1
1
openmpi/ompi/mca/bcol/ptpcoll/bcol_ptpcoll_module.c
Pavel Shamis 3a683419c5 Fixing broken dependency between ML/BCOLS
This is hot-fix patch for the issue reported by Ralph. 
In future we plan to restructure ml data structure layout.

Tested by Nathan.

cmr=v1.7.5:ticket=trac:4158

This commit was SVN r30619.

The following Trac tickets were found above:
  Ticket 4158 --> https://svn.open-mpi.org/trac/ompi/ticket/4158
2014-02-07 19:15:45 +00:00

717 строки
26 KiB
C

/* -*- Mode: C; c-basic-offset:4 ; indent-tabs-mode:nil -*- */
/*
* Copyright (c) 2009-2013 Oak Ridge National Laboratory. All rights reserved.
* Copyright (c) 2009-2012 Mellanox Technologies. All rights reserved.
* Copyright (c) 2012-2013 Los Alamos National Security, LLC. All rights
* reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
/**
* @file
*
*/
#include "ompi_config.h"
#include <unistd.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <errno.h>
#include "ompi/constants.h"
#include "ompi/communicator/communicator.h"
#include "ompi/mca/bcol/bcol.h"
#include "opal/util/show_help.h"
#include "ompi/mca/bcol/base/base.h"
#include "ompi/mca/pml/pml.h" /* need this for the max tag size */
#include "bcol_ptpcoll.h"
#include "bcol_ptpcoll_utils.h"
#include "bcol_ptpcoll_bcast.h"
#include "bcol_ptpcoll_allreduce.h"
#include "bcol_ptpcoll_reduce.h"
#define BCOL_PTP_CACHE_LINE_SIZE 128
/*
* Local functions
*/
static int alloc_allreduce_offsets_array(mca_bcol_ptpcoll_module_t *ptpcoll_module)
{
int rc = OMPI_SUCCESS, i = 0;
netpatterns_k_exchange_node_t *k_node = &ptpcoll_module->knomial_exchange_tree;
int n_exchanges = k_node->n_exchanges;
/* Precalculate the allreduce offsets */
if (0 < k_node->n_exchanges) {
ptpcoll_module->allgather_offsets = (int **)malloc(n_exchanges * sizeof(int*));
if (!ptpcoll_module->allgather_offsets) {
rc = OMPI_ERROR;
return rc;
}
for (i=0; i < n_exchanges ; i++) {
ptpcoll_module->allgather_offsets[i] = (int *)malloc (sizeof(int) * NOFFSETS);
if (!ptpcoll_module->allgather_offsets[i]){
rc = OMPI_ERROR;
return rc;
}
}
}
return rc;
}
static int free_allreduce_offsets_array(mca_bcol_ptpcoll_module_t *ptpcoll_module)
{
int rc = OMPI_SUCCESS, i = 0;
netpatterns_k_exchange_node_t *k_node = &ptpcoll_module->knomial_exchange_tree;
int n_exchanges = k_node->n_exchanges;
if (ptpcoll_module->allgather_offsets) {
for (i=0; i < n_exchanges; i++) {
free (ptpcoll_module->allgather_offsets[i]);
}
}
free(ptpcoll_module->allgather_offsets);
return rc;
}
static void
mca_bcol_ptpcoll_module_construct(mca_bcol_ptpcoll_module_t *ptpcoll_module)
{
uint64_t i;
/* Pointer to component */
ptpcoll_module->super.bcol_component = (mca_bcol_base_component_t *) &mca_bcol_ptpcoll_component;
ptpcoll_module->super.list_n_connected = NULL;
ptpcoll_module->super.hier_scather_offset = 0;
/* no header support in ptp */
ptpcoll_module->super.header_size = 0;
/* No network context */
