1
1
openmpi/ompi/mca/bcol/basesmuma/bcol_basesmuma_buf_mgmt.c
Jeff Squyres 53a3defde9 s/CACHE_LINE_SIZE/BASESMUMA_CACHE_LINE_SIZE/g to avoid a system macro
name clash on some BSDs.

cmr=v1.7.4:reviewer=pasha

This commit was SVN r30230.
2014-01-10 16:48:43 +00:00

579 строки
20 KiB
C

/*
* Copyright (c) 2009-2012 Oak Ridge National Laboratory. All rights reserved.
* Copyright (c) 2009-2012 Mellanox Technologies. All rights reserved.
* Copyright (c) 2012 Los Alamos National Security, LLC.
* All rights reserved.
* Copyright (c) 2014 Cisco Systems, Inc. All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
/**
* @file
*
*/
#include "ompi_config.h"
#include "ompi/constants.h"
#include "ompi/mca/bcol/bcol.h"
#include "ompi/mca/bcol/base/base.h"
#include "ompi/mca/coll/ml/coll_ml.h"
#include "ompi/patterns/comm/coll_ops.h"
#include "opal/dss/dss.h"
#include "bcol_basesmuma.h"
/*
* With support for nonblocking collectives, we don't have an upper
* limit on the number of outstanding collectives per communicator.
* Also, since we want to avoid communication to figure out which
* buffers other ranks in the group will use, we will rely on the
* fact that collective operations are called in the same order
* in each process, to assign a unique ID to each collective operation.
* We use this to create a static mapping from the index to the buffer
* that will be used. Also, because there is no limit to the number of
* outstanding collective operations, we use a generation index for each
* memory bank, so the collective will use the buffer only when the
* correct generation of the bank is ready for use.
*/
int bcol_basesmuma_get_buff_index( sm_buffer_mgmt *buff_block,
uint64_t buff_id )
{
/* local variables */
int memory_bank;
uint64_t generation;
int index=-1;
/* get the bank index that will be used */
memory_bank=buff_id& buff_block->mask;
memory_bank = memory_bank SHIFT_DOWN buff_block->log2_num_buffs_per_mem_bank;
/* get the generation of the bank this maps to */
generation = buff_id SHIFT_DOWN (buff_block->log2_number_of_buffs);
/* check to see if the bank is available */
if( generation == buff_block->ctl_buffs_mgmt[memory_bank].
bank_gen_counter ) {
/* get the buffer index that will be returned */
index=buff_id & buff_block->mask;
/* no in-use counter increment, as the mapping is static, and
* all we need to know if the number of collectives that complete */
} else {
/* progress communications so that resources can be freed up */
opal_progress();
}
/* return */
return index;
}
/* release the shared memory buffers
* buf_id is the unique ID assigned to the particular buffer
*/
int bcol_basesmuma_free_buff( sm_buffer_mgmt * buff_block,
uint64_t buff_id )
{
/* local variables */
int ret=OMPI_SUCCESS;
int memory_bank;
uint64_t generation;
mca_bcol_basesmuma_component_t *cs = &mca_bcol_basesmuma_component;
/* get the bank index that will be used */
memory_bank=buff_id& buff_block->mask;
memory_bank = memory_bank SHIFT_DOWN buff_block->log2_num_buffs_per_mem_bank;
/* get the generation of the bank this maps to */
generation = buff_id SHIFT_DOWN (buff_block->log2_number_of_buffs);
/* the generation counter should not change until all resrouces
* associated with this bank have been freed.
*/
assert(generation == buff_block->ctl_buffs_mgmt[memory_bank].bank_gen_counter);
/*
* increment counter of completed buffers
*/
OPAL_THREAD_ADD32(&(buff_block->ctl_buffs_mgmt[memory_bank].n_buffs_freed),
1);
/*
* If I am the last to checkin - initiate resource recycling
*/
if( buff_block->ctl_buffs_mgmt[memory_bank].n_buffs_freed ==
buff_block->ctl_buffs_mgmt[memory_bank].number_of_buffers ) {
/* Lock to ensure atomic recycling of resources */
OPAL_THREAD_LOCK(&(buff_block->ctl_buffs_mgmt[memory_bank].mutex));
/* make sure someone else did not already get to this */
if( buff_block->ctl_buffs_mgmt[memory_bank].n_buffs_freed !=
buff_block->ctl_buffs_mgmt[memory_bank].number_of_buffers ) {
/* release lock and exit */
OPAL_THREAD_UNLOCK(&(buff_block->ctl_buffs_mgmt[memory_bank].mutex));
} else {
sm_nbbar_desc_t *p_sm_nb_desc = NULL;
/* initiate the freeing of resources. Need to make sure the other
* ranks in the group are also done with their resources before this
* block is made available for use again.
