1
1
openmpi/ompi/mca/btl/openib/mca-btl-openib-device-params.ini
Jeff Squyres c9f3f2c682 From Ralph Campbell at QLogic:
Roland noticed that the QLogic HCA driver was using the PCIe vendor ID
for the ibv_query_device so the IEEE OUI value is now used. This means
the config file should recognize the vendor ID value 0x1175 too.

This commit was SVN r19277.
2008-08-13 18:35:37 +00:00

207 строки
6.9 KiB
INI

#
# Copyright (c) 2006 Cisco Systems, Inc. All rights reserved.
# Copyright (c) 2006-2008 Mellanox Technologies. All rights reserved.
# $COPYRIGHT$
#
# Additional copyrights may follow
#
# This is the default NIC/HCA parameters file for Open MPI's OpenIB
# BTL. If NIC/HCA vendors wish to add their respective values into
# this file (that is distributed with Open MPI), please contact the
# Open MPI development team. See http://www.open-mpi.org/ for
# details.
# This file is in the "ini" style, meaning that it has sections
# identified section names enclosed in square brackets (e.g.,
# "[Section name]") followed by "key = value" pairs indicating values
# for a specific NIC/HCA vendor and model. NICs/HCAs are identified
# by their vendor ID and vendor part ID, which can be obtained by
# running the diagnostic utility command "ibv_devinfo". The fields
# "vendor_id" and "vendor_part"id" are the vendor ID and vendor part
# ID, respectively.
# The sections in this file only accept a few fields:
# vendor_id: a comma-delimited list of integers of NIC/HCA vendor IDs,
# expressed either in decimal or hexidecimal (e.g., "13" or "0xd").
# Individual values can be taken directly from the output of
# "ibv_devinfo". NIC/HCA vendor ID's correspond to IEEE OUI's, for
# which you can find the canonical list here:
# http://standards.ieee.org/regauth/oui/. Example:
#
# vendor_id = 0x05ad
#
# Note: Several vendors resell Mellanox hardware and put their own firmware
# on the cards, therefore overriding the default Mellanox vendor ID.
#
# Mellanox 0x02c9
# Cisco 0x05ad
# Silverstorm 0x066a
# Voltaire 0x08f1
# HP 0x1708
# Sun 0x03ba
# vendor_part_id: a comma-delimited list of integers of different
# NIC/HCA models from a single vendor, expressed in either decimal or
# hexidecimal (e.g., "13" or "0xd"). Individual values can be
# obtained from the output of the "ibv_devinfo". Example:
#
# vendor_part_id = 25208,25218
# mtu: an integer indicating the maximum transfer unit (MTU) to be
# used with this NIC/HCA. The effective MTU will be the minimum of an
# NIC's/HCA's MTU value and its peer NIC's/HCA's MTU value. Valid
# values are 256, 512, 1024, 2048, and 4096. Example:
#
# mtu = 1024
# use_eager_rdma: an integer indicating whether RDMA should be used
# for eager messages. 0 values indicate "no" (false); non-zero values
# indicate "yes" (true). This flag should only be enabled for
# NICs/HCAs that can provide guarantees about ordering of data in
# memory -- that the last byte of an incoming RDMA write will always
# be written last. Certain cards cannot provide this guarantee, while
# others can.
# use_eager_rdma = 1
# receive_queues: a list of "bucket shared receive queues" (BSRQ) that
# are opened between MPI process peer pairs for point-to-point
# communications of messages shorter than the total length required
# for RDMA transfer. The use of multiple RQs, each with different
# sized posted receive buffers can allow [much] better registered
# memory utilization -- MPI messages are sent on the QP with the
# smallest buffer size that will fit the message. Note that flow
# control messages are always sent across the QP with the smallest
# buffer size. Also note that the buffers *must* be listed in
# increasing buffer size. This parameter matches the
# mca_btl_openib_receive_queues MCA parameter; see the ompi_info help
# message and FAQ for a description of its values. BSRQ
# specifications are found in this precedence:
# highest: specifying the mca_btl_openib_receive_queues MCA param
# next: finding a value in this file
# lowest: using the default mca_btl_openib_receive_queues MCA param value
# receive_queues = P,128,256,192,128:S,65536,256,192,128
# max_inline_data: an integer specifying the maximum inline data (in
# bytes) supported by the device. 