1
1
openmpi/ompi/mca/btl/mvapi/btl_mvapi.c
Galen Shipman 4d2d39b0a6 intial checking of SRQ flow control support for mvapi
This commit was SVN r7796.
2005-10-18 14:55:11 +00:00

820 строки
28 KiB
C

/*
* Copyright (c) 2004-2005 The Trustees of Indiana University.
* All rights reserved.
* Copyright (c) 2004-2005 The Trustees of the University of Tennessee.
* All rights reserved.
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "ompi_config.h"
#include <string.h>
#include "opal/util/output.h"
#include "opal/util/if.h"
#include "mca/pml/pml.h"
#include "mca/btl/btl.h"
#include "btl_mvapi.h"
#include "btl_mvapi_frag.h"
#include "btl_mvapi_proc.h"
#include "btl_mvapi_endpoint.h"
#include "datatype/convertor.h"
#include "mca/mpool/base/base.h"
#include "mca/mpool/mpool.h"
#include "mca/mpool/mvapi/mpool_mvapi.h"
#include "mca/btl/base/btl_base_error.h"
#include <vapi_types.h>
#include <math.h> /* for log2 */
mca_btl_mvapi_module_t mca_btl_mvapi_module = {
{
&mca_btl_mvapi_component.super,
0, /* max size of first fragment */
0, /* min send fragment size */
0, /* max send fragment size */
0, /* min rdma fragment size */
0, /* max rdma fragment size */
0, /* exclusivity */
0, /* latency */
0, /* bandwidth */
0, /* TODO this should be PUT btl flags */
mca_btl_mvapi_add_procs,
mca_btl_mvapi_del_procs,
mca_btl_mvapi_register,
mca_btl_mvapi_finalize,
/* we need alloc free, pack */
mca_btl_mvapi_alloc,
mca_btl_mvapi_free,
mca_btl_mvapi_prepare_src,
mca_btl_mvapi_prepare_dst,
mca_btl_mvapi_send,
mca_btl_mvapi_put,
mca_btl_mvapi_get
}
};
/*
* add a proc to this btl module
* creates an endpoint that is setup on the
* first send to the endpoint
*/
int mca_btl_mvapi_add_procs(
struct mca_btl_base_module_t* btl,
size_t nprocs,
struct ompi_proc_t **ompi_procs,
struct mca_btl_base_endpoint_t** peers,
ompi_bitmap_t* reachable)
{
mca_btl_mvapi_module_t* mvapi_btl = (mca_btl_mvapi_module_t*)btl;
int i, rc;
for(i = 0; i < (int) nprocs; i++) {
struct ompi_proc_t* ompi_proc = ompi_procs[i];
mca_btl_mvapi_proc_t* ib_proc;
mca_btl_base_endpoint_t* ib_peer;
if(NULL == (ib_proc = mca_btl_mvapi_proc_create(ompi_proc))) {
continue;
}
/*
* Check to make sure that the peer has at least as many interface
* addresses exported as we are trying to use. If not, then
* don't bind this PTL instance to the proc.
*/
OPAL_THREAD_LOCK(&ib_proc->proc_lock);
/* The btl_proc datastructure is shared by all IB PTL
* instances that are trying to reach this destination.
* Cache the peer instance on the btl_proc.
