1
1
openmpi/ompi/mca/btl/udapl/btl_udapl.c
George Bosilca 1cb26e3b9c Finally the convertor export a convenience function to allow a consistent
computation of the current location on the pack/unpack process. This can
be used both for retrieving the pointer to the first byte (in the special
case of the cached RDMA protocol) and for getting the current
position (for the pipelined protocol).

I modified all BTLs, but most of them are still untested.

This commit was SVN r14180.
2007-03-30 22:02:45 +00:00

849 строки
26 KiB
C

/*
* Copyright (c) 2004-2007 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2005 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2006 Sandia National Laboratories. All rights
* reserved.
* Copyright (c) 2006 Sun Microsystems, Inc. All rights reserved.
*
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "ompi_config.h"
#include <errno.h>
#include <string.h>
#include "opal/util/output.h"
#include "opal/util/if.h"
#include "opal/util/show_help.h"
#include "ompi/mca/pml/pml.h"
#include "ompi/mca/btl/btl.h"
#include "btl_udapl.h"
#include "btl_udapl_frag.h"
#include "btl_udapl_proc.h"
#include "btl_udapl_endpoint.h"
#include "ompi/datatype/convertor.h"
#include "ompi/datatype/datatype.h"
#include "ompi/mca/mpool/base/base.h"
#include "ompi/mca/mpool/rdma/mpool_rdma.h"
#include "ompi/mca/btl/base/btl_base_error.h"
#include "ompi/proc/proc.h"
static int udapl_reg_mr(void *reg_data, void *base, size_t size,
mca_mpool_base_registration_t *reg);
static int udapl_dereg_mr(void *reg_data, mca_mpool_base_registration_t *reg);
mca_btl_udapl_module_t mca_btl_udapl_module = {
{
&mca_btl_udapl_component.super,
0, /* max size of first fragment */
0, /* min send fragment size */
0, /* max send fragment size */
0, /* min rdma fragment size */
0, /* max rdma fragment size */
0, /* exclusivity */
0, /* latency */
0, /* bandwidth */
MCA_BTL_FLAGS_SEND,
mca_btl_udapl_add_procs,
mca_btl_udapl_del_procs,
mca_btl_udapl_register,
mca_btl_udapl_finalize,
mca_btl_udapl_alloc,
mca_btl_udapl_free,
mca_btl_udapl_prepare_src,
mca_btl_udapl_prepare_dst,
mca_btl_udapl_send,
mca_btl_udapl_put,
NULL, /* get */
mca_btl_base_dump,
NULL, /* mpool */
NULL, /* register error cb */
mca_btl_udapl_ft_event
}
};
static int udapl_reg_mr(void *reg_data, void *base, size_t size,
mca_mpool_base_registration_t *reg)
{
mca_btl_udapl_module_t *btl = (mca_btl_udapl_module_t*)reg_data;
mca_btl_udapl_reg_t *udapl_reg = (mca_btl_udapl_reg_t*)reg;
DAT_REGION_DESCRIPTION region;
DAT_VLEN dat_size;
DAT_VADDR dat_addr;
int rc;
region.for_va = base;
udapl_reg->lmr_triplet.virtual_address = (DAT_VADDR)base;
udapl_reg->lmr_triplet.segment_length = size;
udapl_reg->lmr = NULL;
rc = dat_lmr_create(btl->udapl_ia, DAT_MEM_TYPE_VIRTUAL, region, size,
btl->udapl_pz, DAT_MEM_PRIV_ALL_FLAG, &udapl_reg->lmr,
&udapl_reg->lmr_triplet.lmr_context, &udapl_reg->rmr_context,
&dat_size, &dat_addr);
if(rc != DAT_SUCCESS) {
return OMPI_ERR_OUT_OF_RESOURCE;
}
return OMPI_SUCCESS;
}
static int udapl_dereg_mr(void *reg_data, mca_mpool_base_registration_t *reg)
{
mca_btl_udapl_reg_t *udapl_reg = (mca_btl_udapl_reg_t*)reg;
int rc;
if(udapl_reg->lmr != NULL) {
rc = dat_lmr_free(udapl_reg->lmr);
if(rc != DAT_SUCCESS) {
char* major;
char* minor;
dat_strerror(rc, (const char**)&major,
(const char**)&minor);
BTL_ERROR(("ERROR: %s %s %s\n", "dat_lmr_free",
major, minor));
return OMPI_ERROR;
}
}
return OMPI_SUCCESS;
}
/**
* Initialize module module resources.
