4ab17f019b
This commit was SVN r6269.
1206 строки
36 KiB
C
1206 строки
36 KiB
C
/*
|
|
* Copyright (c) 2004-2005 The Trustees of Indiana University.
|
|
* All rights reserved.
|
|
* Copyright (c) 2004-2005 The Trustees of the University of Tennessee.
|
|
* All rights reserved.
|
|
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
|
|
* University of Stuttgart. All rights reserved.
|
|
* Copyright (c) 2004-2005 The Regents of the University of California.
|
|
* All rights reserved.
|
|
* $COPYRIGHT$
|
|
*
|
|
* Additional copyrights may follow
|
|
*
|
|
* $HEADER$
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
*
|
|
* Back-end MPI attribute engine.
|
|
*
|
|
* This is complicated enough that it deserves a lengthy discussion of
|
|
* what is happening. This is extremely complicated stuff, paired
|
|
* with the fact that it is not described well in the MPI standard.
|
|
* There are several places in the standard that should be read about
|
|
* attributes:
|
|
*
|
|
* MPI-1: Section 5.7 (pp 167-173)
|
|
* MPI-1: Section 7.1 (pp 191-192) predefined attributes in MPI-1
|
|
* MPI-2: Section 4.12.7 (pp 57-59) interlanguage attribute
|
|
* clarifications
|
|
* MPI-2: Section 6.2.2 (pp 112) window predefined attributes
|
|
* MPI-2: Section 8.8 (pp 198-208) new attribute caching functions
|
|
*
|
|
* After reading all of this, note the following:
|
|
*
|
|
* - C MPI-1 and MPI-2 attribute functions and functionality are
|
|
* identical except for their function names.
|
|
* - Fortran MPI-1 and MPI-2 attribute functions and functionality are
|
|
* different (namely: the parameters are different sizes, both in the
|
|
* functions and the user callbacks, and the assignments to the
|
|
* different sized types occur differently [e.g., truncation and sign
|
|
* extension])
|
|
* - C functions store values by reference (i.e., writing an attribute
|
|
* means writing a pointer to an instance of something; changing the
|
|
* value of that instance will make it visible to anyone who reads
|
|
* that attribute value).
|
|
* - Fortran functions store values by value (i.e., writing an
|
|
* attribute value means that anyone who reads that attribute value
|
|
* will not be able to affect the value read by anyone else).
|
|
* - The predefined attribute MPI_WIN_BASE seems to flaunt the rules
|
|
* designated by the rest of the standard; it is handled
|
|
* specifically in the MPI_WIN_GET_ATTR binding functions (see the
|
|
* comments in there for an explanation).
|
|
* - MPI-2 4.12.7:Example 4.13 (p58) is wrong. The C->Fortran example
|
|
* should have the Fortran "val" variable equal to &I.
|
|
*
|
|
* By the first two of these, there are 9 possible use cases -- 3
|
|
* possibilities for writing an attribute value, each of which has 3
|
|
* possibilities for reading that value back. The following lists
|
|
* each of the 9 cases, and what happens in each.
|
|
*
|
|
* Cases where C writes an attribute value:
|
|
* ----------------------------------------
|
|
*
|
|
* In all of these cases, a pointer was written by C (e.g., a pointer
|
|
* to an int -- but it could have been a pointer to anything, such as
|
|
* a struct). These scenarios each have 2 examples:
|
|
*
|
|
* Example A: int foo = 3;
|
|
* MPI_Attr_put(..., &foo);
|
|
* Example B: struct foo bar;
|
|
* MPI_Attr_put(..., &bar);
|
|
*
|
|
* 1. C reads the attribute value. Clearly, this is a "unity" case,
|
|
* and no translation occurs. A pointer is written, and that same
|
|
* pointer is returned.
|
|
*
|
|
* Example A: int *ret;
|
|
* MPI_Attr_get(..., &ret);
|
|
* --> *ret will equal 3
|
|
* Example B: struct foo *ret;
|
|
* MPI_Attr_get(..., &ret);
|
|
* --> *ret will point to the instance bar that was written
|
|
*
|
|
* 2. Fortran MPI-1 reads the attribute value. The C pointer is cast
|
|
* to a fortran INTEGER (i.e., MPI_Fint) -- potentially being
|
|
* truncated if sizeof(void*) > sizeof(INTEGER).
|
|
*
|
|
* Example A: INTEGER ret
|
|
* CALL MPI_ATTR_GET(..., ret, ierr)
|
|
* --> ret will equal &foo, possibly truncaed
|
|
* Example B: INTEGER ret
|
|
* CALL MPI_ATTR_GET(..., ret, ierr)
|
|
* --> ret will equal &bar, possibly truncaed
|
|
*
|
|
* 3. Fortran MPI-2 reads the attribute value. The C pointer is cast
|
|
* to a fortran INTEGER(KIND=MPI_ADDRESS_KIND) (i.e., a (MPI_Aint)).
|
|
*
|
|
* Example A: INTEGER(KIND=MPI_ADDRESS_KIND) ret
|
|
* CALL MPI_COMM_GET_ATTR(..., ret, ierr)
|
|
* --> ret will equal &foo
|
|
* Example B: INTEGER(KIND=MPI_ADDRESS_KIND) ret
|
|
* CALL MPI_COMM_GET_ATTR(..., ret, ierr)
|
|
* --> ret will equal &bar
|
|
*
|
|
* Cases where Fortran MPI-1 writes an attribute value:
|
|
* ----------------------------------------------------
|
|
*
|
|
* In all of these cases, an INTEGER is written by Fortran.
|
|
*
|
|
* Example: INTEGER FOO = 7
|
|
* CALL MPI_ATTR_PUT(..., foo, ierr)
|
|
*
|
|
* 4. C reads the attribute value. The value returned is a pointer
|
|
* that points to an INTEGER (i.e., an MPI_Fint) that has a value
|
|
* of 7.
|
|
* --> NOTE: The external MPI interface does not distinguish between
|
|
* this case and case 7. It is the programer's responsibility
|
|
* to code accordingly.
|
|
*
|
|
* Example: MPI_Fint *ret;
|
|
* MPI_Attr_get(..., &ret);
|
|
* -> *ret will equal 7.
