1
1
openmpi/opal/mca/btl/tcp/btl_tcp.c
Mohan fc32ae401e Btl Tcp: Updated tcp handshake methods
This commit has two changes

1. Adding magic string during handshake can cause
issue when used with older version of MPI. Hence set
RCVTIMEO paramter to 2 second
2. Using single call during handshake instead of
two calls

Signed-off-by: Mohan Gandhi <mohgan@amazon.com>
2017-08-18 10:06:52 -07:00

601 строка
19 KiB
C

/* -*- Mode: C; c-basic-offset:4 ; indent-tabs-mode:nil -*- */
/*
* Copyright (c) 2004-2007 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2014 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2006-2015 Los Alamos National Security, LLC. All rights
* reserved.
* Copyright (c) 2016-2017 Research Organization for Information Science
* and Technology (RIST). All rights reserved.
* Copyright (c) 2016 Intel, Inc. All rights reserved.
*
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "opal_config.h"
#include <string.h>
#include "opal/class/opal_bitmap.h"
#include "opal/mca/btl/btl.h"
#include "opal/datatype/opal_convertor.h"
#include "opal/mca/mpool/base/base.h"
#include "opal/mca/mpool/mpool.h"
#include "opal/mca/btl/base/btl_base_error.h"
#include "opal/opal_socket_errno.h"
#include "btl_tcp.h"
#include "btl_tcp_frag.h"
#include "btl_tcp_proc.h"
#include "btl_tcp_endpoint.h"
mca_btl_tcp_module_t mca_btl_tcp_module = {
.super = {
.btl_component = &mca_btl_tcp_component.super,
.btl_add_procs = mca_btl_tcp_add_procs,
.btl_del_procs = mca_btl_tcp_del_procs,
.btl_finalize = mca_btl_tcp_finalize,
.btl_alloc = mca_btl_tcp_alloc,
.btl_free = mca_btl_tcp_free,
.btl_prepare_src = mca_btl_tcp_prepare_src,
.btl_send = mca_btl_tcp_send,
.btl_put = mca_btl_tcp_put,
.btl_dump = mca_btl_base_dump,
.btl_ft_event = mca_btl_tcp_ft_event
},
.tcp_endpoints_mutex = OPAL_MUTEX_STATIC_INIT
};
/**
*
*/
int mca_btl_tcp_add_procs( struct mca_btl_base_module_t* btl,
size_t nprocs,
struct opal_proc_t **procs,
struct mca_btl_base_endpoint_t** peers,
opal_bitmap_t* reachable )
{
mca_btl_tcp_module_t* tcp_btl = (mca_btl_tcp_module_t*)btl;
const opal_proc_t* my_proc; /* pointer to caller's proc structure */
int i, rc;
/* get pointer to my proc structure */
if( NULL == (my_proc = opal_proc_local_get()) )
return OPAL_ERR_OUT_OF_RESOURCE;
for(i = 0; i < (int) nprocs; i++) {
struct opal_proc_t* opal_proc = procs[i];
mca_btl_tcp_proc_t* tcp_proc;
mca_btl_base_endpoint_t* tcp_endpoint;
bool existing_found = false;
/* Do not create loopback TCP connections */
if( my_proc == opal_proc ) {
continue;
}
if(NULL == (tcp_proc = mca_btl_tcp_proc_create(opal_proc))) {
continue;
}
/*
* Check to make sure that the peer has at least as many interface
* addresses exported as we are trying to use. If not, then
* don't bind this BTL instance to the proc.
*/
OPAL_THREAD_LOCK(&tcp_proc->proc_lock);
for (uint32_t j = 0 ; j < (uint32_t)tcp_proc->proc_endpoint_count ; ++j) {
tcp_endpoint = tcp_proc->proc_endpoints[j];
if (tcp_endpoint->endpoint_btl == tcp_btl) {
existing_found = true;
break;
}
}
if (!existing_found) {
/* The btl_proc datastructure is shared by all TCP BTL
* instances that are trying to reach this destination.
* Cache the peer instance on the btl_proc.
