1
1
openmpi/opal/mca/btl/smcuda/btl_smcuda.c
Nathan Hjelm 1282e98a01 opal/asm: rename existing arithmetic atomic functions
This commit renames the arithmetic atomic operations in opal to
indicate that they return the new value not the old value. This naming
differentiates these routines from new functions that return the old
value.

Signed-off-by: Nathan Hjelm <hjelmn@lanl.gov>
2017-11-30 10:41:22 -07:00

1339 строки
50 KiB
C

/* -*- Mode: C; c-basic-offset:4 ; indent-tabs-mode:nil -*- */
/*
* Copyright (c) 2004-2011 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2014 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2007 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2006-2007 Voltaire. All rights reserved.
* Copyright (c) 2009-2012 Cisco Systems, Inc. All rights reserved.
* Copyright (c) 2010-2017 Los Alamos National Security, LLC. All rights
* reserved.
* Copyright (c) 2012-2015 NVIDIA Corporation. All rights reserved.
* Copyright (c) 2012 Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014-2017 Research Organization for Information Science
* and Technology (RIST). All rights reserved.
* Copyright (c) 2015-2016 Intel, Inc. All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "opal_config.h"
#include <sys/types.h>
#include <sys/stat.h>
#ifdef HAVE_FCNTL_H
#include <fcntl.h>
#endif /* HAVE_FCNTL_H */
#include <errno.h>
#ifdef HAVE_SYS_MMAN_H
#include <sys/mman.h>
#endif /* HAVE_SYS_MMAN_H */
#ifdef OPAL_BTL_SM_CMA_NEED_SYSCALL_DEFS
#include "opal/sys/cma.h"
#endif /* OPAL_BTL_SM_CMA_NEED_SYSCALL_DEFS */
#include "opal/sys/atomic.h"
#include "opal/class/opal_bitmap.h"
#include "opal/util/output.h"
#include "opal/util/show_help.h"
#include "opal/util/printf.h"
#include "opal/mca/hwloc/base/base.h"
#include "opal/mca/pmix/base/base.h"
#include "opal/mca/shmem/base/base.h"
#include "opal/mca/shmem/shmem.h"
#include "opal/datatype/opal_convertor.h"
#include "opal/mca/btl/btl.h"
#include "opal/mca/common/sm/common_sm_mpool.h"
#if OPAL_CUDA_SUPPORT
#include "opal/mca/common/cuda/common_cuda.h"
#endif /* OPAL_CUDA_SUPPORT */
#include "opal/mca/mpool/base/base.h"
#include "opal/mca/rcache/base/base.h"
#if OPAL_ENABLE_FT_CR == 1
#include "opal/mca/crs/base/base.h"
#include "opal/util/basename.h"
#include "orte/mca/sstore/sstore.h"
#include "opal/runtime/opal_cr.h"
#endif
#include "btl_smcuda.h"
#include "btl_smcuda_endpoint.h"
#include "btl_smcuda_frag.h"
#include "btl_smcuda_fifo.h"
#if OPAL_CUDA_SUPPORT
static struct mca_btl_base_registration_handle_t *mca_btl_smcuda_register_mem (
struct mca_btl_base_module_t* btl, struct mca_btl_base_endpoint_t *endpoint, void *base,
size_t size, uint32_t flags);
static int mca_btl_smcuda_deregister_mem (struct mca_btl_base_module_t* btl,
struct mca_btl_base_registration_handle_t *handle);
#endif
mca_btl_smcuda_t mca_btl_smcuda = {
.super = {
.btl_component = &mca_btl_smcuda_component.super,
.btl_add_procs = mca_btl_smcuda_add_procs,
.btl_del_procs = mca_btl_smcuda_del_procs,
.btl_finalize = mca_btl_smcuda_finalize,
.btl_alloc = mca_btl_smcuda_alloc,
.btl_free = mca_btl_smcuda_free,
.btl_prepare_src = mca_btl_smcuda_prepare_src,