*/
ib_peer = OBJ_NEW(mca_btl_mvapi_endpoint_t);
if(NULL == ib_peer) {
OPAL_THREAD_UNLOCK(&ib_proc->proc_lock);
return OMPI_ERR_OUT_OF_RESOURCE;
}
ib_peer->endpoint_btl = mvapi_btl;
ib_peer->subnet = mvapi_btl->port_info.subnet;
rc = mca_btl_mvapi_proc_insert(ib_proc, ib_peer);
if(rc != OMPI_SUCCESS) {
OBJ_RELEASE(ib_peer);
OPAL_THREAD_UNLOCK(&ib_proc->proc_lock);
continue;
}
ompi_bitmap_set_bit(reachable, i);
OPAL_THREAD_UNLOCK(&ib_proc->proc_lock);
peers[i] = ib_peer;
}
/* currently we only scale the srq the first time
add_procs is called, subsequent calls are ignored,
we should be able to change this to modify the SRQ but
I am unsure as to what this entails
*/
if( 0 == mvapi_btl->num_peers ) {
mvapi_btl->num_peers += nprocs;
if(mca_btl_mvapi_component.use_srq) {
mvapi_btl->rd_buf_max = mca_btl_mvapi_component.ib_rr_buf_max + log2(nprocs) * mca_btl_mvapi_component.rd_per_peer;
free(mvapi_btl->rr_desc_post);
mvapi_btl->rr_desc_post = (VAPI_rr_desc_t*) malloc((mvapi_btl->rd_buf_max * sizeof(VAPI_rr_desc_t)));
mvapi_btl->rd_buf_min = mvapi_btl->rd_buf_max / 2;
}
}
return OMPI_SUCCESS;
}
/*
* delete the proc as reachable from this btl module
*/
int mca_btl_mvapi_del_procs(struct mca_btl_base_module_t* btl,
size_t nprocs,
struct ompi_proc_t **procs,
struct mca_btl_base_endpoint_t ** peers)
{
/* Stub */
BTL_VERBOSE(("Stub\n"));
return OMPI_SUCCESS;
}
/*
*Register callback function to support send/recv semantics
*/
int mca_btl_mvapi_register(
struct mca_btl_base_module_t* btl,
mca_btl_base_tag_t tag,
mca_btl_base_module_recv_cb_fn_t cbfunc,
void* cbdata)
{
mca_btl_mvapi_module_t* mvapi_btl = (mca_btl_mvapi_module_t*) btl;
OPAL_THREAD_LOCK(&mvapi_btl->ib_lock);
mvapi_btl->ib_reg[tag].cbfunc = cbfunc;
mvapi_btl->ib_reg[tag].cbdata = cbdata;
OPAL_THREAD_UNLOCK(&mvapi_btl->ib_lock);
return OMPI_SUCCESS;
}
/**
* Allocate a segment.
*
* @param btl (IN) BTL module
* @param size (IN) Request segment size.
*
* When allocating a segment we pull a pre-alllocated segment
* from one of two free lists, an eager list and a max list
*/
mca_btl_base_descriptor_t* mca_btl_mvapi_alloc(
struct mca_btl_base_module_t* btl,
size_t size)
{
mca_btl_mvapi_frag_t* frag;
mca_btl_mvapi_module_t* mvapi_btl;
int rc;
mvapi_btl = (mca_btl_mvapi_module_t*) btl;
if(size <= mca_btl_mvapi_component.eager_limit){
MCA_BTL_IB_FRAG_ALLOC_EAGER(btl, frag, rc);
frag->segment.seg_len =
size <= mca_btl_mvapi_component.eager_limit ?
size: mca_btl_mvapi_component.eager_limit ;
} else {
MCA_BTL_IB_FRAG_ALLOC_MAX(btl, frag, rc);
frag->segment.seg_len =
size <= mca_btl_mvapi_component.max_send_size ?
size: mca_btl_mvapi_component.max_send_size ;
}
frag->segment.seg_len = size <= mvapi_btl->super.btl_eager_limit ? size : mvapi_btl->super.btl_eager_limit;
frag->base.des_flags = 0;
return (mca_btl_base_descriptor_t*)frag;
}
/**
* Return a segment
*
* Return the segment to the appropriate
* preallocated segment list
*/
int mca_btl_mvapi_free(
struct mca_btl_base_module_t* btl,
mca_btl_base_descriptor_t* des)
{
mca_btl_mvapi_frag_t* frag = (mca_btl_mvapi_frag_t*)des;
if(frag->size == 0) {
btl->btl_mpool->mpool_release(btl->btl_mpool, (mca_mpool_base_registration_t*) frag->vapi_reg);
MCA_BTL_IB_FRAG_RETURN_FRAG(btl, frag);
} else if(frag->size == mca_btl_mvapi_component.max_send_size){
MCA_BTL_IB_FRAG_RETURN_MAX(btl, frag);
} else if(frag->size == mca_btl_mvapi_component.eager_limit){
MCA_BTL_IB_FRAG_RETURN_EAGER(btl, frag);
} else {
BTL_ERROR(("invalid descriptor"));
}
return OMPI_SUCCESS;
}
/**
* register user buffer or pack
* data into pre-registered buffer and return a
* descriptor that can be
* used for send/put.