ptpcoll_module->super.network_context = NULL;
/* set the upper limit on the tag */
i = 2;
ptpcoll_module->tag_mask = 1;
while ( i <= (uint64_t) mca_pml.pml_max_tag && i > 0) {
i <<= 1;
}
ptpcoll_module->ml_mem.ml_buf_desc = NULL;
ptpcoll_module->tag_mask = i - 1;
}
static void
mca_bcol_ptpcoll_module_destruct(mca_bcol_ptpcoll_module_t *ptpcoll_module)
{
int i;
mca_bcol_ptpcoll_local_mlmem_desc_t *ml_mem = &ptpcoll_module->ml_mem;
if (NULL != ml_mem->ml_buf_desc) {
/* Release the memory structs that were cache ML memory data */
uint32_t i, j, ci;
for (i = 0; i < ml_mem->num_banks; i++) {
for (j = 0; j < ml_mem->num_buffers_per_bank; j++) {
ci = i * ml_mem->num_buffers_per_bank + j;
if (NULL != ml_mem->ml_buf_desc[ci].requests) {
free(ml_mem->ml_buf_desc[ci].requests);
}
}
}
/* release the buffer descriptor */
free(ml_mem->ml_buf_desc);
}
if (NULL != ptpcoll_module->allgather_offsets) {
free_allreduce_offsets_array(ptpcoll_module);
}
if (NULL != ptpcoll_module->narray_node) {
for (i = 0; i < ptpcoll_module->group_size; i++) {
if (NULL != ptpcoll_module->narray_node[i].children_ranks) {
free(ptpcoll_module->narray_node[i].children_ranks);
}
}
free(ptpcoll_module->narray_node);
}
OBJ_DESTRUCT(&ptpcoll_module->collreqs_free);
if( NULL != ptpcoll_module->super.list_n_connected ){
free(ptpcoll_module->super.list_n_connected);
ptpcoll_module->super.list_n_connected = NULL;
}
}
OBJ_CLASS_INSTANCE(mca_bcol_ptpcoll_module_t,
mca_bcol_base_module_t,
mca_bcol_ptpcoll_module_construct,
mca_bcol_ptpcoll_module_destruct);
static int init_ml_buf_desc(mca_bcol_ptpcoll_ml_buffer_desc_t **desc, void *base_addr, uint32_t num_banks,
uint32_t num_buffers_per_bank, uint32_t size_buffer, uint32_t header_size, int group_size, int pow_k)
{
uint32_t i, j, ci;
mca_bcol_ptpcoll_ml_buffer_desc_t *tmp_desc = NULL;
int k_nomial_radix = mca_bcol_ptpcoll_component.k_nomial_radix;
int pow_k_val = (0 == pow_k) ? 1 : pow_k;
int num_to_alloc =
((k_nomial_radix - 1) * pow_k_val * 2 + 1 > mca_bcol_ptpcoll_component.narray_radix) ?
(k_nomial_radix - 1) * pow_k_val * 2 + 1 :
mca_bcol_ptpcoll_component.narray_radix * 2;
*desc = (mca_bcol_ptpcoll_ml_buffer_desc_t *)calloc(num_banks * num_buffers_per_bank,
sizeof(mca_bcol_ptpcoll_ml_buffer_desc_t));
if (NULL == *desc) {
PTPCOLL_ERROR(("Failed to allocate memory"));
return OMPI_ERROR;
}
tmp_desc = *desc;
for (i = 0; i < num_banks; i++) {
for (j = 0; j < num_buffers_per_bank; j++) {
ci = i * num_buffers_per_bank + j;
tmp_desc[ci].bank_index = i;
tmp_desc[ci].buffer_index = j;
/* *2 is for gather session +1 for extra peer */
tmp_desc[ci].requests = (ompi_request_t **)
calloc(num_to_alloc, sizeof(ompi_request_t *));
if (NULL == tmp_desc[ci].requests) {
PTPCOLL_ERROR(("Failed to allocate memory for requests"));
return OMPI_ERROR;
}
/*
* ptpcoll don't have any header, but other bcols may to have. So
* we need to take it in account.