#if OPAL_CUDA_SUPPORT
.btl_register_mem = mca_btl_smcuda_register_mem,
.btl_deregister_mem = mca_btl_smcuda_deregister_mem,
#endif /* OPAL_CUDA_SUPPORT */
.btl_send = mca_btl_smcuda_send,
.btl_sendi = mca_btl_smcuda_sendi,
.btl_dump = mca_btl_smcuda_dump,
.btl_register_error = mca_btl_smcuda_register_error_cb,
.btl_ft_event = mca_btl_smcuda_ft_event
}
};
#if OPAL_CUDA_SUPPORT
static void mca_btl_smcuda_send_cuda_ipc_request(struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint);
#endif /* OPAL_CUDA_SUPPORT */
/*
* calculate offset of an address from the beginning of a shared memory segment
*/
#define ADDR2OFFSET(ADDR, BASE) ((char*)(ADDR) - (char*)(BASE))
/*
* calculate an absolute address in a local address space given an offset and
* a base address of a shared memory segment
*/
#define OFFSET2ADDR(OFFSET, BASE) ((ptrdiff_t)(OFFSET) + (char*)(BASE))
static void *mpool_calloc(size_t nmemb, size_t size)
{
void *buf;
size_t bsize = nmemb * size;
mca_mpool_base_module_t *mpool = mca_btl_smcuda_component.sm_mpool;
buf = mpool->mpool_alloc(mpool, bsize, opal_cache_line_size, 0);
if (NULL == buf)
return NULL;
memset(buf, 0, bsize);
return buf;
}
static int
setup_mpool_base_resources(mca_btl_smcuda_component_t *comp_ptr,
mca_common_sm_mpool_resources_t *out_res)
{
int rc = OPAL_SUCCESS;
int fd = -1;
ssize_t bread = 0;
if (-1 == (fd = open(comp_ptr->sm_mpool_rndv_file_name, O_RDONLY))) {
int err = errno;
opal_show_help("help-mpi-btl-smcuda.txt", "sys call fail", true,
"open(2)", strerror(err), err);
rc = OPAL_ERR_IN_ERRNO;
goto out;
}
if ((ssize_t)sizeof(opal_shmem_ds_t) != (bread =
read(fd, &out_res->bs_meta_buf, sizeof(opal_shmem_ds_t)))) {
opal_output(0, "setup_mpool_base_resources: "
"Read inconsistency -- read: %lu, but expected: %lu!\n",
(unsigned long)bread,
(unsigned long)sizeof(opal_shmem_ds_t));
rc = OPAL_ERROR;
goto out;
}
if ((ssize_t)sizeof(out_res->size) != (bread =
read(fd, &out_res->size, sizeof(size_t)))) {
opal_output(0, "setup_mpool_base_resources: "
"Read inconsistency -- read: %lu, but expected: %lu!\n",
(unsigned long)bread,
(unsigned long)sizeof(opal_shmem_ds_t));
rc = OPAL_ERROR;
goto out;
}
out:
if (-1 != fd) {
(void)close(fd);
}
return rc;
}
static int
sm_segment_attach(mca_btl_smcuda_component_t *comp_ptr)
{
int rc = OPAL_SUCCESS;
int fd = -1;
ssize_t bread = 0;
opal_shmem_ds_t *tmp_shmem_ds = calloc(1, sizeof(*tmp_shmem_ds));
if (NULL == tmp_shmem_ds) {
return OPAL_ERR_OUT_OF_RESOURCE;
}
if (-1 == (fd = open(comp_ptr->sm_rndv_file_name, O_RDONLY))) {
int err = errno;
opal_show_help("help-mpi-btl-smcuda.txt", "sys call fail", true,
"open(2)", strerror(err), err);
rc = OPAL_ERR_IN_ERRNO;
goto out;
}
if ((ssize_t)sizeof(opal_shmem_ds_t) != (bread =
read(fd, tmp_shmem_ds, sizeof(opal_shmem_ds_t)))) {
opal_output(0, "sm_segment_attach: "
"Read inconsistency -- read: %lu, but expected: %lu!\n",
(unsigned long)bread,
(unsigned long)sizeof(opal_shmem_ds_t));
rc = OPAL_ERROR;
goto out;
}
if (NULL == (comp_ptr->sm_seg =
mca_common_sm_module_attach(tmp_shmem_ds,
sizeof(mca_common_sm_seg_header_t),
opal_cache_line_size))) {
/* don't have to detach here, because module_attach cleans up after
