = channel->cq;
|
|
qp_init_attr.recv_cq = channel->cq;
|
|
qp_init_attr.cap.max_send_wr = channel->chan_sd_num;
|
|
qp_init_attr.cap.max_recv_wr = channel->chan_rd_num;
|
|
qp_init_attr.cap.max_send_sge = 1;
|
|
qp_init_attr.cap.max_recv_sge = 1;
|
|
qp_init_attr.qp_type = IBV_QPT_UD;
|
|
|
|
/* We did math up in component_init() to know that there should be
|
|
enough QPs available. So if create_qp fails, then either the
|
|
memlock limits are too low, or something other than this MPI
|
|
job is consuming QPs. */
|
|
channel->qp = ibv_create_qp(module->pd, &qp_init_attr);
|
|
if (NULL == channel->qp) {
|
|
opal_show_help("help-mpi-btl-usnic.txt", "create ibv resource failed",
|
|
true,
|
|
opal_process_info.nodename,
|
|
ibv_get_device_name(module->device),
|
|
module->if_name,
|
|
"ibv_create_qp()", __FILE__, __LINE__,
|
|
"Failed to create a usNIC queue pair");
|
|
return OPAL_ERR_OUT_OF_RESOURCE;
|
|
}
|
|
|
|
/* memset to both silence valgrind warnings (since the attr struct
|
|
ends up getting written down an fd to the kernel) and actually
|
|
zero out all the fields that we don't care about / want to be
|
|
logically false. */
|
|
memset(&qp_attr, 0, sizeof(qp_attr));
|
|
qp_attr.qp_state = IBV_QPS_INIT;
|
|
qp_attr.port_num = module->port_num;
|
|
|
|
if (ibv_modify_qp(channel->qp, &qp_attr,
|
|
IBV_QP_STATE | IBV_QP_PORT)) {
|
|
opal_show_help("help-mpi-btl-usnic.txt", "ibv API failed",
|
|
true,
|
|
opal_process_info.nodename,
|
|
ibv_get_device_name(module->device),
|
|
module->if_name,
|
|
"ibv_modify_qp()", __FILE__, __LINE__,
|
|
"Failed to modify an existing queue pair");
|
|
return OPAL_ERR_TEMP_OUT_OF_RESOURCE;
|
|
}
|
|
|
|
/* Find the max inline size */
|
|
memset(&qp_attr, 0, sizeof(qp_attr));
|
|
memset(&qp_init_attr, 0, sizeof(qp_init_attr));
|
|
if (ibv_query_qp(channel->qp, &qp_attr, IBV_QP_CAP,
|
|
&qp_init_attr) != 0) {
|
|
opal_show_help("help-mpi-btl-usnic.txt", "ibv API failed",
|
|
true,
|
|
opal_process_info.nodename,
|
|
ibv_get_device_name(module->device),
|
|
module->if_name,
|
|
"ibv_query_qp()", __FILE__, __LINE__,
|
|
"Failed to query an existing queue pair");
|
|
return OPAL_ERR_TEMP_OUT_OF_RESOURCE;
|
|
}
|
|
|
|
/* only grab this once */
|
|
if (channel == &module->mod_channels[USNIC_DATA_CHANNEL]) {
|
|
module->qp_max_inline = qp_attr.cap.max_inline_data;
|
|
}
|
|
|
|
return OPAL_SUCCESS;
|
|
}
|
|
|
|
|
|
static int move_qp_to_rtr(opal_btl_usnic_module_t *module,
|
|
struct opal_btl_usnic_channel_t *channel)
|
|
{
|
|
struct ibv_qp_attr qp_attr;
|
|
|
|
memset(&qp_attr, 0, sizeof(qp_attr));
|
|
|
|
qp_attr.qp_state = IBV_QPS_RTR;
|
|
if (ibv_modify_qp(channel->qp, &qp_attr, IBV_QP_STATE)) {
|
|
opal_show_help("help-mpi-btl-usnic.txt", "ibv API failed",
|
|
true,
|
|
opal_process_info.nodename,
|
|
ibv_get_device_name(module->device),
|
|
module->if_name,
|
|
"ibv_modify_qp", __FILE__, __LINE__,
|
|
"Failed to move QP to RTR state");
|
|
return OPAL_ERROR;
|
|
}
|
|
|
|
return OPAL_SUCCESS;
|
|
}
|
|
|
|
|
|
static int move_qp_to_rts(opal_btl_usnic_module_t *module,
|
|
struct opal_btl_usnic_channel_t *channel)