*/
tmp_desc[ci].data_addr = (void *)
((unsigned char*)base_addr + ci * size_buffer + header_size);
PTPCOLL_VERBOSE(10, ("ml memory cache setup %d %d - %p", i, j, tmp_desc[ci].data_addr));
/* init reduce implementation flags */
tmp_desc[ci].reduce_init_called = false;
tmp_desc[ci].reduction_status = 0;
}
}
return OMPI_SUCCESS;
}
static void mca_bcol_ptpcoll_set_small_msg_thresholds(struct mca_bcol_base_module_t *super)
{
mca_bcol_ptpcoll_module_t *ptpcoll_module =
(mca_bcol_ptpcoll_module_t *) super;
mca_bcol_ptpcoll_component_t *cm = &mca_bcol_ptpcoll_component;
/* Subtract out the maximum header size when calculating the thresholds. This
* will account for the headers used by the basesmuma component. If we do not
* take these headers into account we may overrun our buffer. */
/* Set the Allgather threshold equals to a ML buff size */
super->small_message_thresholds[BCOL_ALLGATHER] =
(ptpcoll_module->ml_mem.size_buffer - BCOL_HEADER_MAX) /
ompi_comm_size(ptpcoll_module->super.sbgp_partner_module->group_comm);
/* Set the Bcast threshold, all Bcast algths have the same threshold */
super->small_message_thresholds[BCOL_BCAST] =
(ptpcoll_module->ml_mem.size_buffer - BCOL_HEADER_MAX);
/* Set the Alltoall threshold, the Ring algth sets some limitation */
super->small_message_thresholds[BCOL_ALLTOALL] =
(ptpcoll_module->ml_mem.size_buffer - BCOL_HEADER_MAX) / 2;
/* Set the Allreduce threshold, NARRAY algth sets some limitation */
super->small_message_thresholds[BCOL_ALLREDUCE] =
(ptpcoll_module->ml_mem.size_buffer - BCOL_HEADER_MAX) / ptpcoll_module->k_nomial_radix;
/* Set the Reduce threshold, NARRAY algth sets some limitation */
super->small_message_thresholds[BCOL_REDUCE] =
(ptpcoll_module->ml_mem.size_buffer - BCOL_HEADER_MAX) / cm->narray_radix;
}
/*
* Cache information about ML memory
*/
static int mca_bcol_ptpcoll_cache_ml_memory_info(struct mca_bcol_base_memory_block_desc_t *payload_block,
uint32_t data_offset,
struct mca_bcol_base_module_t *bcol,
void *reg_data)
{
mca_bcol_ptpcoll_module_t *ptpcoll_module = (mca_bcol_ptpcoll_module_t *) bcol;
mca_bcol_ptpcoll_local_mlmem_desc_t *ml_mem = &ptpcoll_module->ml_mem;
struct mca_bcol_base_memory_block_desc_t *desc = payload_block;
int group_size = ptpcoll_module->super.sbgp_partner_module->group_size;
PTPCOLL_VERBOSE(10, ("mca_bcol_ptpcoll_init_buffer_memory was called"));
/* cache ml mem desc tunings localy */
ml_mem->num_banks = desc->num_banks;
ml_mem->num_buffers_per_bank = desc->num_buffers_per_bank;
ml_mem->size_buffer = desc->size_buffer;
PTPCOLL_VERBOSE(10, ("ML buffer configuration num banks %d num_per_bank %d size %d base addr %p",
desc->num_banks, desc->num_buffers_per_bank, desc->size_buffer, desc->block->base_addr));
/* Set first bank index for release */
ml_mem->bank_index_for_release = 0;
if (OMPI_SUCCESS != init_ml_buf_desc(&ml_mem->ml_buf_desc,
desc->block->base_addr,
ml_mem->num_banks,
ml_mem->num_buffers_per_bank,
ml_mem->size_buffer,
data_offset,
group_size,
ptpcoll_module->pow_k)) {
PTPCOLL_VERBOSE(10, ("Failed to allocate rdma memory descriptor\n"));
return OMPI_ERROR;
}
PTPCOLL_VERBOSE(10, ("ptpcoll_module = %p, ml_mem_desc = %p.\n",
ptpcoll_module));
return OMPI_SUCCESS;
}
/*
* Load ptpcoll bcol functions
*/