* itself on failure. */
opal_output(0, "sm_segment_attach: "
"mca_common_sm_module_attach failure!\n");
rc = OPAL_ERROR;
}
out:
if (-1 != fd) {
(void)close(fd);
}
if (tmp_shmem_ds) {
free(tmp_shmem_ds);
}
return rc;
}
static int
smcuda_btl_first_time_init(mca_btl_smcuda_t *smcuda_btl,
int32_t my_smp_rank,
int n)
{
size_t length, length_payload;
sm_fifo_t *my_fifos;
int my_mem_node, num_mem_nodes, i, rc;
mca_common_sm_mpool_resources_t *res = NULL;
mca_btl_smcuda_component_t* m = &mca_btl_smcuda_component;
char *loc, *mynuma;
opal_process_name_t wildcard_rank;
/* Assume we don't have hwloc support and fill in dummy info */
mca_btl_smcuda_component.mem_node = my_mem_node = 0;
mca_btl_smcuda_component.num_mem_nodes = num_mem_nodes = 1;
/* see if we were given a topology signature */
wildcard_rank.jobid = OPAL_PROC_MY_NAME.jobid;
wildcard_rank.vpid = OPAL_VPID_WILDCARD;
OPAL_MODEX_RECV_VALUE_OPTIONAL(rc, OPAL_PMIX_TOPOLOGY_SIGNATURE,
&wildcard_rank, &loc, OPAL_STRING);
if (OPAL_SUCCESS == rc) {
/* the number of NUMA nodes is right at the front */
mca_btl_smcuda_component.num_mem_nodes = num_mem_nodes = strtoul(loc, NULL, 10);
free(loc);
} else {
/* If we have hwloc support, then get accurate information */
if (OPAL_SUCCESS == opal_hwloc_base_get_topology()) {
i = opal_hwloc_base_get_nbobjs_by_type(opal_hwloc_topology,
HWLOC_OBJ_NODE, 0,
OPAL_HWLOC_AVAILABLE);
/* JMS This tells me how many numa nodes are *available*,
but it's not how many are being used *by this job*.
Note that this is the value we've previously used (from
the previous carto-based implementation), but it really
should be improved to be how many NUMA nodes are being
used *in this job*. */
mca_btl_smcuda_component.num_mem_nodes = num_mem_nodes = i;
}
}
/* see if we were given our location */
OPAL_MODEX_RECV_VALUE_OPTIONAL(rc, OPAL_PMIX_LOCALITY_STRING,
&OPAL_PROC_MY_NAME, &loc, OPAL_STRING);
if (OPAL_SUCCESS == rc) {
if (NULL == loc) {
mca_btl_smcuda_component.mem_node = my_mem_node = -1;
} else {
/* get our NUMA location */
mynuma = opal_hwloc_base_get_location(loc, HWLOC_OBJ_NODE, 0);
if (NULL == mynuma ||
NULL != strchr(mynuma, ',') ||
NULL != strchr(mynuma, '-')) {
/* we either have no idea what NUMA we are on, or we
* are on multiple NUMA nodes */
mca_btl_smcuda_component.mem_node = my_mem_node = -1;
} else {
/* we are bound to a single NUMA node */
my_mem_node = strtoul(mynuma, NULL, 10);
mca_btl_smcuda_component.mem_node = my_mem_node;
}
if (NULL != mynuma) {
free(mynuma);
}
free(loc);
}
} else {
/* If we have hwloc support, then get accurate information */
if (OPAL_SUCCESS == opal_hwloc_base_get_topology() &&
num_mem_nodes > 0 && NULL != opal_process_info.cpuset) {
int numa=0, w;
unsigned n_bound=0;
hwloc_obj_t obj;
/* count the number of NUMA nodes to which we are bound */
for (w=0; w < i; w++) {
if (NULL == (obj = opal_hwloc_base_get_obj_by_type(opal_hwloc_topology,
HWLOC_OBJ_NODE, 0, w,
OPAL_HWLOC_AVAILABLE))) {
continue;
}
/* see if we intersect with that NUMA node's cpus */
if (hwloc_bitmap_intersects(obj->cpuset, opal_hwloc_my_cpuset)) {
n_bound++;
numa = w;
}
}