|
|
*
|
|
* 5. Fortran MPI-1 reads the attribute value. This is the unity
|
|
* case; the same value is returned.
|
|
*
|
|
* Example: INTEGER ret
|
|
* CALL MPI_ATTR_GET(..., ret, ierr)
|
|
* --> ret will equal 7
|
|
*
|
|
* 6. Fortran MPI-2 reads the attribute value. The same value is
|
|
* returned, but potentially sign-extended if sizeof(INTEGER) <
|
|
* sizeof(INTEGER(KIND=MPI_ADDRESS_KIND)).
|
|
*
|
|
* Example: INTEGER(KIND=MPI_ADDRESS_KIND) ret
|
|
* CALL MPI_COMM_GET_ATTR(..., ret, ierr)
|
|
* --> ret will equal 7
|
|
*
|
|
* Cases where Fortran MPI-2 writes an attribute value:
|
|
* ----------------------------------------------------
|
|
*
|
|
* In all of these cases, an INTEGER(KIND=MPI_ADDRESS_KIND) is written
|
|
* by Fortran.
|
|
*
|
|
* Example A: INTEGER(KIND=MPI_ADDRESS_KIND) FOO = 12
|
|
* CALL MPI_COMM_PUT_ATTR(..., foo, ierr)
|
|
* Example B: // Assume a platform where sizeof(void*) = 8 and
|
|
* // sizeof(INTEGER) = 4.
|
|
* INTEGER(KIND=MPI_ADDRESS_KIND) FOO = pow(2, 40)
|
|
* CALL MPI_COMM_PUT_ATTR(..., foo, ierr)
|
|
*
|
|
* 7. C reads the attribute value. The value returned is a pointer
|
|
* that points to an INTEGER(KIND=MPI_ADDRESS_KIND) (i.e., a void*)
|
|
* that has a value of 12.
|
|
* --> NOTE: The external MPI interface does not distinguish between
|
|
* this case and case 4. It is the programer's responsibility
|
|
* to code accordingly.
|
|
*
|
|
* Example A: MPI_Aint *ret;
|
|
* MPI_Attr_get(..., &ret);
|
|
* -> *ret will equal 12
|
|
* Example B: MPI_Aint *ret;
|
|
* MPI_Attr_get(..., &ret);
|
|
* -> *ret will equal 2^40
|
|
*
|
|
* 8. Fortran MPI-1 reads the attribute value. The same value is
|
|
* returned, but potentially truncated if sizeof(INTEGER) <
|
|
* sizeof(INTEGER(KIND=MPI_ADDRESS_KIND)).
|
|
*
|
|
* Example A: INTEGER ret
|
|
* CALL MPI_ATTR_GET(..., ret, ierr)
|
|
* --> ret will equal 12
|
|
* Example B: INTEGER ret
|
|
* CALL MPI_ATTR_GET(..., ret, ierr)
|
|
* --> ret will equal 0
|
|
*
|
|
* 9. Fortran MPI-2 reads the attribute value. This is the unity
|
|
* case; the same value is returned.
|
|
*
|
|
* Example A: INTEGER(KIND=MPI_ADDRESS_KIND) ret
|
|
* CALL MPI_COMM_GET_ATTR(..., ret, ierr)
|
|
* --> ret will equal 7
|
|
* Example B: INTEGER(KIND=MPI_ADDRESS_KIND) ret
|
|
* CALL MPI_COMM_GET_ATTR(..., ret, ierr)
|
|
* --> ret will equal 2^40
|
|
*/
|
|
|
|
#include "ompi_config.h"
|
|
|
|
#include "attribute/attribute.h"
|
|
#include "threads/mutex.h"
|
|
#include "include/constants.h"
|
|
#include "datatype/datatype.h"
|
|
#include "communicator/communicator.h"
|
|
#include "win/win.h"
|
|
#include "mpi/f77/fint_2_int.h"
|
|
|
|
/*
|
|
* Macros
|
|
*/
|
|
|
|
#define ATTR_TABLE_SIZE 10
|
|
|
|
/* This is done so that I can have a consistent interface to my macros
|
|
here */
|
|
|
|
#define MPI_DATATYPE_NULL_COPY_FN MPI_TYPE_NULL_COPY_FN
|
|
#define attr_communicator_f c_f_to_c_index
|
|
#define attr_datatype_f d_f_to_c_index
|
|
#define attr_win_f w_f_to_c_index
|
|
|
|
#define CREATE_KEY(key) ompi_bitmap_find_and_set_first_unset_bit(key_bitmap, (key))
|
|
|
|
#define FREE_KEY(key) ompi_bitmap_clear_bit(key_bitmap, (key))
|
|
|
|
|
|
/* Not checking for NULL_DELETE_FN here, since according to the
|
|
MPI-standard it should be a valid function that returns
|
|
MPI_SUCCESS.
|
|
|
|
This macro exists because we have to replicate the same code for
|
|
MPI_Comm, MPI_Datatype, and MPI_Win. Ick.
|
|
|
|
There are 3 possible sets of callbacks:
|
|
|
|
1. MPI-1 Fortran-style: attribute and extra state arguments are of
|
|
type (INTEGER). This is used if both the OMPI_KEYVAL_F77 and
|
|
OMPI_KEYVAL_F77_MPI1 flags are set.
|
|
2. MPI-2 Fortran-style: attribute and extra state arguments are of
|
|
type (INTEGER(KIND=MPI_ADDRESS_KIND)). This is used if the
|
|
OMPI_KEYVAL_F77 flag is set and the OMPI_KEYVAL_F77_MPI1 flag is
|
|
*not* set.
|
|
3. C-style: attribute arguments are of type (void*). This is used
|
|
if OMPI_KEYVAL_F77 is not set.
|
|
|
|
Ick.