*/
int
mca_btl_udapl_init(DAT_NAME_PTR ia_name, mca_btl_udapl_module_t* btl)
{
mca_mpool_base_resources_t res;
DAT_CONN_QUAL port;
DAT_IA_ATTR attr;
DAT_RETURN rc;
/* open the uDAPL interface */
btl->udapl_evd_async = DAT_HANDLE_NULL;
rc = dat_ia_open(ia_name, mca_btl_udapl_component.udapl_evd_qlen,
&btl->udapl_evd_async, &btl->udapl_ia);
if(DAT_SUCCESS != rc) {
char* major;
char* minor;
dat_strerror(rc, (const char**)&major,
(const char**)&minor);
BTL_ERROR(("ERROR: %s %s %s\n", "dat_ia_open",
major, minor));
return OMPI_ERROR;
}
/* create a protection zone */
rc = dat_pz_create(btl->udapl_ia, &btl->udapl_pz);
if(DAT_SUCCESS != rc) {
char* major;
char* minor;
dat_strerror(rc, (const char**)&major,
(const char**)&minor);
BTL_ERROR(("ERROR: %s %s %s\n", "dat_pz_create",
major, minor));
goto failure;
}
/* query to get address information */
/* TODO - we only get the address, but there's other useful stuff here */
rc = dat_ia_query(btl->udapl_ia, &btl->udapl_evd_async,
DAT_IA_FIELD_IA_ADDRESS_PTR, &attr, 0, NULL);
if(DAT_SUCCESS != rc) {
char* major;
char* minor;
dat_strerror(rc, (const char**)&major,
(const char**)&minor);
BTL_ERROR(("ERROR: %s %s %s\n", "dat_ia_query",
major, minor));
goto failure;
}
memcpy(&btl->udapl_addr.addr, attr.ia_address_ptr, sizeof(DAT_SOCK_ADDR));
/* set up evd's */
rc = dat_evd_create(btl->udapl_ia,
mca_btl_udapl_component.udapl_evd_qlen, DAT_HANDLE_NULL,
DAT_EVD_DTO_FLAG | DAT_EVD_RMR_BIND_FLAG, &btl->udapl_evd_dto);
if(DAT_SUCCESS != rc) {
char* major;
char* minor;
dat_strerror(rc, (const char**)&major,
(const char**)&minor);
BTL_ERROR(("ERROR: %s %s %s\n", "dat_evd_create (dto)",
major, minor));
goto failure;
}
rc = dat_evd_create(btl->udapl_ia,
mca_btl_udapl_component.udapl_evd_qlen, DAT_HANDLE_NULL,
DAT_EVD_CR_FLAG | DAT_EVD_CONNECTION_FLAG, &btl->udapl_evd_conn);
if(DAT_SUCCESS != rc) {
char* major;
char* minor;
dat_strerror(rc, (const char**)&major,
(const char**)&minor);
BTL_ERROR(("ERROR: %s %s %s\n", "dat_evd_create (conn)",
major, minor));
goto failure;
}
/* create our public service point */
rc = dat_psp_create_any(btl->udapl_ia, &port, btl->udapl_evd_conn,
DAT_PSP_CONSUMER_FLAG, &btl->udapl_psp);
if(DAT_SUCCESS != rc) {
char* major;
char* minor;
dat_strerror(rc, (const char**)&major,
(const char**)&minor);
BTL_ERROR(("ERROR: %s %s %s\n", "dat_psp_create_any",
major, minor));
goto failure;
}
/* establish endpoint parameters */
rc = mca_btl_udapl_endpoint_get_params(btl, &(btl->udapl_ep_param));
if(OMPI_SUCCESS != rc) {
/* by not erroring out here we can try to continue with
* the default endpoint parameter values
*/
opal_show_help("help-mpi-btl-udapl.txt",
"use default endpoint params",
true);
}
/* Save the port with the address information */
/* TODO - since we're doing the hack below, do we need our own port? */
btl->udapl_addr.port = port;
/* TODO - big bad evil hack! */
/* uDAPL doesn't ever seem to keep track of ports with addresses. This
becomes a problem when we use dat_ep_query() to obtain a remote address
on an endpoint. In this case, both the DAT_PORT_QUAL and the sin_port
field in the DAT_SOCK_ADDR are 0, regardless of the actual port. This is
a problem when we have more than one uDAPL process per IA - these
processes will have exactly the same address, as the port is all
we have to differentiate who is who. Thus, our uDAPL EP -> BTL EP
matching algorithm will break down.