|
|
{
|
|
struct ibv_qp_attr qp_attr;
|
|
|
|
memset(&qp_attr, 0, sizeof(qp_attr));
|
|
|
|
qp_attr.qp_state = IBV_QPS_RTS;
|
|
if (ibv_modify_qp(channel->qp, &qp_attr, IBV_QP_STATE)) {
|
|
opal_show_help("help-mpi-btl-usnic.txt", "ibv API failed",
|
|
true,
|
|
opal_process_info.nodename,
|
|
ibv_get_device_name(module->device),
|
|
module->if_name,
|
|
"ibv_modify_qp", __FILE__, __LINE__,
|
|
"Failed to move QP to RTS state");
|
|
return OPAL_ERROR;
|
|
}
|
|
|
|
return OPAL_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* finalize channel - release all associated resources
|
|
*/
|
|
static void
|
|
opal_btl_usnic_channel_finalize(
|
|
opal_btl_usnic_module_t *module,
|
|
struct opal_btl_usnic_channel_t *channel)
|
|
{
|
|
if (NULL != channel->qp) {
|
|
ibv_destroy_qp(channel->qp);
|
|
channel->qp = NULL;
|
|
}
|
|
|
|
/* destroy CQ if created */
|
|
if (NULL != channel->cq) {
|
|
ibv_destroy_cq(channel->cq);
|
|
channel->cq = NULL;
|
|
}
|
|
|
|
/* gets set right after constructor called, lets us know recv_segs
|
|
* have been constructed. Make sure to wait until queues destroyed to destroy
|
|
* the recv_segs
|
|
*/
|
|
if (channel->recv_segs.ctx == module) {
|
|
assert(NULL == channel->qp && NULL == channel->cq);
|
|
OBJ_DESTRUCT(&channel->recv_segs);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize a channel
|
|
*/
|
|
static int
|
|
opal_btl_usnic_channel_init(
|
|
opal_btl_usnic_module_t *module,
|
|
struct opal_btl_usnic_channel_t *channel,
|
|
int index,
|
|
int mtu,
|
|
int rd_num,
|
|
int sd_num)
|
|
{
|
|
struct ibv_context *ctx;
|
|
uint32_t segsize;
|
|
opal_btl_usnic_recv_segment_t *rseg;
|
|
ompi_free_list_item_t* item;
|
|
struct ibv_recv_wr* bad_wr;
|
|
int i;
|
|
int rc;
|
|
|
|
ctx = module->device_context;
|
|
channel->chan_mtu = mtu;
|
|
channel->chan_rd_num = rd_num;
|
|
channel->chan_sd_num = sd_num;
|
|
channel->chan_index = index;
|
|
channel->chan_deferred_recv = NULL;
|
|
channel->chan_error = false;
|
|
|
|
channel->sd_wqe = sd_num;
|
|
channel->fastsend_wqe_thresh = sd_num - 10;
|
|
|
|
/* We did math up in component_init() to know that there should be
|
|
enough CQs available. So if create_cq fails, then either the
|
|
memlock limits are too low, or something other than this MPI
|
|
job is consuming CQs. */
|
|
channel->cq = ibv_create_cq(ctx, module->cq_num, NULL, NULL, 0);
|
|
if (NULL == channel->cq) {
|
|
opal_show_help("help-mpi-btl-usnic.txt", "create ibv resource failed",
|
|
true,
|
|
opal_process_info.nodename,
|
|
ibv_get_device_name(module->device),
|
|
module->if_name,
|
|
"ibv_create_cq()", __FILE__, __LINE__,
|
|
"Failed to create a usNIC completion queue");
|
|
goto error;
|
|
}
|
|
|
|
/* Set up the QP for this channel */
|
|
rc = init_qp(module, channel);
|
|
if (OPAL_SUCCESS != rc) {
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* Initialize pool of receive segments. round MTU up to cache line size
|
|
* so that each segment is guaranteed to start on a cache line boundary
|
|
*/
|
|
segsize = (mtu + opal_cache_line_size - 1) & ~(opal_cache_line_size - 1);