*
* @param btl (IN) BTL module
* @param endpoint (IN) BTL peer addressing
*
* prepare source's behavior depends on the following:
* Has a valid memory registration been passed to prepare_src?
* if so we attempt to use the pre-registred user-buffer, if the memory registration
* is to small (only a portion of the user buffer) then we must reregister the user buffer
* Has the user requested the memory to be left pinned?
* if so we insert the memory registration into a memory tree for later lookup, we
* may also remove a previous registration if a MRU (most recently used) list of
* registions is full, this prevents resources from being exhausted.
* Is the requested size larger than the btl's max send size?
* if so and we aren't asked to leave the registration pinned than we register the memory if
* the users buffer is contiguous
* Otherwise we choose from two free lists of pre-registered memory in which to pack the data into.
*
*/
mca_btl_base_descriptor_t* mca_btl_mvapi_prepare_src(
struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
mca_mpool_base_registration_t* registration,
struct ompi_convertor_t* convertor,
size_t reserve,
size_t* size
)
{
mca_btl_mvapi_module_t* mvapi_btl;
mca_btl_mvapi_frag_t* frag;
mca_mpool_mvapi_registration_t * vapi_reg;
struct iovec iov;
int32_t iov_count = 1;
size_t max_data = *size;
int32_t free_after;
int rc;
mvapi_btl = (mca_btl_mvapi_module_t*) btl;
vapi_reg = (mca_mpool_mvapi_registration_t*) registration;
if(NULL != vapi_reg && 0 == ompi_convertor_need_buffers(convertor)){
size_t reg_len;
/* the memory is already pinned and we have contiguous user data */
MCA_BTL_IB_FRAG_ALLOC_FRAG(btl, frag, rc);
if(NULL == frag){
return NULL;
}
iov.iov_len = max_data;
iov.iov_base = NULL;
ompi_convertor_pack(convertor, &iov, &iov_count, &max_data, &free_after);
frag->segment.seg_len = max_data;
frag->segment.seg_addr.pval = iov.iov_base;
reg_len = (unsigned char*)vapi_reg->base_reg.bound - (unsigned char*)iov.iov_base + 1;
frag->sg_entry.len = max_data;
frag->sg_entry.lkey = vapi_reg->l_key;
frag->sg_entry.addr = (VAPI_virt_addr_t) (MT_virt_addr_t) iov.iov_base;
frag->segment.seg_key.key32[0] = (uint32_t) vapi_reg->l_key;
frag->base.des_src = &frag->segment;
frag->base.des_src_cnt = 1;
frag->base.des_dst = NULL;
frag->base.des_dst_cnt = 0;
frag->base.des_flags = 0;
frag->vapi_reg = vapi_reg;
btl->btl_mpool->mpool_retain(btl->btl_mpool, (mca_mpool_base_registration_t*) vapi_reg);
if(vapi_reg->base_reg.flags & MCA_MPOOL_FLAGS_CACHE) {
assert(vapi_reg->base_reg.ref_count >= 4);
} else {
assert(vapi_reg->base_reg.ref_count >= 2);
}
return &frag->base;
} else if( max_data > btl->btl_max_send_size &&
ompi_convertor_need_buffers(convertor) == 0 &&
reserve == 0)
{
/* The user buffer is contigous and we are asked to send more than the max send size. */
MCA_BTL_IB_FRAG_ALLOC_FRAG(btl, frag, rc);
if(NULL == frag){
return NULL;
}