/* if we are located on more than one NUMA, or we didn't find
* a NUMA we are on, then not much we can do
*/
if (1 == n_bound) {
mca_btl_smcuda_component.mem_node = my_mem_node = numa;
} else {
mca_btl_smcuda_component.mem_node = my_mem_node = -1;
}
}
}
if (NULL == (res = calloc(1, sizeof(*res)))) {
return OPAL_ERR_OUT_OF_RESOURCE;
}
/* lookup shared memory pool */
mca_btl_smcuda_component.sm_mpools =
(mca_mpool_base_module_t **)calloc(num_mem_nodes,
sizeof(mca_mpool_base_module_t *));
/* Disable memory binding, because each MPI process will claim pages in the
* mpool for their local NUMA node */
res->mem_node = -1;
res->allocator = mca_btl_smcuda_component.allocator;
if (OPAL_SUCCESS != (rc = setup_mpool_base_resources(m, res))) {
free(res);
return rc;
}
/* now that res is fully populated, create the thing */
mca_btl_smcuda_component.sm_mpools[0] = common_sm_mpool_create (res);
/* Sanity check to ensure that we found it */
if (NULL == mca_btl_smcuda_component.sm_mpools[0]) {
free(res);
return OPAL_ERR_OUT_OF_RESOURCE;
}
mca_btl_smcuda_component.sm_mpool = mca_btl_smcuda_component.sm_mpools[0];
mca_btl_smcuda_component.sm_mpool_base =
mca_btl_smcuda_component.sm_mpools[0]->mpool_base(mca_btl_smcuda_component.sm_mpools[0]);
/* create a list of peers */
mca_btl_smcuda_component.sm_peers = (struct mca_btl_base_endpoint_t**)
calloc(n, sizeof(struct mca_btl_base_endpoint_t*));
if (NULL == mca_btl_smcuda_component.sm_peers) {
free(res);
return OPAL_ERR_OUT_OF_RESOURCE;
}
/* remember that node rank zero is already attached */
if (0 != my_smp_rank) {
if (OPAL_SUCCESS != (rc = sm_segment_attach(m))) {
free(res);
return rc;
}
}
#if OPAL_CUDA_SUPPORT
/* Register the entire shared memory region with the CUDA library which will
* force it to be pinned. This aproach was chosen as there is no way for this
* local process to know which parts of the memory are being utilized by a
* remote process. */
opal_output_verbose(10, opal_btl_base_framework.framework_output,
"btl:smcuda: CUDA cuMemHostRegister address=%p, size=%d",
mca_btl_smcuda_component.sm_mpool_base, (int)res->size);
mca_common_cuda_register(mca_btl_smcuda_component.sm_mpool_base, res->size, "smcuda");
/* Create a local memory pool that sends handles to the remote
* side. Note that the res argument is not really used, but
* needed to satisfy function signature. */
mca_rcache_base_resources_t rcache_res;
smcuda_btl->rcache = mca_rcache_base_module_create("gpusm", smcuda_btl, &rcache_res);
if (NULL == smcuda_btl->rcache) {
return OPAL_ERR_OUT_OF_RESOURCE;
}
#endif /* OPAL_CUDA_SUPPORT */
/* it is now safe to free the mpool resources */
free(res);
/* check to make sure number of local procs is within the
* specified limits */
if(mca_btl_smcuda_component.sm_max_procs > 0 &&
mca_btl_smcuda_component.num_smp_procs + n >
mca_btl_smcuda_component.sm_max_procs) {
return OPAL_ERROR;
}
mca_btl_smcuda_component.shm_fifo = (volatile sm_fifo_t **)mca_btl_smcuda_component.sm_seg->module_data_addr;
mca_btl_smcuda_component.shm_bases = (char**)(mca_btl_smcuda_component.shm_fifo + n);
mca_btl_smcuda_component.shm_mem_nodes = (uint16_t*)(mca_btl_smcuda_component.shm_bases + n);
