1
1
openmpi/ompi/mca/coll/tuned/coll_tuned_barrier.c
2006-02-01 20:50:14 +00:00

390 строки
14 KiB
C

/*
* Copyright (c) 2004-2005 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2005 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "ompi_config.h"
#include "mpi.h"
#include "ompi/include/constants.h"
#include "datatype/datatype.h"
#include "communicator/communicator.h"
#include "mca/coll/coll.h"
#include "mca/coll/base/coll_tags.h"
#include "mca/pml/pml.h"
#include "op/op.h"
#include "coll_tuned.h"
#include "coll_tuned_topo.h"
#include "coll_tuned_util.h"
/*
* Barrier is ment to be a synchronous operation, as some BTLs can mark a request done
* before its passed to the NIC and progress might not be made elsewhere we cannot
* allow a process to exit the barrier until its last [round of] sends are completed.
*
* It is last round of sends rather than 'last' individual send as each pair of peers can use different
* channels/devices/btls and the receiver of one of these sends might be forced to wait as the sender
* leaves the collective and does not make progress until the next mpi call
*
*/
/*
* Simple double ring version of barrier
*
* synchronous gurantee made by last ring of sends are synchronous
*
*/
int ompi_coll_tuned_barrier_intra_doublering(struct ompi_communicator_t *comm)
{
int rank, size;
int err=0, line=0;
int left, right;
rank = ompi_comm_rank(comm);
size = ompi_comm_size(comm);
OPAL_OUTPUT((ompi_coll_tuned_stream,"ompi_coll_tuned_barrier_intra_doublering rank %d", rank));
left = ((rank-1)%size);
right = ((rank+1)%size);
if (rank > 0) { /* receive message from the left */
err = MCA_PML_CALL(recv((void*)NULL, 0, MPI_BYTE, left,
MCA_COLL_BASE_TAG_BARRIER, comm, MPI_STATUS_IGNORE));
if (err != MPI_SUCCESS) { line = __LINE__; goto err_hndl; }
}
/* Send message to the right */
err = MCA_PML_CALL(send((void*)NULL, 0, MPI_BYTE, right, MCA_COLL_BASE_TAG_BARRIER,
MCA_PML_BASE_SEND_STANDARD, comm));
if (err != MPI_SUCCESS) { line = __LINE__; goto err_hndl; }
/* root needs to receive from the last node */
if (rank == 0) {
err = MCA_PML_CALL(recv((void*)NULL, 0, MPI_BYTE, left,
MCA_COLL_BASE_TAG_BARRIER, comm, MPI_STATUS_IGNORE));
if (err != MPI_SUCCESS) { line = __LINE__; goto err_hndl; }
}
/* Allow nodes to exit */
if (rank > 0) { /* post Receive from left */
err = MCA_PML_CALL(recv((void*)NULL, 0, MPI_BYTE, left,
MCA_COLL_BASE_TAG_BARRIER, comm, MPI_STATUS_IGNORE));
if (err != MPI_SUCCESS) { line = __LINE__; goto err_hndl; }
}
/* send message to the right one */
err = MCA_PML_CALL(send((void*)NULL, 0, MPI_BYTE, right, MCA_COLL_BASE_TAG_BARRIER,
MCA_PML_BASE_SEND_SYNCHRONOUS, comm));
if (err != MPI_SUCCESS) { line = __LINE__; goto err_hndl; }
/* rank 0 post receive from the last node */
if (rank == 0) {
err = MCA_PML_CALL(recv((void*)NULL, 0, MPI_BYTE, left,
MCA_COLL_BASE_TAG_BARRIER, comm, MPI_STATUS_IGNORE));
if (err != MPI_SUCCESS) { line = __LINE__; goto err_hndl; }
}
return MPI_SUCCESS;
err_hndl:
OPAL_OUTPUT((ompi_coll_tuned_stream,"%s:%4d\tError occurred %d, rank %2d", __FILE__,line,err,rank));
return err;
}
/*
* To make synchronous, uses sync sends and sync sendrecvs
*/
int ompi_coll_tuned_barrier_intra_recursivedoubling(struct ompi_communicator_t *comm)
{
int rank, size, adjsize;
int i, err, line;
int mask, remote;
rank = ompi_comm_rank(comm);
size = ompi_comm_size(comm);
OPAL_OUTPUT((ompi_coll_tuned_stream,"ompi_coll_tuned_barrier_intra_recursivedoubling rank %d", rank));
/* do nearest power of 2 less than size calc */
adjsize = 1;
for(i=0;adjsize*2<size;adjsize*=2) { }
/* if size is not exact power of two, perform an extra step */
if (adjsize != size) {
if (rank >= adjsize) {