*/
tcp_endpoint = OBJ_NEW(mca_btl_tcp_endpoint_t);
if(NULL == tcp_endpoint) {
OPAL_THREAD_UNLOCK(&tcp_proc->proc_lock);
return OPAL_ERR_OUT_OF_RESOURCE;
}
tcp_endpoint->endpoint_btl = tcp_btl;
rc = mca_btl_tcp_proc_insert(tcp_proc, tcp_endpoint);
if(rc != OPAL_SUCCESS) {
OPAL_THREAD_UNLOCK(&tcp_proc->proc_lock);
OBJ_RELEASE(tcp_endpoint);
continue;
}
OPAL_THREAD_LOCK(&tcp_btl->tcp_endpoints_mutex);
opal_list_append(&tcp_btl->tcp_endpoints, (opal_list_item_t*)tcp_endpoint);
OPAL_THREAD_UNLOCK(&tcp_btl->tcp_endpoints_mutex);
}
OPAL_THREAD_UNLOCK(&tcp_proc->proc_lock);
if (NULL != reachable) {
opal_bitmap_set_bit(reachable, i);
}
peers[i] = tcp_endpoint;
/* we increase the count of MPI users of the event library
once per peer, so that we are used until we aren't
connected to a peer */
opal_progress_event_users_increment();
}
return OPAL_SUCCESS;
}
int mca_btl_tcp_del_procs(struct mca_btl_base_module_t* btl,
size_t nprocs,
struct opal_proc_t **procs,
struct mca_btl_base_endpoint_t ** endpoints)
{
mca_btl_tcp_module_t* tcp_btl = (mca_btl_tcp_module_t*)btl;
size_t i;
OPAL_THREAD_LOCK(&tcp_btl->tcp_endpoints_mutex);
for( i = 0; i < nprocs; i++ ) {
mca_btl_tcp_endpoint_t* tcp_endpoint = endpoints[i];
opal_list_remove_item(&tcp_btl->tcp_endpoints, (opal_list_item_t*)tcp_endpoint);
OBJ_RELEASE(tcp_endpoint);
opal_progress_event_users_decrement();
}
OPAL_THREAD_UNLOCK(&tcp_btl->tcp_endpoints_mutex);
return OPAL_SUCCESS;
}
/**
* Allocate a segment.
*
* @param btl (IN) BTL module
* @param size (IN) Request segment size.
*/
mca_btl_base_descriptor_t* mca_btl_tcp_alloc(
struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
uint8_t order,
size_t size,
uint32_t flags)
{
mca_btl_tcp_frag_t* frag = NULL;
if(size <= btl->btl_eager_limit) {
MCA_BTL_TCP_FRAG_ALLOC_EAGER(frag);
} else if (size <= btl->btl_max_send_size) {
MCA_BTL_TCP_FRAG_ALLOC_MAX(frag);
}
if( OPAL_UNLIKELY(NULL == frag) ) {
return NULL;
}
frag->segments[0].seg_len = size;
frag->segments[0].seg_addr.pval = frag+1;
frag->base.des_segments = frag->segments;
frag->base.des_segment_count = 1;
frag->base.des_flags = flags;
frag->base.order = MCA_BTL_NO_ORDER;
frag->btl = (mca_btl_tcp_module_t*)btl;
return (mca_btl_base_descriptor_t*)frag;
}
/**
* Return a segment
*/
int mca_btl_tcp_free(
struct mca_btl_base_module_t* btl,
mca_btl_base_descriptor_t* des)
{
mca_btl_tcp_frag_t* frag = (mca_btl_tcp_frag_t*)des;
MCA_BTL_TCP_FRAG_RETURN(frag);
return OPAL_SUCCESS;
}
/**
* Pack data and return a descriptor that can be
* used for send/put.
*
* @param btl (IN) BTL module
* @param peer (IN) BTL peer addressing
*/
mca_btl_base_descriptor_t* mca_btl_tcp_prepare_src(
struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
struct opal_convertor_t* convertor,
uint8_t order,
size_t reserve,
size_t* size,
uint32_t flags)
{
mca_btl_tcp_frag_t* frag;
struct iovec iov;
uint32_t iov_count = 1;
size_t max_data = *size;
int rc;
if( OPAL_UNLIKELY(max_data > UINT32_MAX) ) { /* limit the size to what we support */
max_data = (size_t)UINT32_MAX;
}
/*
* if we aren't pinning the data and the requested size is less
* than the eager limit pack into a fragment from the eager pool
*/
if (max_data+reserve <= btl->btl_eager_limit) {
MCA_BTL_TCP_FRAG_ALLOC_EAGER(frag);
} else {
/*
* otherwise pack as much data as we can into a fragment
* that is the max send size.