So, we insert the port we used for our PSP into the DAT_SOCK_ADDR for
this IA. uDAPL then conveniently propagates this to where we need it.
*/
((struct sockaddr_in*)attr.ia_address_ptr)->sin_port = htons(port);
((struct sockaddr_in*)&btl->udapl_addr.addr)->sin_port = htons(port);
/* initialize the memory pool */
res.reg_data = btl;
res.sizeof_reg = sizeof(mca_btl_udapl_reg_t);
res.register_mem = udapl_reg_mr;
res.deregister_mem = udapl_dereg_mr;
btl->super.btl_mpool = mca_mpool_base_module_create(
mca_btl_udapl_component.udapl_mpool_name, &btl->super, &res);
/* initialize objects */
OBJ_CONSTRUCT(&btl->udapl_frag_eager, ompi_free_list_t);
OBJ_CONSTRUCT(&btl->udapl_frag_max, ompi_free_list_t);
OBJ_CONSTRUCT(&btl->udapl_frag_user, ompi_free_list_t);
OBJ_CONSTRUCT(&btl->udapl_frag_control, ompi_free_list_t);
OBJ_CONSTRUCT(&btl->udapl_lock, opal_mutex_t);
/* initialize free lists */
ompi_free_list_init(&btl->udapl_frag_eager,
sizeof(mca_btl_udapl_frag_eager_t) +
mca_btl_udapl_component.udapl_eager_frag_size,
OBJ_CLASS(mca_btl_udapl_frag_eager_t),
mca_btl_udapl_component.udapl_free_list_num,
mca_btl_udapl_component.udapl_free_list_max,
mca_btl_udapl_component.udapl_free_list_inc,
btl->super.btl_mpool);
ompi_free_list_init(&btl->udapl_frag_max,
sizeof(mca_btl_udapl_frag_max_t) +
mca_btl_udapl_component.udapl_max_frag_size,
OBJ_CLASS(mca_btl_udapl_frag_max_t),
mca_btl_udapl_component.udapl_free_list_num,
mca_btl_udapl_component.udapl_free_list_max,
mca_btl_udapl_component.udapl_free_list_inc,
btl->super.btl_mpool);
ompi_free_list_init(&btl->udapl_frag_user,
sizeof(mca_btl_udapl_frag_user_t),
OBJ_CLASS(mca_btl_udapl_frag_user_t),
mca_btl_udapl_component.udapl_free_list_num,
mca_btl_udapl_component.udapl_free_list_max,
mca_btl_udapl_component.udapl_free_list_inc,
NULL);
ompi_free_list_init(&btl->udapl_frag_control,
sizeof(mca_btl_udapl_frag_eager_t) +
mca_btl_udapl_component.udapl_eager_frag_size,
OBJ_CLASS(mca_btl_udapl_frag_eager_t),
mca_btl_udapl_component.udapl_free_list_num,
-1,
mca_btl_udapl_component.udapl_free_list_inc,
btl->super.btl_mpool);
/* initialize eager rdma buffer info */
orte_pointer_array_init(&btl->udapl_eager_rdma_endpoints,
mca_btl_udapl_component.udapl_max_eager_rdma_peers,
mca_btl_udapl_component.udapl_max_eager_rdma_peers,
0);
btl->udapl_eager_rdma_endpoint_count = 0;
OBJ_CONSTRUCT(&btl->udapl_eager_rdma_lock, opal_mutex_t);
/* TODO - Set up SRQ when it is supported */
return OMPI_SUCCESS;
failure:
dat_ia_close(btl->udapl_ia, DAT_CLOSE_ABRUPT_FLAG);
return OMPI_ERROR;
}
/*
* Cleanup/release module resources.
*/
int mca_btl_udapl_finalize(struct mca_btl_base_module_t* base_btl)
{
mca_btl_udapl_module_t* udapl_btl = (mca_btl_udapl_module_t*) base_btl;
int32_t i;
/*
* Cleaning up the endpoints here because mca_btl_udapl_del_procs
* is never called by upper layers.