iov.iov_len = max_data;
iov.iov_base = NULL;
ompi_convertor_pack(convertor, &iov, &iov_count, &max_data, &free_after);
frag->segment.seg_len = max_data;
frag->segment.seg_addr.pval = iov.iov_base;
frag->base.des_flags = 0;
btl->btl_mpool->mpool_register(btl->btl_mpool,
iov.iov_base,
max_data,
0,
(mca_mpool_base_registration_t**) &vapi_reg);
frag->sg_entry.len = max_data;
frag->sg_entry.lkey = vapi_reg->l_key;
frag->sg_entry.addr = (VAPI_virt_addr_t) (MT_virt_addr_t) iov.iov_base;
frag->segment.seg_key.key32[0] = (uint32_t) vapi_reg->l_key;
frag->base.des_src = &frag->segment;
frag->base.des_src_cnt = 1;
frag->base.des_dst = NULL;
frag->base.des_dst_cnt = 0;
frag->vapi_reg = vapi_reg;
return &frag->base;
} else if (max_data+reserve <= btl->btl_eager_limit) {
/* the data is small enough to fit in the eager frag and
either we received no prepinned memory or leave pinned is
not set
*/
MCA_BTL_IB_FRAG_ALLOC_EAGER(btl, frag, rc);
if(NULL == frag) {
return NULL;
}
iov.iov_len = max_data;
iov.iov_base = frag->segment.seg_addr.pval + reserve;
rc = ompi_convertor_pack(convertor, &iov, &iov_count, &max_data, &free_after);
*size = max_data;
if( rc < 0 ) {
MCA_BTL_IB_FRAG_RETURN_EAGER(btl, frag);
return NULL;
}
frag->segment.seg_len = max_data + reserve;
frag->segment.seg_key.key32[0] = (uint32_t) frag->sg_entry.lkey;
frag->base.des_src = &frag->segment;
frag->base.des_src_cnt = 1;
frag->base.des_dst = NULL;
frag->base.des_dst_cnt = 0;
frag->base.des_flags = 0;
return &frag->base;
} else {
MCA_BTL_IB_FRAG_ALLOC_MAX(btl, frag, rc);
if(NULL == frag) {
return NULL;
}
if(max_data + reserve > btl->btl_max_send_size){
max_data = btl->btl_max_send_size - reserve;
}
iov.iov_len = max_data;
iov.iov_base = (unsigned char*) frag->segment.seg_addr.pval + reserve;
rc = ompi_convertor_pack(convertor, &iov, &iov_count, &max_data, &free_after);
*size = max_data;
if( rc < 0 ) {
MCA_BTL_IB_FRAG_RETURN_MAX(btl, frag);
return NULL;
}
frag->segment.seg_len = max_data + reserve;
frag->segment.seg_key.key32[0] = (uint32_t) frag->sg_entry.lkey;
frag->base.des_src = &frag->segment;
frag->base.des_src_cnt = 1;
frag->base.des_dst = NULL;
frag->base.des_dst_cnt = 0;
frag->base.des_flags=0;
return &frag->base;
}
return NULL;
}
/**
* Prepare the dst buffer
*
* @param btl (IN) BTL module
* @param peer (IN) BTL peer addressing
* prepare dest's behavior depends on the following:
* Has a valid memory registration been passed to prepare_src?
* if so we attempt to use the pre-registred user-buffer, if the memory registration
* is to small (only a portion of the user buffer) then we must reregister the user buffer
* Has the user requested the memory to be left pinned?
* if so we insert the memory registration into a memory tree for later lookup, we
* may also remove a previous registration if a MRU (most recently used) list of
* registions is full, this prevents resources from being exhausted.