* No one else will try to allocate from this block or free back to
* this block until the next genration counter has been incremented,
* so will just reset the number of freed buffers to 0, so no one else
* will try to also initialize the recycling of these resrouces
*/
buff_block->ctl_buffs_mgmt[memory_bank].n_buffs_freed=0;
/* Start the nonblocking barrier */
p_sm_nb_desc = &(buff_block->ctl_buffs_mgmt[memory_bank].nb_barrier_desc);
p_sm_nb_desc->coll_buff = buff_block;
bcol_basesmuma_rd_nb_barrier_init_admin(p_sm_nb_desc);
if( NB_BARRIER_DONE !=
buff_block->ctl_buffs_mgmt[memory_bank].
nb_barrier_desc.collective_phase) {
opal_list_t *list=&(cs->nb_admin_barriers);
opal_list_item_t *append_item;
/* put this onto the progression list */
OPAL_THREAD_LOCK(&(cs->nb_admin_barriers_mutex));
append_item=(opal_list_item_t *)
&(buff_block->ctl_buffs_mgmt[memory_bank].nb_barrier_desc);
opal_list_append(list,append_item);
OPAL_THREAD_UNLOCK(&(cs->nb_admin_barriers_mutex));
/* progress communications so that resources can be freed up */
opal_progress();
} else {
/* mark the block as available */
(buff_block->ctl_buffs_mgmt[memory_bank].bank_gen_counter)++;
}
/* get out of here */
OPAL_THREAD_UNLOCK(&(buff_block->ctl_buffs_mgmt[memory_bank].mutex));
}
}
/* return */
return ret;
}
#if 0
/* Basesmuma interface function used for buffer bank resource recycling and
bcol specific registration information
*/
int bcol_basesmuma_bank_init(struct mca_coll_ml_module_t *ml_module,
mca_bcol_base_module_t *bcol_module,
void *reg_data)
{
/* assumption here is that the block has been registered with
* sm bcol hence has been mapped by each process, need to be
* sure that memory is mapped amongst sm peers
*/
/* local variables */
int ret = OMPI_SUCCESS, i;
uint32_t j;
sm_buffer_mgmt *pload_mgmt;
mca_bcol_basesmuma_component_t *cs = &mca_bcol_basesmuma_component;
bcol_basesmuma_registration_data_t *sm_reg_data =
(bcol_basesmuma_registration_data_t *) reg_data;
mca_bcol_basesmuma_module_t *sm_bcol =
(mca_bcol_basesmuma_module_t *) bcol_module;
ml_memory_block_desc_t *ml_block =
ml_module->payload_block;
size_t malloc_size;
ompi_common_sm_file_t input_file;
uint64_t mem_offset;
int leading_dim,loop_limit,buf_id;
unsigned char *base_ptr;
mca_bcol_basesmuma_module_t *sm_bcol_module=
(mca_bcol_basesmuma_module_t *)bcol_module;
fprintf(stderr,"test opti test\n");
/* first, we get a pointer to the payload buffer management struct */
pload_mgmt = &(sm_bcol->colls_with_user_data);
/* allocate memory for pointers to mine and my peers' payload buffers
*/
malloc_size = ml_block->num_banks*ml_block->num_buffers_per_bank*
pload_mgmt->size_of_group *sizeof(void *);
pload_mgmt->data_buffs = malloc(malloc_size);
if( !pload_mgmt->data_buffs) {
ret = OMPI_ERR_OUT_OF_RESOURCE;
goto ERROR;
}
/* setup the input file for the shared memory connection manager */
input_file.file_name = sm_reg_data->file_name;
input_file.size = sm_reg_data->size;
input_file.size_ctl_structure = 0;
input_file.data_seg_alignment = CACHE_LINE_SIZE;
input_file.mpool_size = sm_reg_data->size;
/* call the connection manager and map my shared memory peers' file
*/
ret = ompi_common_smcm_allgather_connection(
sm_bcol,
sm_bcol->super.sbgp_partner_module,
&(cs->sm_connections_list),
&(sm_bcol->payload_backing_files_info),
sm_bcol->super.sbgp_partner_module->group_comm,
input_file,
false);
if( OMPI_SUCCESS != ret ) {
goto ERROR;
}
/* now we exchange offset info - don't assume symmetric virtual memory
*/