/* set the base of the shared memory segment */
mca_btl_smcuda_component.shm_bases[mca_btl_smcuda_component.my_smp_rank] =
(char*)mca_btl_smcuda_component.sm_mpool_base;
mca_btl_smcuda_component.shm_mem_nodes[mca_btl_smcuda_component.my_smp_rank] =
(uint16_t)my_mem_node;
/* initialize the array of fifo's "owned" by this process */
if(NULL == (my_fifos = (sm_fifo_t*)mpool_calloc(FIFO_MAP_NUM(n), sizeof(sm_fifo_t))))
return OPAL_ERR_OUT_OF_RESOURCE;
mca_btl_smcuda_component.shm_fifo[mca_btl_smcuda_component.my_smp_rank] = my_fifos;
/* cache the pointer to the 2d fifo array. These addresses
* are valid in the current process space */
mca_btl_smcuda_component.fifo = (sm_fifo_t**)malloc(sizeof(sm_fifo_t*) * n);
if(NULL == mca_btl_smcuda_component.fifo)
return OPAL_ERR_OUT_OF_RESOURCE;
mca_btl_smcuda_component.fifo[mca_btl_smcuda_component.my_smp_rank] = my_fifos;
mca_btl_smcuda_component.mem_nodes = (uint16_t *) malloc(sizeof(uint16_t) * n);
if(NULL == mca_btl_smcuda_component.mem_nodes)
return OPAL_ERR_OUT_OF_RESOURCE;
/* initialize fragment descriptor free lists */
/* allocation will be for the fragment descriptor and payload buffer */
length = sizeof(mca_btl_smcuda_frag1_t);
length_payload =
sizeof(mca_btl_smcuda_hdr_t) + mca_btl_smcuda_component.eager_limit;
i = opal_free_list_init (&mca_btl_smcuda_component.sm_frags_eager, length,
opal_cache_line_size, OBJ_CLASS(mca_btl_smcuda_frag1_t),
length_payload, opal_cache_line_size,
mca_btl_smcuda_component.sm_free_list_num,
mca_btl_smcuda_component.sm_free_list_max,
mca_btl_smcuda_component.sm_free_list_inc,
mca_btl_smcuda_component.sm_mpool, 0, NULL, NULL, NULL);
if ( OPAL_SUCCESS != i )
return i;
length = sizeof(mca_btl_smcuda_frag2_t);
length_payload =
sizeof(mca_btl_smcuda_hdr_t) + mca_btl_smcuda_component.max_frag_size;
i = opal_free_list_init (&mca_btl_smcuda_component.sm_frags_max, length,
opal_cache_line_size, OBJ_CLASS(mca_btl_smcuda_frag2_t),
length_payload, opal_cache_line_size,
mca_btl_smcuda_component.sm_free_list_num,
mca_btl_smcuda_component.sm_free_list_max,
mca_btl_smcuda_component.sm_free_list_inc,
mca_btl_smcuda_component.sm_mpool, 0, NULL, NULL, NULL);
if ( OPAL_SUCCESS != i )
return i;
i = opal_free_list_init (&mca_btl_smcuda_component.sm_frags_user,
sizeof(mca_btl_smcuda_user_t),
opal_cache_line_size, OBJ_CLASS(mca_btl_smcuda_user_t),
sizeof(mca_btl_smcuda_hdr_t), opal_cache_line_size,
mca_btl_smcuda_component.sm_free_list_num,
mca_btl_smcuda_component.sm_free_list_max,
mca_btl_smcuda_component.sm_free_list_inc,
mca_btl_smcuda_component.sm_mpool, 0, NULL, NULL, NULL);
if ( OPAL_SUCCESS != i )
return i;
mca_btl_smcuda_component.num_outstanding_frags = 0;
mca_btl_smcuda_component.num_pending_sends = 0;
i = opal_free_list_init (&mca_btl_smcuda_component.pending_send_fl,
sizeof(btl_smcuda_pending_send_item_t), 8,
OBJ_CLASS(opal_free_list_item_t),
0, 0, 16, -1, 32, NULL, 0, NULL, NULL, NULL);
if ( OPAL_SUCCESS != i )
return i;
/* set flag indicating btl has been inited */
smcuda_btl->btl_inited = true;
return OPAL_SUCCESS;
}
static struct mca_btl_base_endpoint_t *
create_sm_endpoint(int local_proc, struct opal_proc_t *proc)