*/
mca_btl_base_descriptor_t* mca_btl_mvapi_prepare_dst(
struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
mca_mpool_base_registration_t* registration,
struct ompi_convertor_t* convertor,
size_t reserve,
size_t* size)
{
mca_btl_mvapi_module_t* mvapi_btl;
mca_btl_mvapi_frag_t* frag;
mca_mpool_mvapi_registration_t * vapi_reg;
int rc;
mvapi_btl = (mca_btl_mvapi_module_t*) btl;
vapi_reg = (mca_mpool_mvapi_registration_t*) registration;
MCA_BTL_IB_FRAG_ALLOC_FRAG(btl, frag, rc);
if(NULL == frag){
return NULL;
}
frag->segment.seg_len = *size;
frag->segment.seg_addr.pval = convertor->pBaseBuf + convertor->bConverted;
frag->base.des_flags = 0;
if(NULL!= vapi_reg){
/* the memory is already pinned- use it*/
btl->btl_mpool->mpool_retain(btl->btl_mpool, (mca_mpool_base_registration_t*) vapi_reg);
if(vapi_reg->base_reg.flags & MCA_MPOOL_FLAGS_CACHE) {
assert(vapi_reg->base_reg.ref_count >= 4);
} else {
assert(vapi_reg->base_reg.ref_count >= 2);
}
} else {
/* we didn't get a memory registration passed in, so we have to register the region
* ourselves
*/
btl->btl_mpool->mpool_register(btl->btl_mpool,
frag->segment.seg_addr.pval,
*size,
0,
(mca_mpool_base_registration_t**) &vapi_reg);
}
frag->sg_entry.len = *size;
frag->sg_entry.lkey = vapi_reg->l_key;
frag->sg_entry.addr = (VAPI_virt_addr_t) (MT_virt_addr_t) frag->segment.seg_addr.pval;
frag->segment.seg_key.key32[0] = (uint32_t) vapi_reg->r_key;
frag->base.des_dst = &frag->segment;
frag->base.des_dst_cnt = 1;
frag->base.des_src = NULL;
frag->base.des_src_cnt = 0;
frag->vapi_reg = vapi_reg;
return &frag->base;
}
int mca_btl_mvapi_finalize(struct mca_btl_base_module_t* btl)
{
mca_btl_mvapi_module_t* mvapi_btl;
mvapi_btl = (mca_btl_mvapi_module_t*) btl;
#if 0
if(mvapi_btl->send_free_eager.fl_num_allocated !=
mvapi_btl->send_free_eager.super.opal_list_length){
opal_output(0, "btl ib send_free_eager frags: %d allocated %d returned \n",
mvapi_btl->send_free_eager.fl_num_allocated,
mvapi_btl->send_free_eager.super.opal_list_length);
}
if(mvapi_btl->send_free_max.fl_num_allocated !=
mvapi_btl->send_free_max.super.opal_list_length){
opal_output(0, "btl ib send_free_max frags: %d allocated %d returned \n",
mvapi_btl->send_free_max.fl_num_allocated,
mvapi_btl->send_free_max.super.opal_list_length);
}
if(mvapi_btl->send_free_frag.fl_num_allocated !=
mvapi_btl->send_free_frag.super.opal_list_length){
opal_output(0, "btl ib send_free_frag frags: %d allocated %d returned \n",
mvapi_btl->send_free_frag.fl_num_allocated,
mvapi_btl->send_free_frag.super.opal_list_length);
}
if(mvapi_btl->recv_free_eager.fl_num_allocated !=
mvapi_btl->recv_free_eager.super.opal_list_length){
opal_output(0, "btl ib recv_free_eager frags: %d allocated %d returned \n",
mvapi_btl->recv_free_eager.fl_num_allocated,
mvapi_btl->recv_free_eager.super.opal_list_length);
}
if(mvapi_btl->recv_free_max.fl_num_allocated !=
mvapi_btl->recv_free_max.super.opal_list_length){
opal_output(0, "btl ib recv_free_max frags: %d allocated %d returned \n",
mvapi_btl->recv_free_max.fl_num_allocated,
mvapi_btl->recv_free_max.super.opal_list_length);
}
#endif
return OMPI_SUCCESS;
}
/*
* Initiate a send.