* Note: this is only looking at those endpoints which are available
* off of the btl module rdma list.
*/
for (i=0; i < udapl_btl->udapl_eager_rdma_endpoint_count; i++) {
mca_btl_udapl_endpoint_t* endpoint =
orte_pointer_array_get_item(udapl_btl->udapl_eager_rdma_endpoints,
i);
OBJ_DESTRUCT(endpoint);
}
/* release uDAPL resources */
dat_evd_free(udapl_btl->udapl_evd_dto);
dat_evd_free(udapl_btl->udapl_evd_conn);
dat_pz_free(udapl_btl->udapl_pz);
dat_ia_close(udapl_btl->udapl_ia, DAT_CLOSE_GRACEFUL_FLAG);
/* destroy objects */
OBJ_DESTRUCT(&udapl_btl->udapl_lock);
OBJ_DESTRUCT(&udapl_btl->udapl_frag_eager);
OBJ_DESTRUCT(&udapl_btl->udapl_frag_max);
OBJ_DESTRUCT(&udapl_btl->udapl_frag_user);
OBJ_DESTRUCT(&udapl_btl->udapl_frag_control);
OBJ_DESTRUCT(&udapl_btl->udapl_eager_rdma_lock);
free(udapl_btl);
return OMPI_SUCCESS;
}
/*
*
*/
int mca_btl_udapl_add_procs(
struct mca_btl_base_module_t* btl,
size_t nprocs,
struct ompi_proc_t **ompi_procs,
struct mca_btl_base_endpoint_t** peers,
ompi_bitmap_t* reachable)
{
mca_btl_udapl_module_t* udapl_btl = (mca_btl_udapl_module_t*)btl;
int i, rc;
for(i = 0; i < (int) nprocs; i++) {
struct ompi_proc_t* ompi_proc = ompi_procs[i];
mca_btl_udapl_proc_t* udapl_proc;
mca_btl_base_endpoint_t* udapl_endpoint;
if(ompi_proc == ompi_proc_local())
continue;
if(NULL == (udapl_proc = mca_btl_udapl_proc_create(ompi_proc))) {
continue;
}
/*
* Check to make sure that the peer has at least as many interface
* addresses exported as we are trying to use. If not, then
* don't bind this BTL instance to the proc.
*/
OPAL_THREAD_LOCK(&udapl_proc->proc_lock);
/* The btl_proc datastructure is shared by all uDAPL BTL
* instances that are trying to reach this destination.
* Cache the peer instance on the btl_proc.
*/
udapl_endpoint = OBJ_NEW(mca_btl_udapl_endpoint_t);
if(NULL == udapl_endpoint) {
OPAL_THREAD_UNLOCK(&udapl_proc->proc_lock);
return OMPI_ERR_OUT_OF_RESOURCE;
}
udapl_endpoint->endpoint_btl = udapl_btl;
rc = mca_btl_udapl_proc_insert(udapl_proc, udapl_endpoint);
if(rc != OMPI_SUCCESS) {
OBJ_RELEASE(udapl_endpoint);
OPAL_THREAD_UNLOCK(&udapl_proc->proc_lock);
continue;
}
ompi_bitmap_set_bit(reachable, i);
OPAL_THREAD_UNLOCK(&udapl_proc->proc_lock);
peers[i] = udapl_endpoint;
}
return OMPI_SUCCESS;
}
int mca_btl_udapl_del_procs(struct mca_btl_base_module_t* btl,
size_t nprocs,
struct ompi_proc_t **procs,
struct mca_btl_base_endpoint_t ** peers)
{
/* TODO */
return OMPI_SUCCESS;
}
/**
* Register callback function to support send/recv semantics
*/
int mca_btl_udapl_register(
struct mca_btl_base_module_t* btl,
mca_btl_base_tag_t tag,
mca_btl_base_module_recv_cb_fn_t cbfunc,
void* cbdata)
{
mca_btl_udapl_module_t* udapl_btl = (mca_btl_udapl_module_t*) btl;
udapl_btl->udapl_reg[tag].cbfunc = cbfunc;
udapl_btl->udapl_reg[tag].cbdata = cbdata;
return OMPI_SUCCESS;
}
/**
* Allocate a segment.