mem_offset = (uint64_t)(ml_block->block->base_addr) -
(uint64_t)(cs->sm_payload_structs->data_addr);
/* call into the exchange offsets function */
ret = base_bcol_basesmuma_exchange_offsets(sm_bcol_module,
(void **)pload_mgmt->data_buffs, mem_offset, 0,
pload_mgmt->size_of_group);
if( OMPI_SUCCESS != ret ) {
goto ERROR;
}
/* convert memory offset to virtual address in current rank */
leading_dim = pload_mgmt->size_of_group;
loop_limit = ml_block->num_banks*ml_block->num_buffers_per_bank;
for (i=0;i< sm_bcol_module->super.sbgp_partner_module->group_size;i++) {
/* get the base pointer */
int array_id=SM_ARRAY_INDEX(leading_dim,0,i);
if( i == sm_bcol_module->super.sbgp_partner_module->my_index) {
/* me */
base_ptr=cs->sm_payload_structs->map_addr;
} else {
base_ptr=sm_bcol_module->payload_backing_files_info[i]->
sm_mmap->map_addr;
}
pload_mgmt->data_buffs[array_id]=(void *)
(((uint64_t)pload_mgmt->data_buffs[array_id])+(uint64_t)base_ptr);
for( buf_id = 1 ; buf_id < loop_limit ; buf_id++ ) {
int array_id_m1=SM_ARRAY_INDEX(leading_dim,(buf_id-1),i);
array_id=SM_ARRAY_INDEX(leading_dim,buf_id,i);
pload_mgmt->data_buffs[array_id]=(void *) ((uint64_t)(pload_mgmt->data_buffs[array_id_m1])+
(uint64_t)ml_block->size_buffer);
}
}
/* setup the data structures needed for releasing the payload
* buffers back to the ml level
*/
for(j = 0; j < ml_block->num_banks; j++) {
sm_bcol->colls_with_user_data.
ctl_buffs_mgmt[j].nb_barrier_desc.ml_memory_block_descriptor=
ml_block;
}
return OMPI_SUCCESS;
ERROR:
return ret;
}
#endif
/*
* Allocate buffers for storing non-blocking collective descriptions, required
* for making code re-entrant
*
*/
static int init_nb_coll_buff_desc(mca_bcol_basesmuma_nb_coll_buff_desc_t **desc,
void *base_addr, uint32_t num_banks,
uint32_t num_buffers_per_bank,
uint32_t size_buffer,
uint32_t header_size,
int group_size,
int pow_k)
{
uint32_t i, j, ci;
mca_bcol_basesmuma_nb_coll_buff_desc_t *tmp_desc = NULL;
int k_nomial_radix = mca_bcol_basesmuma_component.k_nomial_radix;
int pow_k_val = (0 == pow_k) ? 1 : pow_k;
int num_to_alloc = (k_nomial_radix - 1) * pow_k_val * 2 + 1 ;
*desc = (mca_bcol_basesmuma_nb_coll_buff_desc_t *)calloc(num_banks * num_buffers_per_bank, sizeof(mca_bcol_basesmuma_nb_coll_buff_desc_t));
if (NULL == *desc) {
return OMPI_ERROR;
}
tmp_desc = *desc;
for (i = 0; i < num_banks; i++) {
for (j = 0; j < num_buffers_per_bank; j++) {
ci = i * num_buffers_per_bank + j;
tmp_desc[ci].bank_index = i;
tmp_desc[ci].buffer_index = j;
/* *2 is for gather session +1 for extra peer */
tmp_desc[ci].requests = (ompi_request_t **)
calloc(num_to_alloc, sizeof(ompi_request_t *));
tmp_desc[ci].data_addr = (void *)
((unsigned char*)base_addr + ci * size_buffer + header_size);
BASESMUMA_VERBOSE(10, ("ml memory cache setup %d %d - %p", i, j, tmp_desc[ci].data_addr));
}
}
return OMPI_SUCCESS;
}
#if 1
/* New init function used for new control scheme where we put the control
* struct at the top of the payload buffer
*/
int bcol_basesmuma_bank_init_opti(struct mca_coll_ml_module_t *ml_module,
mca_bcol_base_module_t *bcol_module,
void *reg_data)
{
/* assumption here is that the block has been registered with
* sm bcol hence has been mapped by each process, need to be
* sure that memory is mapped amongst sm peers
*/
/* local variables */
int ret = OMPI_SUCCESS, i, j;
sm_buffer_mgmt *pload_mgmt;
mca_bcol_basesmuma_component_t *cs = &mca_bcol_basesmuma_component;
bcol_basesmuma_registration_data_t *sm_reg_data =
(bcol_basesmuma_registration_data_t *) reg_data;