|
|
*/
|
|
|
|
#define DELETE_ATTR_CALLBACKS(type, attribute, keyval_obj) \
|
|
if (0 != (keyval_obj->attr_flag & OMPI_KEYVAL_F77)) { \
|
|
MPI_Fint f_key = OMPI_INT_2_FINT(key); \
|
|
MPI_Fint f_err; \
|
|
/* MPI-1 Fortran-style */ \
|
|
if (0 != (keyval_obj->attr_flag & OMPI_KEYVAL_F77_MPI1)) { \
|
|
MPI_Fint attr_val = translate_to_fortran_mpi1(attribute); \
|
|
(*((keyval_obj->delete_attr_fn).attr_mpi1_fortran_delete_fn)) \
|
|
(&(((ompi_##type##_t *)object)->attr_##type##_f), \
|
|
&f_key, &attr_val, keyval_obj->extra_state, &f_err); \
|
|
if (MPI_SUCCESS != OMPI_FINT_2_INT(f_err)) { \
|
|
if (need_lock) { \
|
|
OMPI_THREAD_UNLOCK(&alock); \
|
|
} \
|
|
return OMPI_FINT_2_INT(f_err); \
|
|
} \
|
|
} \
|
|
/* MPI-2 Fortran-style */ \
|
|
else { \
|
|
MPI_Aint attr_val = translate_to_fortran_mpi2(attribute); \
|
|
(*((keyval_obj->delete_attr_fn).attr_mpi2_fortran_delete_fn)) \
|
|
(&(((ompi_##type##_t *)object)->attr_##type##_f), \
|
|
&f_key, &attr_val, keyval_obj->extra_state, &f_err); \
|
|
if (MPI_SUCCESS != OMPI_FINT_2_INT(f_err)) { \
|
|
if (need_lock) { \
|
|
OMPI_THREAD_UNLOCK(&alock); \
|
|
} \
|
|
return OMPI_FINT_2_INT(f_err); \
|
|
} \
|
|
} \
|
|
} \
|
|
/* C style */ \
|
|
else { \
|
|
void *attr_val = translate_to_c(attribute); \
|
|
if ((err = (*((keyval_obj->delete_attr_fn).attr_##type##_delete_fn)) \
|
|
((ompi_##type##_t *)object, \
|
|
key, attr_val, \
|
|
keyval_obj->extra_state)) != MPI_SUCCESS) {\
|
|
if (need_lock) { \
|
|
OMPI_THREAD_UNLOCK(&alock); \
|
|
} \
|
|
return err;\
|
|
} \
|
|
}
|
|
|
|
/* See the big, long comment above from DELETE_ATTR_CALLBACKS -- most of
|
|
that text applies here, too. */
|
|
|
|
#define COPY_ATTR_CALLBACKS(type, old_object, keyval_obj, in_attr, out_attr) \
|
|
if (0 != (keyval_obj->attr_flag & OMPI_KEYVAL_F77)) { \
|
|
MPI_Fint f_key = OMPI_INT_2_FINT(key); \
|
|
MPI_Fint f_err; \
|
|
ompi_fortran_logical_t f_flag; \
|
|
/* MPI-1 Fortran-style */ \
|
|
if (0 != (keyval_obj->attr_flag & OMPI_KEYVAL_F77_MPI1)) { \
|
|
MPI_Fint in, out; \
|
|
in = translate_to_fortran_mpi1(in_attr); \
|
|
(*((keyval_obj->copy_attr_fn).attr_mpi1_fortran_copy_fn)) \
|
|
(&(((ompi_##type##_t *)old_object)->attr_##type##_f), \
|
|
&f_key, keyval_obj->extra_state, \
|
|
&in, &out, &f_flag, &f_err); \
|
|
if (MPI_SUCCESS != OMPI_FINT_2_INT(f_err)) { \
|
|
OMPI_THREAD_UNLOCK(&alock); \
|
|
return OMPI_FINT_2_INT(f_err); \
|
|
} \
|
|
out_attr->av_value = (void*) 0; \
|
|
*out_attr->av_integer_pointer = out; \
|
|
flag = OMPI_FINT_2_INT(f_flag); \
|
|
} \
|
|
/* MPI-2 Fortran-style */ \
|
|
else { \
|
|
MPI_Aint in, out; \
|
|
in = translate_to_fortran_mpi2(in_attr); \
|
|
(*((keyval_obj->copy_attr_fn).attr_mpi2_fortran_copy_fn)) \
|
|
(&(((ompi_##type##_t *)old_object)->attr_##type##_f), \
|
|
&f_key, keyval_obj->extra_state, &in, &out, \
|
|
&f_flag, &f_err); \
|
|
if (MPI_SUCCESS != OMPI_FINT_2_INT(f_err)) { \
|
|
OMPI_THREAD_UNLOCK(&alock); \
|
|
return OMPI_FINT_2_INT(f_err); \
|
|
} \
|
|
out_attr->av_value = (void *) out; \
|
|
flag = OMPI_FINT_2_INT(f_flag); \
|
|
} \
|
|
} \
|
|
/* C style */ \
|
|
else { \
|
|
void *in, *out; \
|
|
in = translate_to_c(in_attr); \
|
|
if ((err = (*((keyval_obj->copy_attr_fn).attr_##type##_copy_fn)) \
|
|
((ompi_##type##_t *)old_object, key, keyval_obj->extra_state, \
|
|
in, &out, &flag)) != MPI_SUCCESS) { \
|
|
OMPI_THREAD_UNLOCK(&alock); \
|
|
return err; \
|
|
} \
|
|
out_attr->av_value = out; \
|
|
}
|
|
|
|
|
|
/*
|
|
* Cases for attribute values
|
|
*/
|
|
typedef enum ompi_attribute_translate_t {
|
|
OMPI_ATTRIBUTE_C,
|
|
OMPI_ATTRIBUTE_FORTRAN_MPI1,
|
|
OMPI_ATTRIBUTE_FORTRAN_MPI2
|
|
} ompi_attribute_translate_t;
|
|
|
|
|
|
/*
|
|
* struct to hold attribute values on each MPI object
|
|
*/
|
|
typedef struct attribute_value_t {
|
|
ompi_object_t super;
|
|
void *av_value;
|
|
MPI_Aint *av_address_kind_pointer;
|
|
MPI_Fint *av_integer_pointer;
|
|
int av_set_from;
|
|
} attribute_value_t;
|
|
|
|
|
|
/*
|
|
* Local functions
|
|
*/
|
|
static void attribute_value_construct(attribute_value_t *item);
|
|
static void ompi_attrkey_item_construct(ompi_attrkey_item_t *item);
|
|
static void ompi_attrkey_item_destruct(ompi_attrkey_item_t *item);
|
|
static int set_value(ompi_attribute_type_t type, void *object,
|
|
ompi_hash_table_t **keyhash, int key,
|
|
attribute_value_t *new_attr,
|
|
bool predefined, bool need_lock);
|
|
static int get_value(ompi_hash_table_t *keyhash, int key,
|
|
attribute_value_t **attribute, int *flag);
|
|
static void *translate_to_c(attribute_value_t *val);
|
|
static MPI_Fint translate_to_fortran_mpi1(attribute_value_t *val);
|
|
static MPI_Aint translate_to_fortran_mpi2(attribute_value_t *val);
|
|
|
|
|
|
/*
|
|
* attribute_value_t class
|
|
*/
|
|
static OBJ_CLASS_INSTANCE(attribute_value_t,
|
|
ompi_object_t,
|
|
attribute_value_construct,
|
|
NULL);
|
|
|
|
|
|
/*
|
|
* ompi_attribute_entry_t classes
|
|
*/
|
|
static OBJ_CLASS_INSTANCE(ompi_attrkey_item_t,
|
|
ompi_object_t,
|
|
ompi_attrkey_item_construct,
|
|
ompi_attrkey_item_destruct);
|
|
|
|
|
|
/*
|
|
* Static variables
|
|
*/
|
|
|
|
static ompi_hash_table_t *keyval_hash;
|
|
static ompi_bitmap_t *key_bitmap;
|
|
static unsigned int int_pos = 12345;
|
|
|
|
#if OMPI_HAVE_THREAD_SUPPORT
|
|
/*
|
|
* Have one lock protect all access to any attribute stuff (keyval
|
|
* hash, key bitmap, attribute hashes on MPI objects, etc.).