*
* @param btl (IN) BTL module
* @param size (IN) Request segment size.
*/
mca_btl_base_descriptor_t* mca_btl_udapl_alloc(
struct mca_btl_base_module_t* btl,
size_t size)
{
mca_btl_udapl_module_t* udapl_btl = (mca_btl_udapl_module_t*) btl;
mca_btl_udapl_frag_t* frag;
int rc;
int pad = 0;
/* compute pad as needed */
MCA_BTL_UDAPL_FRAG_CALC_ALIGNMENT_PAD(pad,
(size + sizeof(mca_btl_udapl_footer_t)));
if((size + pad) <= btl->btl_eager_limit) {
MCA_BTL_UDAPL_FRAG_ALLOC_EAGER(udapl_btl, frag, rc);
} else if(size <= btl->btl_max_send_size) {
MCA_BTL_UDAPL_FRAG_ALLOC_MAX(udapl_btl, frag, rc);
} else {
return NULL;
}
frag->segment.seg_len = size;
/* Set up the LMR triplet from the frag segment.
* Note: The triplet.segment_len is set to what is required for
* actually sending the fragment, if later it is determined
* that rdma can be used to transfer the fragment the
* triplet.segment_len will have to change.
*/
frag->triplet.virtual_address = (DAT_VADDR)frag->segment.seg_addr.pval;
frag->triplet.segment_length =
frag->segment.seg_len + sizeof(mca_btl_udapl_footer_t);
assert(frag->triplet.lmr_context ==
frag->registration->lmr_triplet.lmr_context);
frag->btl = udapl_btl;
frag->base.des_src = &frag->segment;
frag->base.des_src_cnt = 1;
frag->base.des_dst = NULL;
frag->base.des_dst_cnt = 0;
frag->base.des_flags = 0;
return &frag->base;
}
/**
* Return a segment
*/
int mca_btl_udapl_free(
struct mca_btl_base_module_t* btl,
mca_btl_base_descriptor_t* des)
{
mca_btl_udapl_frag_t* frag = (mca_btl_udapl_frag_t*)des;
if(frag->size == 0 && frag->registration != NULL) {
btl->btl_mpool->mpool_deregister(btl->btl_mpool,
(mca_mpool_base_registration_t*)frag->registration);
MCA_BTL_UDAPL_FRAG_RETURN_USER(btl, frag);
} else if(frag->size == mca_btl_udapl_component.udapl_eager_frag_size) {
MCA_BTL_UDAPL_FRAG_RETURN_EAGER(btl, frag);
} else if(frag->size == mca_btl_udapl_component.udapl_max_frag_size) {
MCA_BTL_UDAPL_FRAG_RETURN_MAX(btl, frag);
} else {
OPAL_OUTPUT((0, "[%s:%d] mca_btl_udapl_free: invalid descriptor\n", __FILE__,__LINE__));
return OMPI_ERR_BAD_PARAM;
}
return OMPI_SUCCESS;
}
/**
* Pack data and return a descriptor that can be
* used for send/put.
*
* @param btl (IN) BTL module
* @param peer (IN) BTL peer addressing
*/
mca_btl_base_descriptor_t* mca_btl_udapl_prepare_src(
struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
struct mca_mpool_base_registration_t* registration,
struct ompi_convertor_t* convertor,
size_t reserve,
size_t* size
)
{
mca_btl_udapl_frag_t* frag = NULL;
struct iovec iov;
uint32_t iov_count = 1;
size_t max_data = *size;
int rc;
int pad = 0;
/* compute pad as needed */
MCA_BTL_UDAPL_FRAG_CALC_ALIGNMENT_PAD(pad,
(max_data + reserve + sizeof(mca_btl_udapl_footer_t)));
if(ompi_convertor_need_buffers(convertor) == false && 0 == reserve) {
if(registration != NULL || max_data > btl->btl_max_send_size) {
MCA_BTL_UDAPL_FRAG_ALLOC_USER(btl, frag, rc);
if(NULL == frag){
return NULL;
}
iov.iov_len = max_data;
iov.iov_base = NULL;
ompi_convertor_pack(convertor, &iov,
&iov_count, &max_data );
*size = max_data;
if(NULL == registration) {
rc = btl->btl_mpool->mpool_register(btl->btl_mpool, iov.iov_base,
max_data, 0,
&registration);
if(rc != OMPI_SUCCESS) {
MCA_BTL_UDAPL_FRAG_RETURN_USER(btl,frag);
return NULL;
}
/* keep track of the registration we did */
frag->registration = (mca_btl_udapl_reg_t*)registration;