{
struct mca_btl_base_endpoint_t *ep;
#if OPAL_ENABLE_PROGRESS_THREADS == 1
char path[PATH_MAX];
#endif
ep = (struct mca_btl_base_endpoint_t*)
malloc(sizeof(struct mca_btl_base_endpoint_t));
if(NULL == ep)
return NULL;
ep->peer_smp_rank = local_proc + mca_btl_smcuda_component.num_smp_procs;
OBJ_CONSTRUCT(&ep->pending_sends, opal_list_t);
OBJ_CONSTRUCT(&ep->endpoint_lock, opal_mutex_t);
#if OPAL_ENABLE_PROGRESS_THREADS == 1
sprintf(path, "%s"OPAL_PATH_SEP"sm_fifo.%lu",
opal_process_info.job_session_dir,
(unsigned long)proc->proc_name);
ep->fifo_fd = open(path, O_WRONLY);
if(ep->fifo_fd < 0) {
opal_output(0, "mca_btl_smcuda_add_procs: open(%s) failed with errno=%d\n",
path, errno);
free(ep);
return NULL;
}
#endif
#if OPAL_CUDA_SUPPORT
/* Create a remote memory pool on the endpoint. The rgpusm component
* does not take any resources. They are filled in internally. */
ep->rcache = mca_rcache_base_module_create ("rgpusm", NULL, NULL);
#endif /* OPAL_CUDA_SUPPORT */
return ep;
}
int mca_btl_smcuda_add_procs(
struct mca_btl_base_module_t* btl,
size_t nprocs,
struct opal_proc_t **procs,
struct mca_btl_base_endpoint_t **peers,
opal_bitmap_t* reachability)
{
int return_code = OPAL_SUCCESS;
int32_t n_local_procs = 0, proc, j, my_smp_rank = -1;
const opal_proc_t* my_proc; /* pointer to caller's proc structure */
mca_btl_smcuda_t *smcuda_btl;
bool have_connected_peer = false;
char **bases;
/* for easy access to the mpool_sm_module */
mca_common_sm_mpool_module_t *sm_mpool_modp = NULL;
/* initializion */
smcuda_btl = (mca_btl_smcuda_t *)btl;
/* get pointer to my proc structure */
if(NULL == (my_proc = opal_proc_local_get()))
return OPAL_ERR_OUT_OF_RESOURCE;
/* Get unique host identifier for each process in the list,
* and idetify procs that are on this host. Add procs on this
* host to shared memory reachbility list. Also, get number
* of local procs in the procs list. */
for (proc = 0; proc < (int32_t)nprocs; proc++) {
/* check to see if this proc can be reached via shmem (i.e.,
if they're on my local host and in my job) */
if (procs[proc]->proc_name.jobid != my_proc->proc_name.jobid ||
!OPAL_PROC_ON_LOCAL_NODE(procs[proc]->proc_flags)) {
peers[proc] = NULL;
continue;
}
/* check to see if this is me */
if(my_proc == procs[proc]) {
my_smp_rank = mca_btl_smcuda_component.my_smp_rank = n_local_procs++;
continue;
}
/* we have someone to talk to */
have_connected_peer = true;
if(!(peers[proc] = create_sm_endpoint(n_local_procs, procs[proc]))) {
return_code = OPAL_ERROR;
goto CLEANUP;
}
#if OPAL_CUDA_SUPPORT
peers[proc]->proc_opal = procs[proc];
peers[proc]->ipcstate = IPC_INIT;
peers[proc]->ipctries = 0;
#endif /* OPAL_CUDA_SUPPORT */
n_local_procs++;
/* add this proc to shared memory accessibility list */
return_code = opal_bitmap_set_bit(reachability, proc);
if(OPAL_SUCCESS != return_code)
goto CLEANUP;
}
/* jump out if there's not someone we can talk to */
if (!have_connected_peer)
goto CLEANUP;
/* make sure that my_smp_rank has been defined */
if (-1 == my_smp_rank) {
return_code = OPAL_ERROR;
goto CLEANUP;
}
if (!smcuda_btl->btl_inited) {
return_code =