|
|
* Arguably, we would have a finer-grained scheme (e.g., 2 locks) that
|
|
* would allow at least *some* concurrency, but these are attributes
|
|
* -- they're not in the performance-critical portions of the code.
|
|
* So why bother?
|
|
*/
|
|
static ompi_mutex_t alock;
|
|
#endif /* OMPI_HAVE_THREAD_SUPPORT */
|
|
|
|
|
|
/*
|
|
* attribute_value_t constructor function
|
|
*/
|
|
static void attribute_value_construct(attribute_value_t *item)
|
|
{
|
|
item->av_address_kind_pointer = (MPI_Aint*) &item->av_value;
|
|
item->av_integer_pointer = &(((MPI_Fint*) &item->av_value)[int_pos]);
|
|
item->av_set_from = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* ompi_attrkey_item_t constructor / destructor
|
|
*/
|
|
static void
|
|
ompi_attrkey_item_construct(ompi_attrkey_item_t *item)
|
|
{
|
|
memset(&(item->attr_type), 0,
|
|
sizeof(ompi_attrkey_item_t) - sizeof(ompi_object_t));
|
|
}
|
|
|
|
|
|
static void
|
|
ompi_attrkey_item_destruct(ompi_attrkey_item_t *item)
|
|
{
|
|
/* Remove the key entry from the hash and free the key */
|
|
|
|
OMPI_THREAD_LOCK(&alock);
|
|
ompi_hash_table_remove_value_uint32(keyval_hash, item->key);
|
|
FREE_KEY(item->key);
|
|
OMPI_THREAD_UNLOCK(&alock);
|
|
}
|
|
|
|
|
|
/*
|
|
* This will initialize the main list to store key- attribute
|
|
* items. This will be called one time, mostly during MPI_INIT()
|
|
*/
|
|
|
|
int ompi_attr_init(void)
|
|
{
|
|
int ret;
|
|
void *bogus = (void*) 1;
|
|
MPI_Fint *p = (MPI_Fint*) &bogus;
|
|
|
|
keyval_hash = OBJ_NEW(ompi_hash_table_t);
|
|
if (NULL == keyval_hash) {
|
|
return MPI_ERR_SYSRESOURCE;
|
|
}
|
|
key_bitmap = OBJ_NEW(ompi_bitmap_t);
|
|
if (0 != ompi_bitmap_init(key_bitmap, 10)) {
|
|
return MPI_ERR_SYSRESOURCE;
|
|
}
|
|
|
|
for (int_pos = 0; int_pos < (sizeof(void*) / sizeof(MPI_Fint));
|
|
++int_pos) {
|
|
if (p[int_pos] == 1) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (OMPI_SUCCESS != (ret = ompi_hash_table_init(keyval_hash,
|
|
ATTR_TABLE_SIZE))) {
|
|
return ret;
|
|
}
|
|
if (OMPI_SUCCESS != (ret = ompi_attr_create_predefined())) {
|
|
return ret;
|
|
}
|
|
|
|
return OMPI_SUCCESS;
|
|
}
|
|
|
|
|
|
/*
|
|
* This will destroy the list, mostly during MPI_Finalize()
|
|
*/
|
|
|
|
int ompi_attr_finalize(void)
|
|
{
|
|
OBJ_RELEASE(keyval_hash);
|
|
OBJ_RELEASE(key_bitmap);
|
|
|
|
return OMPI_SUCCESS;
|
|
}
|
|
|
|
|
|
int ompi_attr_create_keyval(ompi_attribute_type_t type,
|
|
ompi_attribute_fn_ptr_union_t copy_attr_fn,
|
|
ompi_attribute_fn_ptr_union_t delete_attr_fn,
|
|
int *key, void *extra_state, int flags)
|
|
{
|
|
ompi_attrkey_item_t *attr;
|
|
int ret;
|
|
|
|
/* Protect against the user calling ompi_attr_destroy and then
|
|
calling any of the functions which use it */
|
|
if (NULL == keyval_hash) {
|
|
return MPI_ERR_INTERN;
|
|
}
|
|
|
|
/* Allocate space for the list item */
|
|
|
|
attr = OBJ_NEW(ompi_attrkey_item_t);
|
|
if (NULL == attr) {
|
|
return MPI_ERR_SYSRESOURCE;
|
|
}
|
|
|
|
/* Create a new unique key and fill the hash */
|
|
|
|
OMPI_THREAD_LOCK(&alock);
|
|
ret = CREATE_KEY(key);
|
|
if (OMPI_SUCCESS == ret) {
|
|
ret = ompi_hash_table_set_value_uint32(keyval_hash, *key, attr);
|
|
}
|
|
OMPI_THREAD_UNLOCK(&alock);
|
|
if (OMPI_SUCCESS != ret) {
|
|
return ret;
|
|
}
|
|
|
|
/* Fill in the list item */
|
|
|
|
attr->copy_attr_fn = copy_attr_fn;
|
|
attr->delete_attr_fn = delete_attr_fn;
|
|
attr->extra_state = extra_state;
|
|
attr->attr_type = type;
|
|
attr->key = *key;
|
|
attr->attr_flag = flags;
|
|
|
|
/* Other fields will be filled in by the create_attr function */
|
|
|
|
return MPI_SUCCESS;
|
|
}
|
|
|
|
|
|
int ompi_attr_free_keyval(ompi_attribute_type_t type, int *key,
|
|
bool predefined)
|
|
{
|
|
int ret;
|
|
ompi_attrkey_item_t *key_item;
|
|
|
|
/* Protect against the user calling ompi_attr_destroy and then
|
|
calling any of the functions which use it */
|
|
if (NULL == keyval_hash) {
|
|
return MPI_ERR_INTERN;