}
frag->segment.seg_len = max_data;
frag->segment.seg_addr.pval = iov.iov_base;
frag->triplet.segment_length = max_data;
frag->triplet.virtual_address = (DAT_VADDR)iov.iov_base;
frag->triplet.lmr_context =
((mca_btl_udapl_reg_t*)registration)->lmr_triplet.lmr_context;
/* initialize base descriptor */
frag->base.des_src = &frag->segment;
frag->base.des_src_cnt = 1;
frag->base.des_dst = NULL;
frag->base.des_dst_cnt = 0;
frag->base.des_flags = 0;
return &frag->base;
}
}
if(max_data + pad + reserve <= btl->btl_eager_limit) {
/* the data is small enough to fit in the eager frag and
* memory is not prepinned */
MCA_BTL_UDAPL_FRAG_ALLOC_EAGER(btl, frag, rc);
}
if(NULL == frag) {
/* the data doesn't fit into eager frag or eager frag is
* not available */
MCA_BTL_UDAPL_FRAG_ALLOC_MAX(btl, frag, rc);
if(NULL == frag) {
return NULL;
}
if(max_data + reserve > btl->btl_max_send_size) {
max_data = btl->btl_max_send_size - reserve;
}
}
iov.iov_len = max_data;
iov.iov_base = (char *) frag->segment.seg_addr.pval + reserve;
rc = ompi_convertor_pack(convertor,
&iov, &iov_count, &max_data );
if(rc < 0) {
MCA_BTL_UDAPL_FRAG_RETURN_MAX(btl, frag);
return NULL;
}
*size = max_data;
/* setup lengths and addresses to send out data */
frag->segment.seg_len = max_data + reserve;
frag->triplet.segment_length =
max_data + reserve + sizeof(mca_btl_udapl_footer_t);
frag->triplet.virtual_address = (DAT_VADDR)frag->segment.seg_addr.pval;
/* initialize base descriptor */
frag->base.des_src = &frag->segment;
frag->base.des_src_cnt = 1;
frag->base.des_dst = NULL;
frag->base.des_dst_cnt = 0;
frag->base.des_flags = 0;
return &frag->base;
}
/**
* Prepare a descriptor for send/rdma using the supplied
* convertor. If the convertor references data that is contiguous,
* the descriptor may simply point to the user buffer. Otherwise,
* this routine is responsible for allocating buffer space and
* packing if required.
*
* @param btl (IN) BTL module
* @param endpoint (IN) BTL peer addressing
* @param convertor (IN) Data type convertor
* @param reserve (IN) Additional bytes requested by upper layer to precede user data
* @param size (IN/OUT) Number of bytes to prepare (IN), number of bytes actually prepared (OUT)
*/
mca_btl_base_descriptor_t* mca_btl_udapl_prepare_dst(
struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
struct mca_mpool_base_registration_t* registration,
struct ompi_convertor_t* convertor,
size_t reserve,
size_t* size)
{
mca_btl_udapl_frag_t* frag;
int rc;
MCA_BTL_UDAPL_FRAG_ALLOC_USER(btl, frag, rc);
if(NULL == frag) {
return NULL;
}
frag->segment.seg_len = *size;
ompi_convertor_get_current_pointer( convertor, (void**)&(frag->segment.seg_addr.pval) );
if(NULL == registration) {
/* didn't get a memory registration passed in, so must
* register the region now
*/
rc = btl->btl_mpool->mpool_register(btl->btl_mpool,
frag->segment.seg_addr.pval,
frag->segment.seg_len,
0,
&registration);
if(OMPI_SUCCESS != rc || NULL == registration) {
MCA_BTL_UDAPL_FRAG_RETURN_USER(btl,frag);
return NULL;
}
frag->registration = (mca_btl_udapl_reg_t*)registration;
}
frag->base.des_src = NULL;
frag->base.des_src_cnt = 0;
frag->base.des_dst = &frag->segment;
frag->base.des_dst_cnt = 1;
frag->base.des_flags = 0;
frag->segment.seg_key.key32[0] =
((mca_btl_udapl_reg_t*)registration)->rmr_context;
return &frag->base;
}
/**
* Initiate an asynchronous send.