/* send message to lower ranked node */
err = MCA_PML_CALL(send((void*)NULL, 0, MPI_BYTE, rank-adjsize,
MCA_COLL_BASE_TAG_BARRIER, MCA_PML_BASE_SEND_STANDARD, comm));
if (err != MPI_SUCCESS) { line = __LINE__; goto err_hndl;}
/* post receive from lower ranked node */
err = MCA_PML_CALL(recv((void*)NULL, 0, MPI_BYTE, rank-adjsize,
MCA_COLL_BASE_TAG_BARRIER, comm, MPI_STATUS_IGNORE));
if (err != MPI_SUCCESS) { line = __LINE__; goto err_hndl;}
} else if (rank < (size - adjsize)) {
/* receive message from high level rank */
err = MCA_PML_CALL(recv((void*)NULL, 0, MPI_BYTE, rank+adjsize,
MCA_COLL_BASE_TAG_BARRIER, comm, MPI_STATUS_IGNORE));
if (err != MPI_SUCCESS) { line = __LINE__; goto err_hndl;}
}
}
/* exchange messages */
if ( rank < adjsize ) {
mask = 0x1;
while ( mask < adjsize ) {
remote = rank ^ mask;
mask <<= 1;
if (remote >= adjsize) continue;
err = ompi_coll_tuned_sendrecv_localcompleted (NULL, 0, MPI_BYTE, remote, MCA_COLL_BASE_TAG_BARRIER,
NULL, 0, MPI_BYTE, remote, MCA_COLL_BASE_TAG_BARRIER,
comm, MPI_STATUS_IGNORE, rank);
if (err != MPI_SUCCESS) { line = __LINE__; goto err_hndl;}
}
}
/* non-power of 2 case */
if (adjsize != size) {
if (rank < (size - adjsize)) {
/* send enter message to higher ranked node */
err = MCA_PML_CALL(send((void*)NULL, 0, MPI_BYTE, rank+adjsize,
MCA_COLL_BASE_TAG_BARRIER, MCA_PML_BASE_SEND_SYNCHRONOUS, comm));
if (err != MPI_SUCCESS) { line = __LINE__; goto err_hndl;}
}
}
return MPI_SUCCESS;
err_hndl:
OPAL_OUTPUT((ompi_coll_tuned_stream,"%s:%4d\tError occurred %d, rank %2d", __FILE__,line,err,rank));
return err;
}
/*
* To make synchronous, uses sync sends and sync sendrecvs
*/
int ompi_coll_tuned_barrier_intra_bruck(struct ompi_communicator_t *comm)
{
int rank, size;
int distance, to, from;
int err, line = 0;
rank = ompi_comm_rank(comm);
size = ompi_comm_size(comm);
OPAL_OUTPUT((ompi_coll_tuned_stream,"ompi_coll_tuned_barrier_intra_bruck rank %d", rank));
/* exchange data with rank-2^k and rank+2^k */
for (distance = 1; distance < size; distance <<= 1) {
from = (rank + size - distance)%size;
to = (rank + distance)%size;
err = ompi_coll_tuned_sendrecv_localcompleted (NULL, 0, MPI_BYTE, to, MCA_COLL_BASE_TAG_BARRIER,
NULL, 0, MPI_BYTE, from, MCA_COLL_BASE_TAG_BARRIER,
comm, MPI_STATUS_IGNORE, rank);
if (err != MPI_SUCCESS) { line = __LINE__; goto err_hndl;}
}
return MPI_SUCCESS;
err_hndl:
OPAL_OUTPUT((ompi_coll_tuned_stream,"%s:%4d\tError occurred %d, rank %2d", __FILE__,line,err,rank));
return err;
}
/*
* To make synchronous, uses sync sends and sync sendrecvs
*/
/* special case for two processes */
int ompi_coll_tuned_barrier_intra_two_procs(struct ompi_communicator_t *comm)
{
int rank;
int err=0;
rank = ompi_comm_rank(comm);
OPAL_OUTPUT((ompi_coll_tuned_stream,"ompi_coll_tuned_barrier_intra_two_procs rank %d", rank));
if (0==rank) {
err = ompi_coll_tuned_sendrecv_localcompleted (NULL, 0, MPI_BYTE, 1, MCA_COLL_BASE_TAG_BARRIER,
NULL, 0, MPI_BYTE, 1, MCA_COLL_BASE_TAG_BARRIER,
comm, MPI_STATUS_IGNORE, rank);
}
else {
err = ompi_coll_tuned_sendrecv_localcompleted (NULL, 0, MPI_BYTE, 0, MCA_COLL_BASE_TAG_BARRIER,
NULL, 0, MPI_BYTE, 0, MCA_COLL_BASE_TAG_BARRIER,
comm, MPI_STATUS_IGNORE, rank);
}
return (err);
}
/*
* Linear functions are copied from the BASIC coll module
* they do not segment the message and are simple implementations
* but for some small number of nodes and/or small data sizes they
* are just as fast as tuned/tree based segmenting operations
* and as such may be selected by the decision functions
* These are copied into this module due to the way we select modules
* in V1. i.e. in V2 we will handle this differently and so will not
* have to duplicate code.