smcuda_btl_first_time_init(smcuda_btl, my_smp_rank,
mca_btl_smcuda_component.sm_max_procs);
if (return_code != OPAL_SUCCESS) {
goto CLEANUP;
}
}
/* set local proc's smp rank in the peers structure for
* rapid access and calculate reachability */
for(proc = 0; proc < (int32_t)nprocs; proc++) {
if(NULL == peers[proc])
continue;
mca_btl_smcuda_component.sm_peers[peers[proc]->peer_smp_rank] = peers[proc];
peers[proc]->my_smp_rank = my_smp_rank;
}
bases = mca_btl_smcuda_component.shm_bases;
sm_mpool_modp = (mca_common_sm_mpool_module_t *)mca_btl_smcuda_component.sm_mpool;
/* initialize own FIFOs */
/*
* The receiver initializes all its FIFOs. All components will
* be allocated near the receiver. Nothing will be local to
* "the sender" since there will be many senders.
*/
for(j = mca_btl_smcuda_component.num_smp_procs;
j < mca_btl_smcuda_component.num_smp_procs + FIFO_MAP_NUM(n_local_procs); j++) {
return_code = sm_fifo_init( mca_btl_smcuda_component.fifo_size,
mca_btl_smcuda_component.sm_mpool,
&mca_btl_smcuda_component.fifo[my_smp_rank][j],
mca_btl_smcuda_component.fifo_lazy_free);
if(return_code != OPAL_SUCCESS)
goto CLEANUP;
}
opal_atomic_wmb();
/* Sync with other local procs. Force the FIFO initialization to always
* happens before the readers access it.
*/
(void)opal_atomic_add_fetch_32(&mca_btl_smcuda_component.sm_seg->module_seg->seg_inited, 1);
while( n_local_procs >
mca_btl_smcuda_component.sm_seg->module_seg->seg_inited) {
opal_progress();
opal_atomic_rmb();
}
/* it is now safe to unlink the shared memory segment. only one process
* needs to do this, so just let smp rank zero take care of it. */
if (0 == my_smp_rank) {
if (OPAL_SUCCESS !=
mca_common_sm_module_unlink(mca_btl_smcuda_component.sm_seg)) {
/* it is "okay" if this fails at this point. we have gone this far,
* so just warn about the failure and continue. this is probably
* only triggered by a programming error. */
opal_output(0, "WARNING: common_sm_module_unlink failed.\n");
}
/* SKG - another abstraction violation here, but I don't want to add
* extra code in the sm mpool for further synchronization. */
/* at this point, all processes have attached to the mpool segment. so
* it is safe to unlink it here. */
if (OPAL_SUCCESS !=
mca_common_sm_module_unlink(sm_mpool_modp->sm_common_module)) {
opal_output(0, "WARNING: common_sm_module_unlink failed.\n");
}
if (-1 == unlink(mca_btl_smcuda_component.sm_mpool_rndv_file_name)) {
opal_output(0, "WARNING: %s unlink failed.\n",
mca_btl_smcuda_component.sm_mpool_rndv_file_name);
}
if (-1 == unlink(mca_btl_smcuda_component.sm_rndv_file_name)) {
opal_output(0, "WARNING: %s unlink failed.\n",
mca_btl_smcuda_component.sm_rndv_file_name);
}
}
/* free up some space used by the name buffers */
free(mca_btl_smcuda_component.sm_mpool_ctl_file_name);
free(mca_btl_smcuda_component.sm_mpool_rndv_file_name);
free(mca_btl_smcuda_component.sm_ctl_file_name);
free(mca_btl_smcuda_component.sm_rndv_file_name);
/* coordinate with other processes */
for(j = mca_btl_smcuda_component.num_smp_procs;
j < mca_btl_smcuda_component.num_smp_procs + n_local_procs; j++) {
ptrdiff_t diff;
/* spin until this element is allocated */