*
* @param btl (IN) BTL module
* @param endpoint (IN) BTL addressing information
* @param descriptor (IN) Description of the data to be transferred
* @param tag (IN) The tag value used to notify the peer.
*/
int mca_btl_udapl_send(
struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
struct mca_btl_base_descriptor_t* des,
mca_btl_base_tag_t tag)
{
mca_btl_udapl_frag_t* frag = (mca_btl_udapl_frag_t*)des;
frag->endpoint = endpoint;
frag->ftr = (mca_btl_udapl_footer_t *)
((char *)frag->segment.seg_addr.pval + frag->segment.seg_len);
frag->ftr->tag = tag;
frag->type = MCA_BTL_UDAPL_SEND;
/* TODO - will inlining this give worthwhile performance? */
return mca_btl_udapl_endpoint_send(endpoint, frag);
}
/**
* Initiate an asynchronous put.
*
* @param btl (IN) BTL module
* @param endpoint (IN) BTL addressing information
* @param descriptor (IN) Description of the data to be transferred
*/
int mca_btl_udapl_put(
mca_btl_base_module_t* btl,
mca_btl_base_endpoint_t* endpoint,
mca_btl_base_descriptor_t* des)
{
DAT_RMR_TRIPLET remote_buffer;
DAT_DTO_COOKIE cookie;
int rc = OMPI_SUCCESS;
mca_btl_udapl_frag_t* frag = (mca_btl_udapl_frag_t*)des;
mca_btl_base_segment_t *dst_segment = des->des_dst;
frag->btl = (mca_btl_udapl_module_t *)btl;
frag->endpoint = endpoint;
frag->type = MCA_BTL_UDAPL_PUT;
if(OPAL_THREAD_ADD32(&endpoint->endpoint_sr_tokens[BTL_UDAPL_MAX_CONNECTION], -1) < 0) {
OPAL_THREAD_ADD32(&endpoint->endpoint_sr_tokens[BTL_UDAPL_MAX_CONNECTION], 1);
OPAL_THREAD_LOCK(&endpoint->endpoint_lock);
opal_list_append(&endpoint->endpoint_max_frags,
(opal_list_item_t*)frag);
OPAL_THREAD_UNLOCK(&endpoint->endpoint_lock);
opal_progress();
} else {
frag->triplet.segment_length = frag->segment.seg_len;
remote_buffer.rmr_context =
(DAT_RMR_CONTEXT)dst_segment->seg_key.key32[0];
remote_buffer.target_address =
(DAT_VADDR)dst_segment->seg_addr.pval;
remote_buffer.segment_length = dst_segment->seg_len;
cookie.as_ptr = frag;
OPAL_THREAD_LOCK(&endpoint->endpoint_lock);
rc = dat_ep_post_rdma_write(endpoint->endpoint_max,
1,
&frag->triplet,
cookie,
&remote_buffer,
DAT_COMPLETION_DEFAULT_FLAG);
OPAL_THREAD_UNLOCK(&endpoint->endpoint_lock);
if(DAT_SUCCESS != rc) {
char* major;
char* minor;
dat_strerror(rc, (const char**)&major,
(const char**)&minor);
BTL_ERROR(("ERROR: %s %s %s\n", "dat_ep_post_rdma_write",
major, minor));
rc = OMPI_ERROR;
}
}
return rc;
}
/**
* Initiate an asynchronous get.
*
* @param btl (IN) BTL module
* @param endpoint (IN) BTL addressing information
* @param descriptor (IN) Description of the data to be transferred
*
*/
int mca_btl_udapl_get(
mca_btl_base_module_t* btl,
mca_btl_base_endpoint_t* endpoint,
mca_btl_base_descriptor_t* des)
{
OPAL_OUTPUT((0, "udapl_get\n"));
return OMPI_ERR_NOT_IMPLEMENTED;
}
int mca_btl_udapl_ft_event(int state) {
if(OPAL_CRS_CHECKPOINT == state) {
;
}
else if(OPAL_CRS_CONTINUE == state) {
;
}
else if(OPAL_CRS_RESTART == state) {
;
}
else if(OPAL_CRS_TERM == state ) {
;
}
else {
;
}
return OMPI_SUCCESS;
}