*/
MCA_BTL_TCP_FRAG_ALLOC_MAX(frag);
}
if( OPAL_UNLIKELY(NULL == frag) ) {
return NULL;
}
frag->segments[0].seg_addr.pval = (frag + 1);
frag->segments[0].seg_len = reserve;
frag->base.des_segment_count = 1;
if(opal_convertor_need_buffers(convertor)) {
if (max_data + reserve > frag->size) {
max_data = frag->size - reserve;
}
iov.iov_len = max_data;
iov.iov_base = (IOVBASE_TYPE*)(((unsigned char*)(frag->segments[0].seg_addr.pval)) + reserve);
rc = opal_convertor_pack(convertor, &iov, &iov_count, &max_data );
if( OPAL_UNLIKELY(rc < 0) ) {
mca_btl_tcp_free(btl, &frag->base);
return NULL;
}
frag->segments[0].seg_len += max_data;
} else {
iov.iov_len = max_data;
iov.iov_base = NULL;
rc = opal_convertor_pack(convertor, &iov, &iov_count, &max_data );
if( OPAL_UNLIKELY(rc < 0) ) {
mca_btl_tcp_free(btl, &frag->base);
return NULL;
}
frag->segments[1].seg_addr.pval = iov.iov_base;
frag->segments[1].seg_len = max_data;
frag->base.des_segment_count = 2;
}
frag->base.des_segments = frag->segments;
frag->base.des_flags = flags;
frag->base.order = MCA_BTL_NO_ORDER;
*size = max_data;
return &frag->base;
}
/**
* Initiate an asynchronous send.
*
* @param btl (IN) BTL module
* @param endpoint (IN) BTL addressing information
* @param descriptor (IN) Description of the data to be transfered
* @param tag (IN) The tag value used to notify the peer.
*/
int mca_btl_tcp_send( struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
struct mca_btl_base_descriptor_t* descriptor,
mca_btl_base_tag_t tag )
{
mca_btl_tcp_module_t* tcp_btl = (mca_btl_tcp_module_t*) btl;
mca_btl_tcp_frag_t* frag = (mca_btl_tcp_frag_t*)descriptor;
int i;
frag->btl = tcp_btl;
frag->endpoint = endpoint;
frag->rc = 0;
frag->iov_idx = 0;
frag->iov_cnt = 1;
frag->iov_ptr = frag->iov;
frag->iov[0].iov_base = (IOVBASE_TYPE*)&frag->hdr;
frag->iov[0].iov_len = sizeof(frag->hdr);
frag->hdr.size = 0;
for( i = 0; i < (int)frag->base.des_segment_count; i++) {
frag->hdr.size += frag->segments[i].seg_len;
frag->iov[i+1].iov_len = frag->segments[i].seg_len;
frag->iov[i+1].iov_base = (IOVBASE_TYPE*)frag->segments[i].seg_addr.pval;
frag->iov_cnt++;
}
frag->hdr.base.tag = tag;
frag->hdr.type = MCA_BTL_TCP_HDR_TYPE_SEND;
frag->hdr.count = 0;
if (endpoint->endpoint_nbo) MCA_BTL_TCP_HDR_HTON(frag->hdr);
return mca_btl_tcp_endpoint_send(endpoint,frag);
}
static void fake_rdma_complete (mca_btl_base_module_t *btl, mca_btl_base_endpoint_t *endpoint,
mca_btl_base_descriptor_t *desc, int rc)
{
mca_btl_tcp_frag_t *frag = (mca_btl_tcp_frag_t *) desc;
frag->cb.func (btl, endpoint, frag->segments[0].seg_addr.pval, NULL, frag->cb.context, frag->cb.data,
rc);
}
/**
* Initiate an asynchronous put.