|
|
}
|
|
|
|
/* Find the key-value pair */
|
|
|
|
OMPI_THREAD_LOCK(&alock);
|
|
ret = ompi_hash_table_get_value_uint32(keyval_hash, *key,
|
|
(void **) &key_item);
|
|
OMPI_THREAD_UNLOCK(&alock);
|
|
|
|
if ((OMPI_SUCCESS != ret) || (NULL == key_item) ||
|
|
(key_item->attr_type != type) ||
|
|
((!predefined) && (key_item->attr_flag & OMPI_KEYVAL_PREDEFINED))) {
|
|
return OMPI_ERR_BAD_PARAM;
|
|
}
|
|
|
|
/* MPI says to set the returned value to MPI_KEYVAL_INVALID */
|
|
|
|
*key = MPI_KEYVAL_INVALID;
|
|
|
|
/* This will delete the key only when no attributes are associated
|
|
with it, else it will just decrement the reference count, so that when
|
|
the last attribute is deleted, this object gets deleted too */
|
|
|
|
OBJ_RELEASE(key_item);
|
|
|
|
return MPI_SUCCESS;
|
|
}
|
|
|
|
|
|
int ompi_attr_delete(ompi_attribute_type_t type, void *object,
|
|
ompi_hash_table_t *keyhash, int key,
|
|
bool predefined, bool need_lock)
|
|
{
|
|
ompi_attrkey_item_t *key_item;
|
|
int ret = OMPI_SUCCESS, err;
|
|
attribute_value_t *attr;
|
|
|
|
/* Protect against the user calling ompi_attr_destroy and then
|
|
calling any of the functions which use it */
|
|
if (NULL == keyval_hash) {
|
|
return MPI_ERR_INTERN;
|
|
}
|
|
|
|
/* Note that this function can be invoked by
|
|
ompi_attr_delete_all() to set attributes on the new object (in
|
|
addition to the top-level MPI_* functions that set attributes).
|
|
In these cases, ompi_attr_delete_all() has already locked the
|
|
keyval_lock, so we should not try to lock it again. */
|
|
|
|
if (need_lock) {
|
|
OMPI_THREAD_LOCK(&alock);
|
|
}
|
|
|
|
/* Check if the key is valid in the master keyval hash */
|
|
|
|
ret = ompi_hash_table_get_value_uint32(keyval_hash, key,
|
|
(void **) &key_item);
|
|
|
|
if ((OMPI_SUCCESS != ret) || (NULL == key_item) ||
|
|
(key_item->attr_type!= type) ||
|
|
((!predefined) && (key_item->attr_flag & OMPI_KEYVAL_PREDEFINED))) {
|
|
ret = OMPI_ERR_BAD_PARAM;
|
|
goto exit;
|
|
}
|
|
|
|
/* Ensure that we don't have an empty keyhash */
|
|
|
|
if (NULL == keyhash) {
|
|
ret = OMPI_ERR_BAD_PARAM;
|
|
goto exit;
|
|
}
|
|
|
|
/* Check if the key is valid for the communicator/window/dtype. If
|
|
yes, then delete the attribute and key entry from the object's key
|
|
hash */
|
|
|
|
ret = ompi_hash_table_get_value_uint32(keyhash, key, (void**) &attr);
|
|
if (OMPI_SUCCESS == ret) {
|
|
switch (type) {
|
|
case COMM_ATTR:
|
|
DELETE_ATTR_CALLBACKS(communicator, attr, key_item);
|
|
break;
|
|
|
|
#if OMPI_WANT_MPI2_ONE_SIDED
|
|
case WIN_ATTR:
|
|
DELETE_ATTR_CALLBACKS(win, attre, key_item);
|
|
break;
|
|
#endif
|
|
|
|
case TYPE_ATTR:
|
|
DELETE_ATTR_CALLBACKS(datatype, attr, key_item);
|
|
break;
|
|
|
|
default:
|
|
ret = MPI_ERR_INTERN;
|
|
goto exit;
|
|
}
|
|
OBJ_RELEASE(attr);
|
|
|
|
ret = ompi_hash_table_remove_value_uint32(keyhash, key);
|
|
if (OMPI_SUCCESS != ret) {
|
|
goto exit;
|
|
}
|
|
}
|
|
|
|
|
|
exit:
|
|
if (need_lock) {
|
|
OMPI_THREAD_UNLOCK(&alock);
|
|
}
|
|
|
|
/* Decrement the ref count for the key, and if ref count is 0,
|
|
remove the key (the destructor deletes the key implicitly for
|
|
this object */
|
|
|
|
OBJ_RELEASE(key_item);
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*
|
|
* Front-end function called by the C MPI API functions to set an
|
|
* attribute.
|
|
*/
|
|
int ompi_attr_set_c(ompi_attribute_type_t type, void *object,
|
|
ompi_hash_table_t **keyhash,
|
|
int key, void *attribute, bool predefined, bool need_lock)
|
|
{
|
|
attribute_value_t *new_attr = OBJ_NEW(attribute_value_t);
|
|
if (NULL == new_attr) {
|
|
return MPI_ERR_SYSRESOURCE;
|
|
}
|
|
|
|
new_attr->av_value = attribute;
|
|
new_attr->av_set_from = OMPI_ATTRIBUTE_C;
|
|
return set_value(type, object, keyhash, key, new_attr,
|
|
predefined, need_lock);
|
|
}
|
|
|
|
|
|
/*
|
|
* Front-end function called by the Fortran MPI-2 API functions to set
|
|
* an attribute.