static void load_func(mca_bcol_ptpcoll_module_t *ptpcoll_module)
{
int fnc;
/* reset everything to NULL */
for (fnc = 0; fnc < BCOL_NUM_OF_FUNCTIONS; fnc++) {
/*ptpcoll_module->super.bcol_function_table[fnc] = NULL;*/
ptpcoll_module->super.bcol_function_table[fnc] = NULL;
ptpcoll_module->super.bcol_function_init_table[fnc] = NULL;
}
ptpcoll_module->super.bcol_function_init_table[BCOL_BARRIER] = bcol_ptpcoll_barrier_init;
ptpcoll_module->super.bcol_function_init_table[BCOL_BCAST] = bcol_ptpcoll_bcast_init;
ptpcoll_module->super.bcol_function_init_table[BCOL_ALLREDUCE] = bcol_ptpcoll_allreduce_init;
ptpcoll_module->super.bcol_function_init_table[BCOL_ALLGATHER] = bcol_ptpcoll_allgather_init;
ptpcoll_module->super.bcol_function_table[BCOL_BCAST] = bcol_ptpcoll_bcast_k_nomial_anyroot;
ptpcoll_module->super.bcol_function_init_table[BCOL_ALLTOALL] = NULL;
ptpcoll_module->super.bcol_function_init_table[BCOL_SYNC] = mca_bcol_ptpcoll_memsync_init;
ptpcoll_module->super.bcol_function_init_table[BCOL_REDUCE] = bcol_ptpcoll_reduce_init;
/* ML memory cacher */
ptpcoll_module->super.bcol_memory_init = mca_bcol_ptpcoll_cache_ml_memory_info;
/* Set thresholds */
ptpcoll_module->super.set_small_msg_thresholds = mca_bcol_ptpcoll_set_small_msg_thresholds;
/* setup recursive k-ing tree */
ptpcoll_module->super.k_nomial_tree = mca_bcol_ptpcoll_setup_knomial_tree;
}
int mca_bcol_ptpcoll_setup_knomial_tree(mca_bcol_base_module_t *super)
{
mca_bcol_ptpcoll_module_t *p2p_module = (mca_bcol_ptpcoll_module_t *) super;
int rc = 0;
rc = netpatterns_setup_recursive_knomial_allgather_tree_node(
p2p_module->super.sbgp_partner_module->group_size,
p2p_module->super.sbgp_partner_module->my_index,
mca_bcol_ptpcoll_component.k_nomial_radix,
super->list_n_connected,
&p2p_module->knomial_allgather_tree);
return rc;
}
/* The function used to calculate size */
static int calc_full_tree_size(int radix, int group_size, int *num_leafs)
{
int level_cnt = 1;
int total_cnt = 0;
while( total_cnt < group_size ) {
total_cnt += level_cnt;
level_cnt *= radix;
}
if (total_cnt > group_size) {
*num_leafs = level_cnt / radix;
return total_cnt - level_cnt / radix;
} else {
*num_leafs = level_cnt;
return group_size;
}
}
/* Setup N-array scatter Knomial-gather static information */
static int load_narray_knomial_tree (mca_bcol_ptpcoll_module_t *ptpcoll_module)
{
int rc, i, peer;
mca_bcol_ptpcoll_component_t *cm = &mca_bcol_ptpcoll_component;
ptpcoll_module->full_narray_tree_size = calc_full_tree_size(
cm->narray_knomial_radix,
ptpcoll_module->group_size,
&ptpcoll_module->full_narray_tree_num_leafs);
ptpcoll_module->narray_knomial_proxy_extra_index = (int *)
malloc(sizeof(int) * (cm->narray_knomial_radix));
if (NULL == ptpcoll_module->narray_knomial_proxy_extra_index) {
PTPCOLL_ERROR(("Failed to allocate memory"));
goto Error;
}
ptpcoll_module->narray_knomial_node = calloc(
ptpcoll_module->full_narray_tree_size,
sizeof(netpatterns_narray_knomial_tree_node_t));
if(NULL == ptpcoll_module->narray_knomial_node) {
goto Error;
}
PTPCOLL_VERBOSE(10 ,("My type is proxy, full tree size = %d [%d]",
ptpcoll_module->full_narray_tree_size,
cm->narray_knomial_radix
));
if (ptpcoll_module->super.sbgp_partner_module->my_index <
ptpcoll_module->full_narray_tree_size) {