*/
int mca_btl_tcp_put (mca_btl_base_module_t *btl, struct mca_btl_base_endpoint_t *endpoint, void *local_address,
uint64_t remote_address, mca_btl_base_registration_handle_t *local_handle,
mca_btl_base_registration_handle_t *remote_handle, size_t size, int flags,
int order, mca_btl_base_rdma_completion_fn_t cbfunc, void *cbcontext, void *cbdata)
{
mca_btl_tcp_module_t* tcp_btl = (mca_btl_tcp_module_t*) btl;
mca_btl_tcp_frag_t *frag = NULL;
int i;
MCA_BTL_TCP_FRAG_ALLOC_USER(frag);
if( OPAL_UNLIKELY(NULL == frag) ) {
return OPAL_ERR_OUT_OF_RESOURCE;
}
frag->endpoint = endpoint;
frag->segments->seg_len = size;
frag->segments->seg_addr.pval = local_address;
frag->base.des_segments = frag->segments;
frag->base.des_segment_count = 1;
frag->base.order = MCA_BTL_NO_ORDER;
frag->segments[0].seg_addr.pval = local_address;
frag->segments[0].seg_len = size;
frag->segments[1].seg_addr.lval = remote_address;
frag->segments[1].seg_len = size;
if (endpoint->endpoint_nbo) MCA_BTL_BASE_SEGMENT_HTON(frag->segments[1]);
frag->base.des_flags = MCA_BTL_DES_FLAGS_BTL_OWNERSHIP | MCA_BTL_DES_SEND_ALWAYS_CALLBACK;
frag->base.des_cbfunc = fake_rdma_complete;
frag->cb.func = cbfunc;
frag->cb.data = cbdata;
frag->cb.context = cbcontext;
frag->btl = tcp_btl;
frag->endpoint = endpoint;
frag->rc = 0;
frag->iov_idx = 0;
frag->hdr.size = 0;
frag->iov_cnt = 2;
frag->iov_ptr = frag->iov;
frag->iov[0].iov_base = (IOVBASE_TYPE*)&frag->hdr;
frag->iov[0].iov_len = sizeof(frag->hdr);
frag->iov[1].iov_base = (IOVBASE_TYPE*) (frag->segments + 1);
frag->iov[1].iov_len = sizeof(mca_btl_base_segment_t);
for( i = 0; i < (int)frag->base.des_segment_count; i++ ) {
frag->hdr.size += frag->segments[i].seg_len;
frag->iov[i+2].iov_len = frag->segments[i].seg_len;
frag->iov[i+2].iov_base = (IOVBASE_TYPE*)frag->segments[i].seg_addr.pval;
frag->iov_cnt++;
}
frag->hdr.base.tag = MCA_BTL_TAG_BTL;
frag->hdr.type = MCA_BTL_TCP_HDR_TYPE_PUT;
frag->hdr.count = 1;
if (endpoint->endpoint_nbo) MCA_BTL_TCP_HDR_HTON(frag->hdr);
return ((i = mca_btl_tcp_endpoint_send(endpoint,frag)) >= 0 ? OPAL_SUCCESS : i);
}
/**
* Initiate an asynchronous get.
*/
int mca_btl_tcp_get (mca_btl_base_module_t *btl, struct mca_btl_base_endpoint_t *endpoint, void *local_address,
uint64_t remote_address, mca_btl_base_registration_handle_t *local_handle,
mca_btl_base_registration_handle_t *remote_handle, size_t size, int flags,
int order, mca_btl_base_rdma_completion_fn_t cbfunc, void *cbcontext, void *cbdata)
{
mca_btl_tcp_module_t* tcp_btl = (mca_btl_tcp_module_t*) btl;
mca_btl_tcp_frag_t* frag = NULL;
int rc;
MCA_BTL_TCP_FRAG_ALLOC_USER(frag);
if( OPAL_UNLIKELY(NULL == frag) ) {
return OPAL_ERR_OUT_OF_RESOURCE;;
}
frag->endpoint = endpoint;
frag->segments->seg_len = size;
frag->segments->seg_addr.pval = local_address;
frag->base.des_segments = frag->segments;
frag->base.des_segment_count = 1;
frag->base.order = MCA_BTL_NO_ORDER;
frag->segments[0].seg_addr.pval = local_address;
frag->segments[0].seg_len = size;
frag->segments[1].seg_addr.lval = remote_address;
frag->segments[1].seg_len = size;
/* call the rdma callback through the descriptor callback. this is
* tcp so the extra latency is not an issue */
frag->base.des_flags = MCA_BTL_DES_FLAGS_BTL_OWNERSHIP | MCA_BTL_DES_SEND_ALWAYS_CALLBACK;
frag->base.des_cbfunc = fake_rdma_complete;
frag->cb.func = cbfunc;
frag->cb.data = cbdata;
frag->cb.context = cbcontext;
frag->btl = tcp_btl;
frag->endpoint = endpoint;
frag->rc = 0;
frag->iov_idx = 0;
frag->hdr.size = 0;
frag->iov_cnt = 2;
frag->iov_ptr = frag->iov;
frag->iov[0].iov_base = (IOVBASE_TYPE*)&frag->hdr;
frag->iov[0].iov_len = sizeof(frag->hdr);
frag->iov[1].iov_base = (IOVBASE_TYPE*) &frag->segments[1];
frag->iov[1].iov_len = sizeof(mca_btl_base_segment_t);
frag->hdr.base.tag = MCA_BTL_TAG_BTL;
frag->hdr.type = MCA_BTL_TCP_HDR_TYPE_GET;
frag->hdr.count = 1;
if (endpoint->endpoint_nbo) MCA_BTL_TCP_HDR_HTON(frag->hdr);
return ((rc = mca_btl_tcp_endpoint_send(endpoint,frag)) >= 0 ? OPAL_SUCCESS : rc);
}
/*
* Cleanup/release module resources.