|
|
OBJ_CONSTRUCT(&channel->recv_segs, ompi_free_list_t);
|
|
rc = ompi_free_list_init_new(&channel->recv_segs,
|
|
sizeof(opal_btl_usnic_recv_segment_t),
|
|
opal_cache_line_size,
|
|
OBJ_CLASS(opal_btl_usnic_recv_segment_t),
|
|
segsize,
|
|
opal_cache_line_size,
|
|
rd_num,
|
|
rd_num,
|
|
rd_num,
|
|
module->super.btl_mpool);
|
|
channel->recv_segs.ctx = module; /* must come after ompi_free_list_init_new,
|
|
otherwise ctx gets clobbered */
|
|
if (OPAL_SUCCESS != rc) {
|
|
goto error;
|
|
}
|
|
|
|
/* Post receive descriptors */
|
|
for (i = 0; i < rd_num; i++) {
|
|
OMPI_FREE_LIST_GET_MT(&channel->recv_segs, item);
|
|
assert(NULL != item);
|
|
rseg = (opal_btl_usnic_recv_segment_t*)item;
|
|
|
|
if (NULL == rseg) {
|
|
opal_show_help("help-mpi-btl-usnic.txt",
|
|
"internal error during init",
|
|
true,
|
|
opal_process_info.nodename,
|
|
ibv_get_device_name(module->device),
|
|
module->if_name,
|
|
"get freelist buffer()", __FILE__, __LINE__,
|
|
"Failed to get receive buffer from freelist");
|
|
abort(); /* this is impossible */
|
|
}
|
|
|
|
/* cannot find length from constructor, set it now */
|
|
rseg->rs_base.us_sg_entry[0].length = mtu;
|
|
rseg->rs_recv_desc.next = NULL;
|
|
|
|
if (ibv_post_recv(channel->qp, &rseg->rs_recv_desc, &bad_wr)) {
|
|
opal_show_help("help-mpi-btl-usnic.txt", "ibv API failed",
|
|
true,
|
|
opal_process_info.nodename,
|
|
ibv_get_device_name(module->device),
|
|
module->if_name,
|
|
"ibv_post_recv", __FILE__, __LINE__,
|
|
"Failed to post receive buffer");
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
if (OPAL_SUCCESS != move_qp_to_rtr(module, channel)) {
|
|
goto error;
|
|
}
|
|
|
|
if (OPAL_SUCCESS != move_qp_to_rts(module, channel)) {
|
|
goto error;
|
|
}
|
|
|
|
return OPAL_SUCCESS;
|
|
|
|
error:
|
|
opal_btl_usnic_channel_finalize(module, channel);
|
|
return OPAL_ERROR;
|
|
}
|
|
|
|
/*
|
|
* generate initial send sequence number
|
|
*/
|
|
static opal_btl_usnic_seq_t
|
|
get_initial_seq_no(void)
|
|
{
|
|
opal_btl_usnic_seq_t isn;
|
|
|
|
isn = (opal_btl_usnic_seq_t)opal_rand(&opal_btl_usnic_rand_buff);
|
|
|
|
return isn;
|
|
}
|
|
|
|
/*
|
|
* Initialize the btl module by allocating a protection domain,
|
|
* memory pool, priority and data channels, and free lists
|
|
*/
|
|
int opal_btl_usnic_module_init(opal_btl_usnic_module_t *module)
|
|
{
|
|
int rc;
|
|
int i;
|
|
struct mca_mpool_base_resources_t mpool_resources;
|
|
struct ibv_context *ctx = module->device_context;
|
|
uint32_t ack_segment_len;
|
|
uint32_t segsize;
|
|
|
|
#if OPAL_HAVE_HWLOC
|
|
/* If this process is bound to a single NUMA locality, calculate
|
|
its NUMA distance from this usNIC device */
|
|
if (mca_btl_usnic_component.want_numa_device_assignment) {
|
|
opal_btl_usnic_hwloc_distance(module);
|
|
} else {
|
|
opal_output_verbose(5, USNIC_OUT,
|
|
"btl:usnic: not sorting devices by NUMA distance (MCA btl_usnic_want_numa_device_assignment)");
|
|
}
|
|
#else
|
|
opal_output_verbose(5, USNIC_OUT,
|
|
"btl:usnic: not sorting devices by NUMA distance (topology support not included)");
|
|
#endif
|
|
|