if (ptpcoll_module->super.sbgp_partner_module->my_index <
ptpcoll_module->group_size - ptpcoll_module->full_narray_tree_size) {
ptpcoll_module->narray_type = PTPCOLL_PROXY;
for (i = 0; i < cm->narray_knomial_radix; i++) {
peer =
ptpcoll_module->super.sbgp_partner_module->my_index *
cm->narray_knomial_radix + i +
ptpcoll_module->full_narray_tree_size;
if (peer >= ptpcoll_module->group_size) {
break;
}
ptpcoll_module->narray_knomial_proxy_extra_index[i] = peer;
}
ptpcoll_module->narray_knomial_proxy_num = i;
} else {
ptpcoll_module->narray_type = PTPCOLL_IN_GROUP;;
}
/* Setting node info */
for(i = 0; i < ptpcoll_module->full_narray_tree_size; i++) {
rc = netpatterns_setup_narray_knomial_tree(
cm->narray_knomial_radix,
i,
ptpcoll_module->full_narray_tree_size,
&ptpcoll_module->narray_knomial_node[i]);
if(OMPI_SUCCESS != rc) {
goto Error;
}
}
} else {
ptpcoll_module->narray_type = PTPCOLL_EXTRA;
ptpcoll_module->narray_knomial_proxy_extra_index[0] =
(ptpcoll_module->super.sbgp_partner_module->my_index -
ptpcoll_module->full_narray_tree_size) /
cm->narray_knomial_radix;
}
return OMPI_SUCCESS;
Error:
if (NULL != ptpcoll_module->narray_knomial_node) {
free(ptpcoll_module->narray_knomial_node);
}
if (NULL != ptpcoll_module->narray_knomial_proxy_extra_index) {
free(ptpcoll_module->narray_knomial_proxy_extra_index);
}
return OMPI_ERROR;
}
/* Setup N-array static information */
static int load_narray_tree(mca_bcol_ptpcoll_module_t *ptpcoll_module)
{
int rc, i;
mca_bcol_ptpcoll_component_t *cm = &mca_bcol_ptpcoll_component;
ptpcoll_module->narray_node = calloc(ptpcoll_module->group_size,
sizeof(netpatterns_tree_node_t));
if(NULL == ptpcoll_module->narray_node ) {
goto Error;
}
for(i = 0; i < ptpcoll_module->group_size; i++) {
rc = netpatterns_setup_narray_tree(
cm->narray_radix,
i,
ptpcoll_module->group_size,
&ptpcoll_module->narray_node[i]);
if(OMPI_SUCCESS != rc) {
goto Error;
}
}
return OMPI_SUCCESS;
Error:
if (NULL != ptpcoll_module->narray_node) {
free(ptpcoll_module->narray_node);
}
return OMPI_ERROR;
}
static int load_knomial_info(mca_bcol_ptpcoll_module_t *ptpcoll_module)
{
int i;
mca_bcol_ptpcoll_component_t *cm = &mca_bcol_ptpcoll_component;
ptpcoll_module->k_nomial_radix =
cm->k_nomial_radix > ptpcoll_module->group_size ?
ptpcoll_module->group_size :
cm->k_nomial_radix;
ptpcoll_module->pow_k = pow_k_calc(ptpcoll_module->k_nomial_radix,
ptpcoll_module->group_size,
&ptpcoll_module->pow_knum);
ptpcoll_module->kn_proxy_extra_index = (int *)
malloc(sizeof(int) * (ptpcoll_module->k_nomial_radix - 1));
if (NULL == ptpcoll_module->kn_proxy_extra_index) {
PTPCOLL_ERROR(("Failed to allocate memory"));
goto Error;
}
/* Setting peer type for K-nomial algorithm*/
if (ptpcoll_module->super.sbgp_partner_module->my_index < ptpcoll_module->pow_knum ) {
if (ptpcoll_module->super.sbgp_partner_module->my_index <
ptpcoll_module->group_size - ptpcoll_module->pow_knum) {
for (i = 0;
i < (ptpcoll_module->k_nomial_radix - 1) &&
ptpcoll_module->super.sbgp_partner_module->my_index *
(ptpcoll_module->k_nomial_radix - 1) +
i + ptpcoll_module->pow_knum < ptpcoll_module->group_size
; i++) {
ptpcoll_module->pow_ktype = PTPCOLL_KN_PROXY;
ptpcoll_module->kn_proxy_extra_index[i] =
ptpcoll_module->super.sbgp_partner_module->my_index *
(ptpcoll_module->k_nomial_radix - 1) +