*/
int mca_btl_tcp_finalize(struct mca_btl_base_module_t* btl)
{
mca_btl_tcp_module_t* tcp_btl = (mca_btl_tcp_module_t*) btl;
opal_list_item_t* item;
/* Don't lock the tcp_endpoints_mutex, at this point a single
* thread should be active.
*/
for( item = opal_list_remove_first(&tcp_btl->tcp_endpoints);
item != NULL;
item = opal_list_remove_first(&tcp_btl->tcp_endpoints)) {
mca_btl_tcp_endpoint_t *endpoint = (mca_btl_tcp_endpoint_t*)item;
OBJ_RELEASE(endpoint);
opal_progress_event_users_decrement();
}
free(tcp_btl);
return OPAL_SUCCESS;
}
void mca_btl_tcp_dump(struct mca_btl_base_module_t* base_btl,
struct mca_btl_base_endpoint_t* endpoint,
int verbose)
{
mca_btl_tcp_module_t* btl = (mca_btl_tcp_module_t*)base_btl;
mca_btl_base_err("%s TCP %p kernel_id %d\n"
#if MCA_BTL_TCP_STATISTICS
" | statistics: sent %lu recv %lu\n"
#endif /* MCA_BTL_TCP_STATISTICS */
" | latency %u bandwidth %u\n",
OPAL_NAME_PRINT(OPAL_PROC_MY_NAME), (void*)btl, btl->tcp_ifkindex,
#if MCA_BTL_TCP_STATISTICS
btl->tcp_bytes_sent, btl->btl_bytes_recv,
#endif /* MCA_BTL_TCP_STATISTICS */
btl->super.btl_latency, btl->super.btl_bandwidth);
#if OPAL_ENABLE_DEBUG && WANT_PEER_DUMP
if( NULL != endpoint ) {
MCA_BTL_TCP_ENDPOINT_DUMP(10, endpoint, false, "TCP");
} else if( verbose ) {
opal_list_item_t *item;
OPAL_THREAD_LOCK(&btl->tcp_endpoints_mutex);
for(item = opal_list_get_first(&btl->tcp_endpoints);
item != opal_list_get_end(&btl->tcp_endpoints);
item = opal_list_get_next(item)) {
MCA_BTL_TCP_ENDPOINT_DUMP(10, (mca_btl_base_endpoint_t*)item, false, "TCP");
}
OPAL_THREAD_UNLOCK(&btl->tcp_endpoints_mutex);
}
#endif /* OPAL_ENABLE_DEBUG && WANT_PEER_DUMP */
}
/*
* A blocking recv for both blocking and non-blocking socket.
* Used to receive the small amount of connection information
* that identifies the endpoints
*
* when the socket is blocking (the caller introduces timeout)
* which happens during initial handshake otherwise socket is
* non-blocking most of the time.
*/
int mca_btl_tcp_recv_blocking(int sd, void* data, size_t size)
{
unsigned char* ptr = (unsigned char*)data;
size_t cnt = 0;
while (cnt < size) {
int retval = recv(sd, ((char *)ptr) + cnt, size - cnt, 0);
/* remote closed connection */
if (0 == retval) {
BTL_ERROR(("remote peer unexpectedly closed connection while I was waiting for blocking message"));
return -1;
}
/* socket is non-blocking so handle errors */
if (retval < 0) {
if (opal_socket_errno != EINTR &&
opal_socket_errno != EAGAIN &&
opal_socket_errno != EWOULDBLOCK) {
BTL_ERROR(("recv(%d) failed: %s (%d)", sd, strerror(opal_socket_errno), opal_socket_errno));
return -1;
}
continue;
}
cnt += retval;
}
return cnt;
}
/*
* A blocking send on a non-blocking socket. Used to send the small
* amount of connection information that identifies the endpoints
* endpoint.
*/
int mca_btl_tcp_send_blocking(int sd, const void* data, size_t size)
{
unsigned char* ptr = (unsigned char*)data;
size_t cnt = 0;
while(cnt < size) {
int retval = send(sd, ((const char *)ptr) + cnt, size - cnt, 0);
if (retval < 0) {
if (opal_socket_errno != EINTR &&
opal_socket_errno != EAGAIN &&
opal_socket_errno != EWOULDBLOCK) {
BTL_ERROR(("send() failed: %s (%d)", strerror(opal_socket_errno), opal_socket_errno));
return -1;
}
continue;
}
cnt += retval;
}
return cnt;
}