|
/* Setup a connectivity listener */
|
|
if (mca_btl_usnic_component.connectivity_enabled) {
|
|
rc = opal_btl_usnic_connectivity_listen(module);
|
|
if (OPAL_SUCCESS != rc) {
|
|
OPAL_ERROR_LOG(rc);
|
|
ABORT("Failed to notify connectivity agent to listen");
|
|
}
|
|
} else {
|
|
/* If we're not doing a connectivity check, just set the port
|
|
to 0 */
|
|
module->local_addr.connectivity_udp_port = 0;
|
|
}
|
|
|
|
/* Setup the pointer array for the procs that will be used by this
|
|
module */
|
|
OBJ_CONSTRUCT(&module->all_procs, opal_pointer_array_t);
|
|
opal_pointer_array_init(&module->all_procs, USNIC_MCW_SIZE, INT_MAX, 32);
|
|
|
|
/* Get a PD */
|
|
module->pd = ibv_alloc_pd(ctx);
|
|
if (NULL == module->pd) {
|
|
opal_show_help("help-mpi-btl-usnic.txt", "ibv API failed",
|
|
true,
|
|
opal_process_info.nodename,
|
|
ibv_get_device_name(module->device),
|
|
module->if_name,
|
|
"ibv_alloc_pd()", __FILE__, __LINE__,
|
|
"Failed to create a PD; is the usnic_verbs Linux kernel module loaded?");
|
|
return OPAL_ERROR;
|
|
}
|
|
|
|
/* Setup the mpool */
|
|
mpool_resources.reg_data = (void*)module;
|
|
mpool_resources.sizeof_reg = sizeof(opal_btl_usnic_reg_t);
|
|
mpool_resources.register_mem = usnic_reg_mr;
|
|
mpool_resources.deregister_mem = usnic_dereg_mr;
|
|
asprintf(&mpool_resources.pool_name, "usnic.%" PRIu64,
|
|
module->local_addr.gid.global.interface_id);
|
|
module->super.btl_mpool =
|
|
mca_mpool_base_module_create(mca_btl_usnic_component.usnic_mpool_name,
|
|
&module->super, &mpool_resources);
|
|
if (NULL == module->super.btl_mpool) {
|
|
opal_show_help("help-mpi-btl-usnic.txt", "ibv API failed",
|
|
true,
|
|
opal_process_info.nodename,
|
|
ibv_get_device_name(module->device),
|
|
module->if_name,
|
|
"create mpool", __FILE__, __LINE__,
|
|
"Failed to allocate registered memory; check Linux memlock limits");
|
|
goto dealloc_pd;
|
|
}
|
|
|
|
/* initialize data and priority channels */
|
|
rc = opal_btl_usnic_channel_init(module,
|
|
&module->mod_channels[USNIC_PRIORITY_CHANNEL],
|
|
USNIC_PRIORITY_CHANNEL,
|
|
module->tiny_mtu, module->prio_rd_num, module->prio_sd_num);
|
|
if (rc != OPAL_SUCCESS) {
|
|
goto chan_destroy;
|
|
}
|
|
rc = opal_btl_usnic_channel_init(module,
|
|
&module->mod_channels[USNIC_DATA_CHANNEL],
|
|
USNIC_DATA_CHANNEL,
|
|
module->if_mtu, module->rd_num, module->sd_num);
|
|
if (rc != OPAL_SUCCESS) {
|
|
goto chan_destroy;
|
|
}
|
|
|
|
module->local_addr.isn = get_initial_seq_no();
|
|
|
|
/* Place QP number in our local address information */
|
|
module->local_addr.qp_num[USNIC_PRIORITY_CHANNEL] =
|
|
module->mod_channels[USNIC_PRIORITY_CHANNEL].qp->qp_num;
|
|
module->local_addr.qp_num[USNIC_DATA_CHANNEL] =
|
|
module->mod_channels[USNIC_DATA_CHANNEL].qp->qp_num;
|
|
|
|
/* Get the fd to receive events on this device */
|
|
opal_event_set(opal_event_base, &(module->device_async_event),
|
|
module->device_context->async_fd,
|
|
OPAL_EV_READ | OPAL_EV_PERSIST,
|
|
module_async_event_callback, module);
|
|
opal_event_add(&(module->device_async_event), NULL);
|
|
module->device_async_event_active = true;