mca_bcol_basesmuma_module_t *sm_bcol =
(mca_bcol_basesmuma_module_t *) bcol_module;
ml_memory_block_desc_t *ml_block =
ml_module->payload_block;
size_t malloc_size;
bcol_basesmuma_smcm_file_t input_file;
uint64_t mem_offset;
int leading_dim,loop_limit,buf_id;
unsigned char *base_ptr;
mca_bcol_basesmuma_module_t *sm_bcol_module=
(mca_bcol_basesmuma_module_t *)bcol_module;
int my_idx, array_id;
mca_bcol_basesmuma_header_t *ctl_ptr;
void **results_array;
mca_bcol_basesmuma_local_mlmem_desc_t *ml_mem = &sm_bcol_module->ml_mem;
/* first, we get a pointer to the payload buffer management struct */
pload_mgmt = &(sm_bcol->colls_with_user_data);
/* go ahead and get the header size that is cached on the payload block
*/
sm_bcol->total_header_size = ml_module->data_offset;
/* allocate memory for pointers to mine and my peers' payload buffers
* difference here is that now we use our new data struct
*/
malloc_size = ml_block->num_banks*ml_block->num_buffers_per_bank*
pload_mgmt->size_of_group *sizeof(mca_bcol_basesmuma_payload_t);
pload_mgmt->data_buffs = (mca_bcol_basesmuma_payload_t *) malloc(malloc_size);
if( !pload_mgmt->data_buffs) {
ret = OMPI_ERR_OUT_OF_RESOURCE;
goto ERROR;
}
/* allocate some memory to hold the offsets */
results_array = (void **) malloc(pload_mgmt->size_of_group*sizeof(void *));
/* setup the input file for the shared memory connection manager */
input_file.file_name = sm_reg_data->file_name;
input_file.size = sm_reg_data->size;
input_file.size_ctl_structure = 0;
input_file.data_seg_alignment = BASESMUMA_CACHE_LINE_SIZE;
input_file.mpool_size = sm_reg_data->size;
/* call the connection manager and map my shared memory peers' file
*/
ret = bcol_basesmuma_smcm_allgather_connection(
sm_bcol,
sm_bcol->super.sbgp_partner_module,
&(cs->sm_connections_list),
&(sm_bcol->payload_backing_files_info),
sm_bcol->super.sbgp_partner_module->group_comm,
input_file,cs->payload_base_fname,
false);
if( OMPI_SUCCESS != ret ) {
goto ERROR;
}
/* now we exchange offset info - don't assume symmetric virtual memory
*/
mem_offset = (uint64_t)(uintptr_t)(ml_block->block->base_addr) -
(uint64_t)(uintptr_t)(cs->sm_payload_structs->data_addr);
/* call into the exchange offsets function */
ret=comm_allgather_pml(&mem_offset,results_array,1,
MPI_LONG_LONG_INT,
sm_bcol_module->super.sbgp_partner_module->my_index,
sm_bcol_module->super.sbgp_partner_module->group_size,
sm_bcol_module->super.sbgp_partner_module->group_list,
sm_bcol_module->super.sbgp_partner_module->group_comm);
if( OMPI_SUCCESS != ret ) {
goto ERROR;
}
/* convert memory offset to virtual address in current rank */
leading_dim = pload_mgmt->size_of_group;
loop_limit = ml_block->num_banks*ml_block->num_buffers_per_bank;
for (i=0;i< sm_bcol_module->super.sbgp_partner_module->group_size;i++) {
/* get the base pointer */
int array_id=SM_ARRAY_INDEX(leading_dim,0,i);
if( i == sm_bcol_module->super.sbgp_partner_module->my_index) {
/* me */
base_ptr=cs->sm_payload_structs->map_addr;
} else {
base_ptr=sm_bcol_module->payload_backing_files_info[i]->
sm_mmap->map_addr;
}
/* first, set the pointer to the control struct */
pload_mgmt->data_buffs[array_id].ctl_struct=(mca_bcol_basesmuma_header_t *)
(uintptr_t)(((uint64_t)(uintptr_t)results_array[array_id])+(uint64_t)(uintptr_t)base_ptr);
/* second, calculate where to set the data pointer */
pload_mgmt->data_buffs[array_id].payload=(void *)
(uintptr_t)((uint64_t)(uintptr_t) pload_mgmt->data_buffs[array_id].ctl_struct +
(uint64_t)(uintptr_t) ml_module->data_offset);