|
|
*/
|
|
int ompi_attr_set_fortran_mpi1(ompi_attribute_type_t type, void *object,
|
|
ompi_hash_table_t **keyhash,
|
|
int key, MPI_Fint attribute,
|
|
bool predefined, bool need_lock)
|
|
{
|
|
attribute_value_t *new_attr = OBJ_NEW(attribute_value_t);
|
|
if (NULL == new_attr) {
|
|
return MPI_ERR_SYSRESOURCE;
|
|
}
|
|
|
|
new_attr->av_value = (void *) 0;
|
|
*new_attr->av_integer_pointer = attribute;
|
|
new_attr->av_set_from = OMPI_ATTRIBUTE_FORTRAN_MPI1;
|
|
return set_value(type, object, keyhash, key, new_attr,
|
|
predefined, need_lock);
|
|
}
|
|
|
|
|
|
/*
|
|
* Front-end function called by the Fortran MPI-2 API functions to set
|
|
* an attribute.
|
|
*/
|
|
int ompi_attr_set_fortran_mpi2(ompi_attribute_type_t type, void *object,
|
|
ompi_hash_table_t **keyhash,
|
|
int key, MPI_Aint attribute,
|
|
bool predefined, bool need_lock)
|
|
{
|
|
attribute_value_t *new_attr = OBJ_NEW(attribute_value_t);
|
|
if (NULL == new_attr) {
|
|
return MPI_ERR_SYSRESOURCE;
|
|
}
|
|
|
|
new_attr->av_value = (void *) attribute;
|
|
new_attr->av_set_from = OMPI_ATTRIBUTE_FORTRAN_MPI2;
|
|
return set_value(type, object, keyhash, key, new_attr,
|
|
predefined, need_lock);
|
|
}
|
|
|
|
|
|
/*
|
|
* Front-end function called by the C MPI API functions to get
|
|
* attributes.
|
|
*/
|
|
int ompi_attr_get_c(ompi_hash_table_t *keyhash, int key,
|
|
void **attribute, int *flag)
|
|
{
|
|
attribute_value_t *val;
|
|
int ret;
|
|
|
|
ret = get_value(keyhash, key, &val, flag);
|
|
if (MPI_SUCCESS == ret && 1 == *flag) {
|
|
*attribute = translate_to_c(val);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*
|
|
* Front-end function called by the Fortran MPI-1 API functions to get
|
|
* attributes.
|
|
*/
|
|
int ompi_attr_get_fortran_mpi1(ompi_hash_table_t *keyhash, int key,
|
|
MPI_Fint *attribute, int *flag)
|
|
{
|
|
attribute_value_t *val;
|
|
int ret;
|
|
|
|
ret = get_value(keyhash, key, &val, flag);
|
|
if (MPI_SUCCESS == ret && 1 == *flag) {
|
|
*attribute = translate_to_fortran_mpi1(val);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*
|
|
* Front-end function called by the Fortran MPI-2 API functions to get
|
|
* attributes.
|
|
*/
|
|
int ompi_attr_get_fortran_mpi2(ompi_hash_table_t *keyhash, int key,
|
|
MPI_Aint *attribute, int *flag)
|
|
{
|
|
attribute_value_t *val;
|
|
int ret;
|
|
|
|
ret = get_value(keyhash, key, &val, flag);
|
|
if (MPI_SUCCESS == ret && 1 == *flag) {
|
|
*attribute = translate_to_fortran_mpi2(val);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*
|
|
* Copy all the attributes from one MPI object to another
|
|
*/
|
|
int ompi_attr_copy_all(ompi_attribute_type_t type, void *old_object,
|
|
void *new_object, ompi_hash_table_t *oldkeyhash,
|
|
ompi_hash_table_t *newkeyhash)
|
|
{
|
|
int ret;
|
|
int err;
|
|
uint32_t key;
|
|
int flag;
|
|
void *node, *in_node;
|
|
attribute_value_t *old_attr, *new_attr;
|
|
ompi_attrkey_item_t *hash_value;
|
|
|
|
/* Protect against the user calling ompi_attr_destroy and then
|
|
calling any of the functions which use it */
|
|
if (NULL == keyval_hash) {
|
|
return MPI_ERR_INTERN;
|
|
}
|
|
|
|
/* If there's nothing to do, just return */
|
|
|
|
if (NULL == oldkeyhash) {
|
|
return MPI_SUCCESS;
|
|
}
|
|
|
|
/* Lock this whole sequence of events -- don't let any other
|
|
thread modify the structure of the keyval hash or bitmap while
|
|
we're traversing it */
|
|
|
|
OMPI_THREAD_LOCK(&alock);
|
|
|
|
/* Get the first key-attr in the object's key hash */
|
|
ret = ompi_hash_table_get_first_key_uint32(oldkeyhash, &key,
|
|
(void **) &old_attr,
|
|
&node);
|
|
|
|
/* While we still have some key-attr pair in the object's key
|
|
hash */
|
|
while (OMPI_SUCCESS == ret) {
|
|
in_node = node;
|
|
|
|
/* Get the attr_item in the main keyval hash - so that we know
|
|
what the copy_attr_fn is */
|
|
|
|
err = ompi_hash_table_get_value_uint32(keyval_hash, key,
|
|
(void **) &hash_value);
|
|
|
|
new_attr = OBJ_NEW(attribute_value_t);
|
|
switch (type) {
|
|
case COMM_ATTR:
|
|
/* Now call the copy_attr_fn */
|
|
COPY_ATTR_CALLBACKS(communicator, old_object, hash_value,
|
|
old_attr, new_attr);
|
|
break;
|
|
|
|
case TYPE_ATTR:
|
|
/* Now call the copy_attr_fn */
|
|
COPY_ATTR_CALLBACKS(datatype, old_object, hash_value,
|
|
old_attr, new_attr);
|
|
break;
|
|
|
|
#if OMPI_WANT_MPI2_ONE_SIDED
|
|
case WIN_ATTR:
|
|
/* Now call the copy_attr_fn */
|
|
COPY_ATTR_CALLBACKS(win, old_object, hash_value,
|
|
old_attr, new_attr);
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
/* Hang this off the object's key hash */
|
|
|
|
/* The "predefined" parameter to ompi_attr_set() is set to 1,
|
|
so that no comparison is done for prdefined at all and it
|
|
just falls off the error checking loop in attr_set */
|
|
|
|
if (1 == flag) {
|
|
if (0 != (hash_value->attr_flag & OMPI_KEYVAL_F77)) {
|
|
if (0 != (hash_value->attr_flag & OMPI_KEYVAL_F77_MPI1)) {
|
|