i + ptpcoll_module->pow_knum;
PTPCOLL_VERBOSE(10 ,("My type is proxy, pow_knum = %d [%d] my extra %d",
ptpcoll_module->pow_knum,
ptpcoll_module->pow_k,
ptpcoll_module->kn_proxy_extra_index[i]));
}
ptpcoll_module->kn_proxy_extra_num = i;
} else {
PTPCOLL_VERBOSE(10 ,("My type is in group, pow_knum = %d [%d]", ptpcoll_module->pow_knum,
ptpcoll_module->pow_k));
ptpcoll_module->pow_ktype = PTPCOLL_KN_IN_GROUP;
}
} else {
ptpcoll_module->pow_ktype = PTPCOLL_KN_EXTRA;
ptpcoll_module->kn_proxy_extra_index[0] = (ptpcoll_module->super.sbgp_partner_module->my_index -
ptpcoll_module->pow_knum) / (ptpcoll_module->k_nomial_radix - 1);
PTPCOLL_VERBOSE(10 ,("My type is extra , pow_knum = %d [%d] my proxy %d",
ptpcoll_module->pow_knum,
ptpcoll_module->pow_k,
ptpcoll_module->kn_proxy_extra_index[0]));
}
return OMPI_SUCCESS;
Error:
if (NULL == ptpcoll_module->kn_proxy_extra_index) {
free(ptpcoll_module->kn_proxy_extra_index);
}
return OMPI_ERROR;
}
static int load_binomial_info(mca_bcol_ptpcoll_module_t *ptpcoll_module)
{
ptpcoll_module->pow_2 = pow_k_calc(2,
ptpcoll_module->group_size,
&ptpcoll_module->pow_2num);
assert(ptpcoll_module->pow_2num == 1 << ptpcoll_module->pow_2);
assert(ptpcoll_module->pow_2num <= ptpcoll_module->group_size);
/* Setting peer type for binary algorithm*/
if (ptpcoll_module->super.sbgp_partner_module->my_index < ptpcoll_module->pow_2num ) {
if (ptpcoll_module->super.sbgp_partner_module->my_index <
ptpcoll_module->group_size - ptpcoll_module->pow_2num) {
PTPCOLL_VERBOSE(10 ,("My type is proxy, pow_2num = %d [%d]", ptpcoll_module->pow_2num,
ptpcoll_module->pow_2));
ptpcoll_module->pow_2type = PTPCOLL_PROXY;
ptpcoll_module->proxy_extra_index = ptpcoll_module->super.sbgp_partner_module->my_index +
ptpcoll_module->pow_2num;
} else {
PTPCOLL_VERBOSE(10 ,("My type is in group, pow_2num = %d [%d]", ptpcoll_module->pow_2num,
ptpcoll_module->pow_2));
ptpcoll_module->pow_2type = PTPCOLL_IN_GROUP;
}
} else {
PTPCOLL_VERBOSE(10 ,("My type is extra , pow_2num = %d [%d]", ptpcoll_module->pow_2num,
ptpcoll_module->pow_2));
ptpcoll_module->pow_2type = PTPCOLL_EXTRA;
ptpcoll_module->proxy_extra_index = ptpcoll_module->super.sbgp_partner_module->my_index -
ptpcoll_module->pow_2num;
}
return OMPI_SUCCESS;
}
static int load_recursive_knomial_info(mca_bcol_ptpcoll_module_t *ptpcoll_module)
{
int rc = OMPI_SUCCESS;
rc = netpatterns_setup_recursive_knomial_tree_node(
ptpcoll_module->group_size,
ptpcoll_module->super.sbgp_partner_module->my_index,
mca_bcol_ptpcoll_component.k_nomial_radix,
&ptpcoll_module->knomial_exchange_tree);
return rc;
}
static void bcol_ptpcoll_collreq_init(ompi_free_list_item_t *item, void* ctx)
{
mca_bcol_ptpcoll_module_t *ptpcoll_module= (mca_bcol_ptpcoll_module_t *) ctx;
mca_bcol_ptpcoll_collreq_t *collreq = (mca_bcol_ptpcoll_collreq_t *) item;
switch(mca_bcol_ptpcoll_component.barrier_alg) {
case 1:
collreq->requests = (ompi_request_t **)
calloc(2, sizeof(ompi_request_t *));
break;
case 2:
collreq->requests = (ompi_request_t **)
calloc(2 * ptpcoll_module->k_nomial_radix, sizeof(ompi_request_t *));
break;
}
}
/* query to see if the module is available for use on the given
* communicator, and if so, what it's priority is. This is where
* the backing shared-memory file is created.