for( buf_id = 1 ; buf_id < loop_limit ; buf_id++ ) {
int array_id_m1=SM_ARRAY_INDEX(leading_dim,(buf_id-1),i);
array_id=SM_ARRAY_INDEX(leading_dim,buf_id,i);
/* now, play the same game as above
*
* first, set the control struct's position */
pload_mgmt->data_buffs[array_id].ctl_struct=(mca_bcol_basesmuma_header_t *)
(uintptr_t)(((uint64_t)(uintptr_t)(pload_mgmt->data_buffs[array_id_m1].ctl_struct) +
(uint64_t)(uintptr_t)ml_block->size_buffer));
/* second, set the payload pointer */
pload_mgmt->data_buffs[array_id].payload =(void *)
(uintptr_t)((uint64_t)(uintptr_t) pload_mgmt->data_buffs[array_id].ctl_struct +
(uint64_t)(uintptr_t) ml_module->data_offset);
}
}
/* initialize my control structures!! */
my_idx = sm_bcol_module->super.sbgp_partner_module->my_index;
leading_dim = sm_bcol_module->super.sbgp_partner_module->group_size;
for( buf_id = 0; buf_id < loop_limit; buf_id++){
array_id = SM_ARRAY_INDEX(leading_dim,buf_id,my_idx);
ctl_ptr = pload_mgmt->data_buffs[array_id].ctl_struct;
/* initialize the data structures */
for( j = 0; j < SM_BCOLS_MAX; j++){
for( i = 0; i < NUM_SIGNAL_FLAGS; i++){
ctl_ptr->flags[i][j] = -1;
}
}
ctl_ptr->sequence_number = -1;
ctl_ptr->src = -1;
}
/* setup the data structures needed for releasing the payload
* buffers back to the ml level
*/
for( i=0 ; i < (int) ml_block->num_banks ; i++ ) {
sm_bcol->colls_with_user_data.
ctl_buffs_mgmt[i].nb_barrier_desc.ml_memory_block_descriptor=
ml_block;
}
ml_mem->num_banks = ml_block->num_banks;
ml_mem->bank_release_counter = calloc(ml_block->num_banks, sizeof(uint32_t));
ml_mem->num_buffers_per_bank = ml_block->num_buffers_per_bank;
ml_mem->size_buffer = ml_block->size_buffer;
/* pointer to ml level descriptor */
ml_mem->ml_mem_desc = ml_block;
if (OMPI_SUCCESS != init_nb_coll_buff_desc(&ml_mem->nb_coll_desc,
ml_block->block->base_addr,
ml_mem->num_banks,
ml_mem->num_buffers_per_bank,
ml_mem->size_buffer,
ml_module->data_offset,
sm_bcol_module->super.sbgp_partner_module->group_size,
sm_bcol_module->pow_k)) {
BASESMUMA_VERBOSE(10, ("Failed to allocate memory descriptors for storing state of non-blocking collectives\n"));
return OMPI_ERROR;
}
return OMPI_SUCCESS;
ERROR:
return ret;
}
#endif
/* Basesmuma interface function used for buffer release */
#if 0
/* gvm
* A collective operation calls this routine to release the payload buffer.
* All processes in the shared memory sub-group of a bcol should call the non-blocking
* barrier on the last payload buffer of a memory bank. On the completion
* of the non-blocking barrier, the ML callback is called which is responsible
* for recycling the memory bank.
*/
mca_bcol_basesmuma_module_t *sm_bcol_module
int bcol_basesmuma_free_payload_buff(
struct ml_memory_block_desc_t *block,
sm_buffer_mgmt *ctl_mgmt,
uint64_t buff_id)
{
/* local variables */
int ret = OMPI_SUCCESS;
memory_bank = BANK_FROM_BUFFER_IDX(buff_id);
ctl_mgmt->ctl_buffs_mgmt[memory_bank].n_buffs_freed++;
OPAL_THREAD_ADD32(&(ctl_mgmt->ctl_buffs_mgmt[memory_bank].n_buffs_freed),1);
if (ctl_mgmt->ctl_buffs_mgmt[memory_bank].n_buffs_freed == block->size_buffers_bank){
/* start non-blocking barrier */
bcol_basesmuma_rd_nb_barrier_init_admin(
&(ctl_mgmt->ctl_buffs_mgmt[memory_bank].nb_barrier_desc));
if (NB_BARRIER_DONE !=
ctl_mgmt->ctl_buffs_mgmt[memory_bank].
nb_barrier_desc.collective_phase){
/* progress the barrier */
opal_progress();
}
else{
/* free the buffer - i.e. initiate callback to ml level */
block->ml_release_cb(block,memory_bank);
}
}
return ret;
}
#endif