*/
int mca_btl_mvapi_send(
struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
struct mca_btl_base_descriptor_t* descriptor,
mca_btl_base_tag_t tag)
{
mca_btl_mvapi_frag_t* frag = (mca_btl_mvapi_frag_t*)descriptor;
frag->endpoint = endpoint;
frag->hdr->tag = tag;
frag->rc = mca_btl_mvapi_endpoint_send(endpoint, frag);
return frag->rc;
}
/*
* RDMA local buffer to remote buffer address.
*/
int mca_btl_mvapi_put( mca_btl_base_module_t* btl,
mca_btl_base_endpoint_t* endpoint,
mca_btl_base_descriptor_t* descriptor)
{
int rc;
mca_btl_mvapi_module_t* mvapi_btl = (mca_btl_mvapi_module_t*) btl;
mca_btl_mvapi_frag_t* frag = (mca_btl_mvapi_frag_t*) descriptor;
frag->endpoint = endpoint;
assert(endpoint->endpoint_state == MCA_BTL_IB_CONNECTED ||
endpoint->endpoint_state == MCA_BTL_IB_WAITING_ACK);
frag->sr_desc.opcode = VAPI_RDMA_WRITE;
/* atomically test and acquire a token */
if(!mca_btl_mvapi_component.use_srq &&
OPAL_THREAD_ADD32(&endpoint->wr_sq_tokens_lp,-1) < 0) {
BTL_VERBOSE(("Queing because no rdma write tokens \n"));
BTL_MVAPI_INSERT_PENDING(frag, endpoint->pending_frags_lp,
endpoint->wr_sq_tokens_lp, endpoint->endpoint_lock, rc);
rc = OMPI_SUCCESS;
} else if(mca_btl_mvapi_component.use_srq &&
OPAL_THREAD_ADD32(&mvapi_btl->wr_sq_tokens_lp,-1) < 0) {
opal_list_append(&mvapi_btl->pending_frags_lp, (opal_list_item_t *)frag);
OPAL_THREAD_ADD32(&mvapi_btl->wr_sq_tokens_lp,1);
rc = OMPI_SUCCESS;
} else {
frag->sr_desc.remote_qp = endpoint->rem_info.rem_qp_num_low;
frag->sr_desc.remote_addr = (VAPI_virt_addr_t) (MT_virt_addr_t) frag->base.des_dst->seg_addr.pval;
frag->sr_desc.r_key = frag->base.des_dst->seg_key.key32[0];
frag->sg_entry.addr = (VAPI_virt_addr_t) (MT_virt_addr_t) frag->base.des_src->seg_addr.pval;
frag->sg_entry.len = frag->base.des_src->seg_len;
frag->ret = VAPI_post_sr(mvapi_btl->nic,
endpoint->lcl_qp_hndl_low,
&frag->sr_desc);
if(VAPI_OK != frag->ret){
rc = OMPI_ERROR;
} else {
rc = OMPI_SUCCESS;
}
if(mca_btl_mvapi_component.use_srq) {
MCA_BTL_MVAPI_POST_SRR_HIGH(mvapi_btl, 1);
MCA_BTL_MVAPI_POST_SRR_LOW(mvapi_btl, 1);
} else {
MCA_BTL_MVAPI_ENDPOINT_POST_RR_HIGH(endpoint, 1);
MCA_BTL_MVAPI_ENDPOINT_POST_RR_LOW(endpoint, 1);
}
}
return rc;
}
/*
* RDMA read remote buffer to local buffer address.