* GEF Oct05 after asking Jeff.
*/
/* copied function (with appropriate renaming) starts here */
static int ompi_coll_tuned_barrier_intra_basic_linear(struct ompi_communicator_t *comm)
{
int i;
int err;
int size = ompi_comm_size(comm);
int rank = ompi_comm_rank(comm);
/* All non-root send & receive zero-length message. */
if (rank > 0) {
err =
MCA_PML_CALL(send
(NULL, 0, MPI_BYTE, 0, MCA_COLL_BASE_TAG_BARRIER,
MCA_PML_BASE_SEND_STANDARD, comm));
if (MPI_SUCCESS != err) {
return err;
}
err =
MCA_PML_CALL(recv
(NULL, 0, MPI_BYTE, 0, MCA_COLL_BASE_TAG_BARRIER,
comm, MPI_STATUS_IGNORE));
if (MPI_SUCCESS != err) {
return err;
}
}
/* The root collects and broadcasts the messages. */
else {
for (i = 1; i < size; ++i) {
err = MCA_PML_CALL(recv(NULL, 0, MPI_BYTE, MPI_ANY_SOURCE,
MCA_COLL_BASE_TAG_BARRIER,
comm, MPI_STATUS_IGNORE));
if (MPI_SUCCESS != err) {
return err;
}
}
for (i = 1; i < size; ++i) {
err =
MCA_PML_CALL(send
(NULL, 0, MPI_BYTE, i,
MCA_COLL_BASE_TAG_BARRIER,
MCA_PML_BASE_SEND_STANDARD, comm));
if (MPI_SUCCESS != err) {
return err;
}
}
}
/* All done */
return MPI_SUCCESS;
}
/* copied function (with appropriate renaming) ends here */
/* The following are used by dynamic and forced rules */
/* publish details of each algorithm and if its forced/fixed/locked in */
/* as you add methods/algorithms you must update this and the query/map routines */
int ompi_coll_tuned_barrier_intra_check_forced ( )
{
mca_base_param_reg_int(&mca_coll_tuned_component.super.collm_version,
"barrier_algorithm",
"Which barrier algorithm is used. Can be locked down to choice of: 0 ignore, 1 linear, 2 double ring, 3: recursive doubling 4: bruck, 5: two proc only, 6: step based bmtree",
false, false, ompi_coll_tuned_barrier_forced_choice,
&ompi_coll_tuned_barrier_forced_choice);
return (MPI_SUCCESS);
}
int ompi_coll_tuned_barrier_intra_query ( )
{
return (5); /* 4 algorithms available */
/* 2 to do */
}
int ompi_coll_tuned_barrier_intra_do_forced(struct ompi_communicator_t *comm)
{
OPAL_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:barrier_intra_do_forced selected algorithm %d", ompi_coll_tuned_barrier_forced_choice));
switch (ompi_coll_tuned_barrier_forced_choice) {
case (0): return ompi_coll_tuned_barrier_intra_dec_fixed (comm);
case (1): return ompi_coll_tuned_barrier_intra_basic_linear (comm);
case (2): return ompi_coll_tuned_barrier_intra_doublering (comm);
case (3): return ompi_coll_tuned_barrier_intra_recursivedoubling (comm);
case (4): return ompi_coll_tuned_barrier_intra_bruck (comm);
case (5): return ompi_coll_tuned_barrier_intra_two_procs (comm);
/* case (6): return ompi_coll_tuned_barrier_intra_bmtree_step (comm); */
default:
OPAL_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:barrier_intra_do_forced attempt to select algorithm %d when only 0-%d is valid?",
ompi_coll_tuned_barrier_forced_choice, ompi_coll_tuned_barrier_intra_query()));
return (MPI_ERR_ARG);
} /* switch */
}
int ompi_coll_tuned_barrier_intra_do_this (struct ompi_communicator_t *comm, int choice, int faninout, int segsize)
{
OPAL_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:barrier_intra_do_this selected algorithm %d topo fanin/out%d", choice, faninout));
switch (choice) {
case (0): return ompi_coll_tuned_barrier_intra_dec_fixed (comm);
case (1): return ompi_coll_tuned_barrier_intra_basic_linear (comm);
case (2): return ompi_coll_tuned_barrier_intra_doublering (comm);
case (3): return ompi_coll_tuned_barrier_intra_recursivedoubling (comm);
case (4): return ompi_coll_tuned_barrier_intra_bruck (comm);
case (5): return ompi_coll_tuned_barrier_intra_two_procs (comm);
/* case (6): return ompi_coll_tuned_barrier_intra_bmtree_step (comm); */
default:
OPAL_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:barrier_intra_do_this attempt to select algorithm %d when only 0-%d is valid?",
choice, ompi_coll_tuned_barrier_intra_query()));
return (MPI_ERR_ARG);
} /* switch */
}