new_attr->av_set_from = OMPI_ATTRIBUTE_FORTRAN_MPI1;
|
|
} else {
|
|
new_attr->av_set_from = OMPI_ATTRIBUTE_FORTRAN_MPI2;
|
|
}
|
|
} else {
|
|
new_attr->av_set_from = OMPI_ATTRIBUTE_C;
|
|
}
|
|
set_value(type, new_object, &newkeyhash, key,
|
|
new_attr, true, false);
|
|
} else {
|
|
OBJ_RELEASE(new_attr);
|
|
}
|
|
|
|
ret = ompi_hash_table_get_next_key_uint32(oldkeyhash, &key,
|
|
(void **) &old_attr,
|
|
in_node, &node);
|
|
}
|
|
|
|
/* All done */
|
|
|
|
OMPI_THREAD_UNLOCK(&alock);
|
|
return MPI_SUCCESS;
|
|
}
|
|
|
|
|
|
/*
|
|
* Delete all the attributes on an MPI object
|
|
*/
|
|
int ompi_attr_delete_all(ompi_attribute_type_t type, void *object,
|
|
ompi_hash_table_t *keyhash)
|
|
{
|
|
int key_ret, del_ret;
|
|
uint32_t key, oldkey;
|
|
void *node, *in_node, *old_attr;
|
|
|
|
/* Protect against the user calling ompi_attr_destroy and then
|
|
calling any of the functions which use it */
|
|
if (NULL == keyval_hash) {
|
|
return MPI_ERR_INTERN;
|
|
}
|
|
|
|
/* Ensure that the table is not empty */
|
|
|
|
if (NULL == keyhash) {
|
|
return MPI_SUCCESS;
|
|
}
|
|
|
|
/* Lock this whole sequence of events -- don't let any other
|
|
thread modify the structure of the keyval hash or bitmap while
|
|
we're traversing it */
|
|
|
|
OMPI_THREAD_LOCK(&alock);
|
|
|
|
/* Get the first key in local object's key hash */
|
|
key_ret = ompi_hash_table_get_first_key_uint32(keyhash,
|
|
&key, &old_attr,
|
|
&node);
|
|
del_ret = OMPI_SUCCESS;
|
|
while (OMPI_SUCCESS == key_ret && OMPI_SUCCESS == del_ret) {
|
|
|
|
/* Save this node info for deletion, before we move onto the
|
|
next node */
|
|
|
|
in_node = node;
|
|
oldkey = key;
|
|
|
|
/* Move to the next node */
|
|
|
|
key_ret = ompi_hash_table_get_next_key_uint32(keyhash,
|
|
&key, &old_attr,
|
|
in_node, &node);
|
|
/* Now delete this attribute */
|
|
|
|
del_ret = ompi_attr_delete(type, object, keyhash, oldkey, true, false);
|
|
}
|
|
|
|
/* All done */
|
|
|
|
OMPI_THREAD_UNLOCK(&alock);
|
|
return del_ret;
|
|
}
|
|
|
|
/*************************************************************************/
|
|
|
|
/*
|
|
* Back-end function to set an attribute on an MPI object
|
|
*/
|
|
static int set_value(ompi_attribute_type_t type, void *object,
|
|
ompi_hash_table_t **keyhash, int key,
|
|
attribute_value_t *new_attr,
|
|
bool predefined, bool need_lock)
|
|
{
|
|
ompi_attrkey_item_t *key_item;
|
|
int ret, err;
|
|
attribute_value_t *old_attr;
|
|
bool had_old = false;
|
|
|
|
/* Protect against the user calling ompi_attr_destroy and then
|
|
calling any of the functions which use it */
|
|
if (NULL == keyval_hash) {
|
|
return MPI_ERR_INTERN;
|
|
}
|
|
if (NULL == keyhash) {
|
|
return MPI_ERR_INTERN;
|
|
}
|
|
|
|
/* Note that this function can be invoked by ompi_attr_copy_all()
|
|
to set attributes on the new object (in addition to the
|
|
top-level MPI_* functions that set attributes). In these
|
|
cases, ompi_attr_copy_all() has already locked the keyval_lock,
|
|
so we should not try to lock it again. */
|
|
|
|
if (need_lock) {
|
|
OMPI_THREAD_LOCK(&alock);
|
|
}
|
|
ret = ompi_hash_table_get_value_uint32(keyval_hash, key,
|
|
(void **) &key_item);
|
|
|
|
/* If key not found */
|
|
|
|
if ((OMPI_SUCCESS != ret ) || (NULL == key_item) ||
|
|
(key_item->attr_type != type) ||
|
|
((!predefined) && (key_item->attr_flag & OMPI_KEYVAL_PREDEFINED))) {
|
|
if (need_lock) {
|
|
OMPI_THREAD_UNLOCK(&alock);
|
|
}
|
|
return OMPI_ERR_BAD_PARAM;
|
|
}
|
|
|
|
/* Do we need to make a new keyhash? */
|
|
|
|
if (NULL == *keyhash) {
|
|
ompi_attr_hash_init(keyhash);
|
|
}
|
|
|
|
/* Now see if the key is present in the object's key hash. If so,
|
|
delete the old attribute value. */
|
|
|
|
ret = ompi_hash_table_get_value_uint32(*keyhash, key, (void**) &old_attr);
|
|
if (OMPI_SUCCESS == ret) {
|
|
switch (type) {
|
|
case COMM_ATTR:
|
|
DELETE_ATTR_CALLBACKS(communicator, old_attr, key_item);
|
|
break;
|
|
|
|
#if OMPI_WANT_MPI2_ONE_SIDED
|
|
case WIN_ATTR:
|
|
DELETE_ATTR_CALLBACKS(win, old_attr, key_item);
|
|
break;
|
|
#endif
|
|
|
|
case TYPE_ATTR:
|
|
DELETE_ATTR_CALLBACKS(datatype, old_attr, key_item);
|
|
break;
|
|
|
|
default:
|
|
return MPI_ERR_INTERN;
|
|
}
|
|
had_old = true;
|
|
OBJ_RELEASE(old_attr);
|
|
}
|
|
|
|
ret = ompi_hash_table_set_value_uint32(*keyhash, key, new_attr);
|
|
|
|
if (need_lock) {
|
|
OMPI_THREAD_UNLOCK(&alock);
|
|
}
|
|
if (OMPI_SUCCESS != ret) {
|
|
return ret;
|
|
}
|
|
|
|
/* Increase the reference count of the object, only if there was no
|
|
old atribute/no old entry in the object's key hash */
|
|
|
|
if (!had_old) {
|
|
OBJ_RETAIN(key_item);
|
|
}
|
|
return MPI_SUCCESS;
|
|
}
|
|
|
|
|
|
/*
|
|
* Back-end function to get an attribute from the hash map and return
|
|
* it to the caller. Translation services are not provided -- they're
|
|
* in small, standalone functions that are called from several
|
|
* different places.