*/
int mca_btl_mvapi_get( mca_btl_base_module_t* btl,
mca_btl_base_endpoint_t* endpoint,
mca_btl_base_descriptor_t* descriptor)
{
int rc;
mca_btl_mvapi_module_t* mvapi_btl = (mca_btl_mvapi_module_t*) btl;
mca_btl_mvapi_frag_t* frag = (mca_btl_mvapi_frag_t*) descriptor;
assert(endpoint->endpoint_state == MCA_BTL_IB_CONNECTED ||
endpoint->endpoint_state == MCA_BTL_IB_WAITING_ACK);
frag->sr_desc.opcode = VAPI_RDMA_READ;
frag->endpoint = endpoint;
/* atomically test and acquire a token */
if(!mca_btl_mvapi_component.use_srq &&
OPAL_THREAD_ADD32(&endpoint->wr_sq_tokens_lp,-1) < 0) {
BTL_VERBOSE(("Queing because no rdma write tokens \n"));
BTL_MVAPI_INSERT_PENDING(frag, endpoint->pending_frags_lp,
endpoint->wr_sq_tokens_lp, endpoint->endpoint_lock, rc);
rc = OMPI_SUCCESS;
} else if(mca_btl_mvapi_component.use_srq &&
OPAL_THREAD_ADD32(&mvapi_btl->wr_sq_tokens_lp,-1) < 0) {
opal_list_append(&mvapi_btl->pending_frags_lp, (opal_list_item_t *)frag);
OPAL_THREAD_ADD32(&mvapi_btl->wr_sq_tokens_lp,1);
rc = OMPI_SUCCESS;
} else {
frag->sr_desc.remote_qp = endpoint->rem_info.rem_qp_num_low;
frag->sr_desc.remote_addr = (VAPI_virt_addr_t) (MT_virt_addr_t) frag->base.des_src->seg_addr.pval;
frag->sr_desc.r_key = frag->base.des_src->seg_key.key32[0];
frag->sg_entry.addr = (VAPI_virt_addr_t) (MT_virt_addr_t) frag->base.des_dst->seg_addr.pval;
frag->sg_entry.len = frag->base.des_dst->seg_len;
frag->ret = VAPI_post_sr(mvapi_btl->nic,
endpoint->lcl_qp_hndl_low,
&frag->sr_desc);
if(VAPI_OK != frag->ret){
rc = OMPI_ERROR;
} else {
rc = OMPI_SUCCESS;
}
if(mca_btl_mvapi_component.use_srq) {
MCA_BTL_MVAPI_POST_SRR_HIGH(mvapi_btl, 1);
MCA_BTL_MVAPI_POST_SRR_LOW(mvapi_btl, 1);
} else {
MCA_BTL_MVAPI_ENDPOINT_POST_RR_HIGH(endpoint, 1);
MCA_BTL_MVAPI_ENDPOINT_POST_RR_LOW(endpoint, 1);
}
}
return rc;
}
/*
* Asynchronous event handler to detect unforseen
* events. Usually, such events are catastrophic.
* Should have a robust mechanism to handle these
* events and abort the OMPI application if necessary.