*/
mca_bcol_base_module_t **mca_bcol_ptpcoll_comm_query(mca_sbgp_base_module_t *sbgp,
int *num_modules)
{
int rc;
/* local variables */
struct ompi_communicator_t *comm = sbgp->group_comm;
mca_bcol_ptpcoll_module_t *ptpcoll_module = NULL;
mca_bcol_base_module_t **ptpcoll_modules = NULL;
int iovec_size;
/* initialize local variables */
*num_modules = 0;
/*
* This is activated only for intra-communicators
*/
if (OMPI_COMM_IS_INTER(comm) ) {
return NULL;
}
/* allocate and initialize an sm-v2 module */
ptpcoll_modules = (mca_bcol_base_module_t **) malloc(sizeof(mca_bcol_base_module_t *));
if (NULL == ptpcoll_modules) {
return NULL;
}
ptpcoll_module = OBJ_NEW(mca_bcol_ptpcoll_module_t);
if (NULL == ptpcoll_module) {
return NULL;
}
/* On this stage we support only one single module */
ptpcoll_modules[*num_modules] = &(ptpcoll_module->super);
(*num_modules)++;
/* set the subgroup */
ptpcoll_module->super.sbgp_partner_module = sbgp;
/* caching some useful information */
ptpcoll_module->group_size =
ptpcoll_module->super.sbgp_partner_module->group_size;
rc = load_binomial_info(ptpcoll_module);
if (OMPI_SUCCESS != rc) {
PTPCOLL_VERBOSE(10, ("Failed to load knomial info"));
goto CLEANUP;
}
rc = load_knomial_info(ptpcoll_module);
if (OMPI_SUCCESS != rc) {
PTPCOLL_VERBOSE(10, ("Failed to load knomial info"));
goto CLEANUP;
}
rc = load_narray_tree(ptpcoll_module);
if (OMPI_SUCCESS != rc) {
PTPCOLL_VERBOSE(10, ("Failed to load narray tree"));
goto CLEANUP;
}
rc = load_narray_knomial_tree(ptpcoll_module);
if (OMPI_SUCCESS != rc) {
PTPCOLL_VERBOSE(10, ("Failed to load narray-knomila tree"));
goto CLEANUP;
}
rc = load_recursive_knomial_info(ptpcoll_module);
if (OMPI_SUCCESS != rc) {
PTPCOLL_VERBOSE(10, ("Failed to load recursive knomial tree"));
goto CLEANUP;
}
/* creating collfrag free list */
OBJ_CONSTRUCT(&ptpcoll_module->collreqs_free, ompi_free_list_t);
rc = ompi_free_list_init_ex_new(&ptpcoll_module->collreqs_free,
sizeof(mca_bcol_ptpcoll_collreq_t),
BCOL_PTP_CACHE_LINE_SIZE,
OBJ_CLASS(mca_bcol_ptpcoll_collreq_t),
0, BCOL_PTP_CACHE_LINE_SIZE,
256 /* free_list_num */,
-1 /* free_list_max, -1 = infinite */,
32 /* free_list_inc */,
NULL,
bcol_ptpcoll_collreq_init,
ptpcoll_module);
if (OMPI_SUCCESS != rc) {
goto CLEANUP;
}
load_func(ptpcoll_module);
rc = alloc_allreduce_offsets_array(ptpcoll_module);
if (OMPI_SUCCESS != rc) {
goto CLEANUP;
}
/* Allocating iovec for PTP alltoall */
iovec_size = ptpcoll_module->group_size / 2 + ptpcoll_module->group_size % 2;
ptpcoll_module->alltoall_iovec = (struct iovec *) malloc(sizeof(struct iovec)
* iovec_size);
ptpcoll_module->log_group_size = lognum(ptpcoll_module->group_size);
rc = mca_bcol_base_bcol_fns_table_init(&(ptpcoll_module->super));
if (OMPI_SUCCESS != rc) {
goto CLEANUP;
}
/* Zero copy is supported */
ptpcoll_module->super.supported_mode = MCA_BCOL_BASE_ZERO_COPY;
/* return */
return ptpcoll_modules;
CLEANUP:
OBJ_RELEASE(ptpcoll_module);
return NULL;
}