|
|
*/
|
|
static int get_value(ompi_hash_table_t *keyhash, int key,
|
|
attribute_value_t **attribute, int *flag)
|
|
{
|
|
int ret;
|
|
void *attr;
|
|
ompi_attrkey_item_t *key_item;
|
|
|
|
/* According to MPI specs, the call is invalid if key is not
|
|
present in the main keyval hash at all. If no attribute is
|
|
associated with the key, then the call is valid and returns
|
|
FALSE in the flag argument */
|
|
|
|
*flag = 0;
|
|
OMPI_THREAD_LOCK(&alock);
|
|
ret = ompi_hash_table_get_value_uint32(keyval_hash, key,
|
|
(void**) &key_item);
|
|
|
|
if (OMPI_ERR_NOT_FOUND == ret) {
|
|
OMPI_THREAD_UNLOCK(&alock);
|
|
return MPI_KEYVAL_INVALID;
|
|
}
|
|
|
|
/* If we have a null keyhash table, that means that nothing has
|
|
been cached on this object yet. So just return *flag = 0. */
|
|
|
|
if (NULL == keyhash) {
|
|
OMPI_THREAD_UNLOCK(&alock);
|
|
return OMPI_SUCCESS;
|
|
}
|
|
|
|
ret = ompi_hash_table_get_value_uint32(keyhash, key, &attr);
|
|
OMPI_THREAD_UNLOCK(&alock);
|
|
if (OMPI_SUCCESS == ret) {
|
|
*attribute = attr;
|
|
*flag = 1;
|
|
}
|
|
return OMPI_SUCCESS;
|
|
}
|
|
|
|
|
|
/*
|
|
* Take an attribute and translate it according to the cases listed in
|
|
* the comments at the top of this file.
|
|
*
|
|
* This function does not fail -- it is only invoked in "safe"
|
|
* situations.
|
|
*/
|
|
static void *translate_to_c(attribute_value_t *val)
|
|
{
|
|
switch (val->av_set_from) {
|
|
case OMPI_ATTRIBUTE_C:
|
|
/* Case 1: written in C, read in C (unity) */
|
|
return val->av_value;
|
|
break;
|
|
|
|
case OMPI_ATTRIBUTE_FORTRAN_MPI1:
|
|
/* Case 4: written in Fortran MPI-1, read in C */
|
|
return (void *) val->av_integer_pointer;
|
|
break;
|
|
|
|
case OMPI_ATTRIBUTE_FORTRAN_MPI2:
|
|
/* Case 7: written in Fortran MPI-2, read in C */
|
|
return (void *) val->av_address_kind_pointer;
|
|
break;
|
|
|
|
default:
|
|
/* Should never reach here */
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Take an attribute and translate it according to the cases listed in
|
|
* the comments at the top of this file.
|
|
*
|
|
* This function does not fail -- it is only invoked in "safe"
|
|
* situations.
|
|
*/
|
|
static MPI_Fint translate_to_fortran_mpi1(attribute_value_t *val)
|
|
{
|
|
switch (val->av_set_from) {
|
|
case OMPI_ATTRIBUTE_C:
|
|
/* Case 2: written in C, read in Fortran MPI-1 */
|
|
return *val->av_integer_pointer;
|
|
break;
|
|
|
|
case OMPI_ATTRIBUTE_FORTRAN_MPI1:
|
|
/* Case 5: written in Fortran MPI-1, read in Fortran MPI-1
|
|
(unity) */
|
|
return *val->av_integer_pointer;
|
|
break;
|
|
|
|
case OMPI_ATTRIBUTE_FORTRAN_MPI2:
|
|
/* Case 8: written in Fortran MPI-2, read in Fortran MPI-1 */
|
|
return *val->av_integer_pointer;
|
|
break;
|
|
|
|
default:
|
|
/* Should never reach here */
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Take an attribute and translate it according to the cases listed in
|
|
* the comments at the top of this file.
|
|
*
|
|
* This function does not fail -- it is only invoked in "safe"
|
|
* situations.
|
|
*/
|
|
static MPI_Aint translate_to_fortran_mpi2(attribute_value_t *val)
|
|
{
|
|
switch (val->av_set_from) {
|
|
case OMPI_ATTRIBUTE_C:
|
|
/* Case 3: written in C, read in Fortran MPI-2 */
|
|
return (MPI_Aint) val->av_value;
|
|
break;
|
|
|
|
case OMPI_ATTRIBUTE_FORTRAN_MPI1:
|
|
/* Case 6: written in Fortran MPI-1, read in Fortran MPI-2 */
|
|
return (MPI_Aint) *val->av_integer_pointer;
|
|
break;
|
|
|
|
case OMPI_ATTRIBUTE_FORTRAN_MPI2:
|
|
/* Case 9: written in Fortran MPI-2, read in Fortran MPI-2
|
|
(unity) */
|
|
return (MPI_Aint) val->av_value;
|
|
break;
|
|
|
|
default:
|
|
/* Should never reach here */
|
|
return 0;
|
|
}
|
|
}
|