|
|
|
|
/* No more errors anticipated - initialize everything else */
|
|
|
|
/* list of all endpoints */
|
|
opal_mutex_lock(&module->all_endpoints_lock);
|
|
OBJ_CONSTRUCT(&(module->all_endpoints), opal_list_t);
|
|
module->all_endpoints_constructed = true;
|
|
opal_mutex_unlock(&module->all_endpoints_lock);
|
|
|
|
/* Pending send segs list */
|
|
OBJ_CONSTRUCT(&module->pending_resend_segs, opal_list_t);
|
|
OBJ_CONSTRUCT(&module->endpoints_that_need_acks, opal_list_t);
|
|
|
|
/* list of endpoints that are ready to send */
|
|
OBJ_CONSTRUCT(&module->endpoints_with_sends, opal_list_t);
|
|
|
|
segsize = (module->if_mtu + opal_cache_line_size - 1) &
|
|
~(opal_cache_line_size - 1);
|
|
|
|
/* Send frags freelists */
|
|
OBJ_CONSTRUCT(&module->small_send_frags, ompi_free_list_t);
|
|
rc = ompi_free_list_init_new(&module->small_send_frags,
|
|
sizeof(opal_btl_usnic_small_send_frag_t),
|
|
opal_cache_line_size,
|
|
OBJ_CLASS(opal_btl_usnic_small_send_frag_t),
|
|
segsize,
|
|
opal_cache_line_size,
|
|
module->sd_num * 4,
|
|
-1,
|
|
module->sd_num / 2,
|
|
module->super.btl_mpool);
|
|
assert(OPAL_SUCCESS == rc);
|
|
|
|
OBJ_CONSTRUCT(&module->large_send_frags, ompi_free_list_t);
|
|
rc = ompi_free_list_init_new(&module->large_send_frags,
|
|
sizeof(opal_btl_usnic_large_send_frag_t),
|
|
opal_cache_line_size,
|
|
OBJ_CLASS(opal_btl_usnic_large_send_frag_t),
|
|
0, /* payload size */
|
|
0, /* payload align */
|
|
module->sd_num / 8,
|
|
-1,
|
|
module->sd_num / 8,
|
|
NULL);
|
|
assert(OPAL_SUCCESS == rc);
|
|
|
|
OBJ_CONSTRUCT(&module->put_dest_frags, ompi_free_list_t);
|
|
rc = ompi_free_list_init_new(&module->put_dest_frags,
|
|
sizeof(opal_btl_usnic_put_dest_frag_t),
|
|
opal_cache_line_size,
|
|
OBJ_CLASS(opal_btl_usnic_put_dest_frag_t),
|
|
0, /* payload size */
|
|
0, /* payload align */
|
|
module->sd_num / 8,
|
|
-1,
|
|
module->sd_num / 8,
|
|
NULL);
|
|
assert(OPAL_SUCCESS == rc);
|
|
|
|
/* list of segments to use for sending */
|
|
OBJ_CONSTRUCT(&module->chunk_segs, ompi_free_list_t);
|
|
rc = ompi_free_list_init_new(&module->chunk_segs,
|
|
sizeof(opal_btl_usnic_chunk_segment_t),
|
|
opal_cache_line_size,
|
|
OBJ_CLASS(opal_btl_usnic_chunk_segment_t),
|
|
segsize,
|
|
opal_cache_line_size,
|
|
module->sd_num * 4,
|
|
-1,
|
|
module->sd_num / 2,
|
|
module->super.btl_mpool);
|
|
assert(OPAL_SUCCESS == rc);
|
|
|
|
/* ACK segments freelist */
|
|
ack_segment_len = (sizeof(opal_btl_usnic_btl_header_t) +
|
|
opal_cache_line_size - 1) & ~(opal_cache_line_size - 1);
|
|
OBJ_CONSTRUCT(&module->ack_segs, ompi_free_list_t);
|
|
rc = ompi_free_list_init_new(&module->ack_segs,
|
|
sizeof(opal_btl_usnic_ack_segment_t),
|
|
opal_cache_line_size,
|
|
OBJ_CLASS(opal_btl_usnic_ack_segment_t),
|
|
ack_segment_len,
|
|
opal_cache_line_size,
|
|
module->sd_num * 4,
|
|
-1,
|
|
module->sd_num / 2,
|
|
module->super.btl_mpool);
|
|
assert(OPAL_SUCCESS == rc);
|
|
|
|
/*
|
|
* Initialize pools of large recv buffers
|
|
*
|
|
* NOTE: (last_pool < first_pool) is _not_ erroneous; recv buffer pools
|
|
* simply won't be used in that case.