0 means to use a run-time probe to
# figure out the maximum value supported by the device.
# max_inline_data = 1024
############################################################################
[default]
# These are the default values, identified by the vendor and part ID
# numbers of 0 and 0. If queried NIC/HCA does not return vendor and
# part ID numbers that match any of the sections in this file, the
# values in this section are used. Vendor IDs and part IDs can be hex
# or decimal.
vendor_id = 0
vendor_part_id = 0
use_eager_rdma = 0
mtu = 1024
max_inline_data = 128
############################################################################
[Mellanox Tavor Infinihost]
vendor_id = 0x2c9,0x5ad,0x66a,0x8f1,0x1708
vendor_part_id = 23108
use_eager_rdma = 1
mtu = 1024
max_inline_data = 128
############################################################################
[Mellanox Arbel InfiniHost III MemFree/Tavor]
vendor_id = 0x2c9,0x5ad,0x66a,0x8f1,0x1708,0x03ba
vendor_part_id = 25208,25218
use_eager_rdma = 1
mtu = 1024
max_inline_data = 128
############################################################################
[Mellanox Sinai Infinihost III]
vendor_id = 0x2c9,0x5ad,0x66a,0x8f1,0x1708,0x03ba
vendor_part_id = 25204
use_eager_rdma = 1
mtu = 2048
max_inline_data = 128
############################################################################
# A.k.a. ConnectX
[Mellanox Hermon]
vendor_id = 0x2c9,0x5ad,0x66a,0x8f1,0x1708,0x03ba
vendor_part_id = 25408,25418,25428,26418,26428
use_eager_rdma = 1
mtu = 2048
max_inline_data = 128
############################################################################
[IBM eHCA 4x and 12x]
vendor_id = 0x5076
vendor_part_id = 0
use_eager_rdma = 1
mtu = 2048
receive_queues = P,128,256,192,128:P,65536,256,192,128
############################################################################
# See http://lists.openfabrics.org/pipermail/general/2008-June/051920.html
# 0x1fc1 and 0x1077 are PCI ID's; at least one of QL's OUIs is 0x1175
[QLogic InfiniPath 1]
vendor_id = 0x1fc1,0x1077,0x1175
vendor_part_id = 13
use_eager_rdma = 1
mtu = 2048
[QLogic InfiniPath 2]
vendor_id = 0x1fc1,0x1077,0x1175
vendor_part_id = 16,29216
use_eager_rdma = 1
mtu = 4096
############################################################################
# Chelsio's OUI is 0x0743. 0x1425 is the PCI ID.
[Chelsio T3]
vendor_id = 0x1425
vendor_part_id = 0x0020,0x0021,0x0022,0x0023,0x0024,0x0025,0x0026,0x0030,0x0031,0x0032
use_eager_rdma = 1
mtu = 2048
receive_queues = P,65536,256,192,128
max_inline_data = 64
############################################################################
# I'm *assuming* that 0x4040 is the PCI ID...
[NetXen]
vendor_id = 0x4040
vendor_part_id = 0x0001,0x0002,0x0003,0x0004,0x0005,0x0024,0x0025,0x0100
use_eager_rdma = 1
mtu = 2048
receive_queues = P,65536,248,192,128
max_inline_data = 64
############################################################################
# NE's OUI is 0x1255. 0x1678 is the PCI ID.
[NetEffect NE020]
vendor_ID = 0x1678
vendor_part_id = 0x0100
use_eager_rdma = 1
mtu = 2048
receive_queues = P,128,256,192,128:P,65536,256,192,128
max_inline_data = 64