*
*/
static void async_event_handler(VAPI_hca_hndl_t hca_hndl,
VAPI_event_record_t * event_p,
void *priv_data)
{
switch (event_p->type) {
case VAPI_QP_PATH_MIGRATED:
case VAPI_EEC_PATH_MIGRATED:
case VAPI_QP_COMM_ESTABLISHED:
case VAPI_EEC_COMM_ESTABLISHED:
case VAPI_SEND_QUEUE_DRAINED:
case VAPI_PORT_ACTIVE:
{
BTL_VERBOSE(("Got an asynchronous event: %s\n", VAPI_event_record_sym(event_p->type)));
break;
}
case VAPI_CQ_ERROR:
case VAPI_LOCAL_WQ_INV_REQUEST_ERROR:
case VAPI_LOCAL_WQ_ACCESS_VIOL_ERROR:
case VAPI_LOCAL_WQ_CATASTROPHIC_ERROR:
case VAPI_PATH_MIG_REQ_ERROR:
case VAPI_LOCAL_EEC_CATASTROPHIC_ERROR:
case VAPI_LOCAL_CATASTROPHIC_ERROR:
case VAPI_PORT_ERROR:
{
BTL_ERROR(("Got an asynchronous event: %s (%s)",
VAPI_event_record_sym(event_p->type),
VAPI_event_syndrome_sym(event_p->syndrome)));
break;
}
case VAPI_SRQ_LIMIT_REACHED:
{
BTL_VERBOSE(("SRQ limit is reached, posting more buffers %s\n", VAPI_event_record_sym(event_p->type)));
}
case VAPI_RECEIVE_QUEUE_DRAINED: {
}
default:
BTL_ERROR(("Warning!! Got an undefined "
"asynchronous event %s", VAPI_event_record_sym(event_p->type)));
}
}
/*
* Initialize the btl module by allocating a protection domain
* and creating both the high and low priority completion queues
*/
int mca_btl_mvapi_module_init(mca_btl_mvapi_module_t *mvapi_btl)
{
/* Allocate Protection Domain */
VAPI_ret_t ret;
uint32_t cqe_cnt = 0;
VAPI_srq_attr_t srq_attr, srq_attr_out;
ret = VAPI_alloc_pd(mvapi_btl->nic, &mvapi_btl->ptag);
if(ret != VAPI_OK) {
BTL_ERROR(("error in VAPI_alloc_pd: %s", VAPI_strerror(ret)));
return OMPI_ERROR;
}
if(mca_btl_mvapi_component.use_srq) {
mvapi_btl->srr_posted_high = 0;
mvapi_btl->srr_posted_low = 0;
srq_attr.pd_hndl = mvapi_btl->ptag;
srq_attr.max_outs_wr = mca_btl_mvapi_component.ib_wq_size;
srq_attr.max_sentries = mca_btl_mvapi_component.ib_sg_list_size;
srq_attr.srq_limit = mca_btl_mvapi_component.ib_wq_size;
ret = VAPI_create_srq(mvapi_btl->nic,
&srq_attr,
&mvapi_btl->srq_hndl_high,
&srq_attr_out);
if(ret != VAPI_OK) {
BTL_ERROR(("error in VAPI_create_srq: %s", VAPI_strerror(ret)));
return OMPI_ERROR;
}
ret = VAPI_create_srq(mvapi_btl->nic,
&srq_attr,
&mvapi_btl->srq_hndl_low,
&srq_attr_out);
if(ret != VAPI_OK) {
BTL_ERROR(("error in VAPI_create_srq: %s", VAPI_strerror(ret)));
return OMPI_ERROR;
}
} else {
mvapi_btl->srq_hndl_high = VAPI_INVAL_SRQ_HNDL;
mvapi_btl->srq_hndl_low = VAPI_INVAL_SRQ_HNDL;
}
ret = VAPI_create_cq(mvapi_btl->nic, mca_btl_mvapi_component.ib_cq_size,
&mvapi_btl->cq_hndl_low, &cqe_cnt);
if( VAPI_OK != ret) {
BTL_ERROR(("error in VAPI_create_cq: %s", VAPI_strerror(ret)));
return OMPI_ERROR;
}
ret = VAPI_create_cq(mvapi_btl->nic, mca_btl_mvapi_component.ib_cq_size,
&mvapi_btl->cq_hndl_high, &cqe_cnt);
if( VAPI_OK != ret) {
BTL_ERROR(("error in VAPI_create_cq: %s", VAPI_strerror(ret)));
return OMPI_ERROR;
}
if(cqe_cnt <= 0) {
BTL_ERROR(("error creating completion queue "));
return OMPI_ERROR;
}
ret = EVAPI_set_async_event_handler(mvapi_btl->nic,
async_event_handler, 0, &mvapi_btl->async_handler);
if(VAPI_OK != ret) {
BTL_ERROR(("error in EVAPI_set_async_event_handler: %s", VAPI_strerror(ret)));
return OMPI_ERROR;
}
return OMPI_SUCCESS;
}