|
|
*/
|
|
module->first_pool = 16; /* 64 kiB */
|
|
module->last_pool = usnic_fls(module->super.btl_eager_limit-1);
|
|
module->module_recv_buffers = calloc(module->last_pool+1,
|
|
sizeof(ompi_free_list_t));
|
|
assert(module->module_recv_buffers != NULL);
|
|
for (i=module->first_pool; i<=module->last_pool; ++i) {
|
|
size_t elt_size = sizeof(opal_btl_usnic_rx_buf_t) - 1 + (1 << i);
|
|
OBJ_CONSTRUCT(&module->module_recv_buffers[i], ompi_free_list_t);
|
|
rc = ompi_free_list_init_new(&module->module_recv_buffers[i],
|
|
elt_size,
|
|
opal_cache_line_size,
|
|
OBJ_CLASS(opal_btl_usnic_rx_buf_t),
|
|
0, /* payload size */
|
|
0, /* payload align */
|
|
128, /* init elts to alloc */
|
|
128, /* max elts to alloc */
|
|
128, /* num elts per alloc */
|
|
NULL /* mpool */);
|
|
assert(OPAL_SUCCESS == rc);
|
|
}
|
|
|
|
/* Initialize stats on this module */
|
|
opal_btl_usnic_stats_init(module);
|
|
|
|
return OPAL_SUCCESS;
|
|
|
|
chan_destroy:
|
|
for (i=0; i<USNIC_NUM_CHANNELS; ++i) {
|
|
opal_btl_usnic_channel_finalize(module, &module->mod_channels[i]);
|
|
}
|
|
|
|
mca_mpool_base_module_destroy(module->super.btl_mpool);
|
|
|
|
dealloc_pd:
|
|
rc = ibv_dealloc_pd(module->pd);
|
|
if (rc) {
|
|
BTL_ERROR(("failed to ibv_dealloc_pd, err=%d (%s)", rc, strerror(rc)));
|
|
}
|
|
return OPAL_ERROR;
|
|
}
|
|
|
|
|
|
static int usnic_ft_event(int state)
|
|
{
|
|
return OPAL_SUCCESS;
|
|
}
|
|
|
|
|
|
opal_btl_usnic_module_t opal_btl_usnic_module_template = {
|
|
.super = {
|
|
.btl_component = &mca_btl_usnic_component.super,
|
|
.btl_exclusivity = MCA_BTL_EXCLUSIVITY_DEFAULT,
|
|
.btl_flags = MCA_BTL_FLAGS_SEND |
|
|
MCA_BTL_FLAGS_PUT |
|
|
MCA_BTL_FLAGS_SEND_INPLACE,
|
|
#ifndef OPAL_BTL_USNIC_CISCO_V1_6
|
|
.btl_seg_size = sizeof(mca_btl_base_segment_t), /* seg size */
|
|
#endif
|
|
.btl_add_procs = usnic_add_procs,
|
|
.btl_del_procs = usnic_del_procs,
|
|
.btl_finalize = usnic_finalize,
|
|
.btl_alloc = usnic_alloc,
|
|
.btl_free = usnic_free,
|
|
.btl_prepare_src = usnic_prepare_src,
|
|
.btl_prepare_dst = usnic_prepare_dst,
|
|
.btl_send = usnic_send,
|
|
.btl_put = usnic_put,
|
|
.btl_dump = mca_btl_base_dump,
|
|
.btl_register_error = usnic_register_pml_err_cb,
|
|
.btl_ft_event = usnic_ft_event
|
|
}
|
|
};
|