/* doesn't really wait for that process... FIFO might be allocated, but not initialized */
opal_atomic_rmb();
while(NULL == mca_btl_smcuda_component.shm_fifo[j]) {
opal_progress();
opal_atomic_rmb();
}
/* Calculate the difference as (my_base - their_base) */
diff = ADDR2OFFSET(bases[my_smp_rank], bases[j]);
/* store local address of remote fifos */
mca_btl_smcuda_component.fifo[j] =
(sm_fifo_t*)OFFSET2ADDR(diff, mca_btl_smcuda_component.shm_fifo[j]);
/* cache local copy of peer memory node number */
mca_btl_smcuda_component.mem_nodes[j] = mca_btl_smcuda_component.shm_mem_nodes[j];
}
/* update the local smp process count */
mca_btl_smcuda_component.num_smp_procs += n_local_procs;
/* make sure we have enough eager fragmnents for each process */
return_code = opal_free_list_resize_mt (&mca_btl_smcuda_component.sm_frags_eager,
mca_btl_smcuda_component.num_smp_procs * 2);
if (OPAL_SUCCESS != return_code)
goto CLEANUP;
CLEANUP:
return return_code;
}
int mca_btl_smcuda_del_procs(
struct mca_btl_base_module_t* btl,
size_t nprocs,
struct opal_proc_t **procs,
struct mca_btl_base_endpoint_t **peers)
{
for (size_t i = 0 ; i < nprocs ; ++i) {
if (peers[i]->rcache) {
mca_rcache_base_module_destroy (peers[i]->rcache);
peers[i]->rcache = NULL;
}
}
return OPAL_SUCCESS;
}
/**
* MCA->BTL Clean up any resources held by BTL module
* before the module is unloaded.
*
* @param btl (IN) BTL module.
*
* Prior to unloading a BTL module, the MCA framework will call
* the BTL finalize method of the module. Any resources held by
* the BTL should be released and if required the memory corresponding
* to the BTL module freed.
*
*/
int mca_btl_smcuda_finalize(struct mca_btl_base_module_t* btl)
{
return OPAL_SUCCESS;
}
/*
* Register callback function for error handling..
*/
int mca_btl_smcuda_register_error_cb(
struct mca_btl_base_module_t* btl,
mca_btl_base_module_error_cb_fn_t cbfunc)
{
mca_btl_smcuda_t *smcuda_btl = (mca_btl_smcuda_t *)btl;
smcuda_btl->error_cb = cbfunc;
return OPAL_SUCCESS;
}
/**
* Allocate a segment.
*
* @param btl (IN) BTL module
* @param size (IN) Request segment size.
*/
extern mca_btl_base_descriptor_t* mca_btl_smcuda_alloc(
struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
uint8_t order,
size_t size,
uint32_t flags)
{
mca_btl_smcuda_frag_t* frag = NULL;
if(size <= mca_btl_smcuda_component.eager_limit) {
MCA_BTL_SMCUDA_FRAG_ALLOC_EAGER(frag);
} else if (size <= mca_btl_smcuda_component.max_frag_size) {
MCA_BTL_SMCUDA_FRAG_ALLOC_MAX(frag);
}
if (OPAL_LIKELY(frag != NULL)) {
frag->segment.seg_len = size;
frag->base.des_flags = flags;
}
return (mca_btl_base_descriptor_t*)frag;
}
/**
* Return a segment allocated by this BTL.
*
* @param btl (IN) BTL module
* @param segment (IN) Allocated segment.
*/
extern int mca_btl_smcuda_free(
struct mca_btl_base_module_t* btl,
mca_btl_base_descriptor_t* des)
{
mca_btl_smcuda_frag_t* frag = (mca_btl_smcuda_frag_t*)des;
MCA_BTL_SMCUDA_FRAG_RETURN(frag);
return OPAL_SUCCESS;
}
/**
* Pack data
*
* @param btl (IN) BTL module
*/
struct mca_btl_base_descriptor_t* mca_btl_smcuda_prepare_src(
struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
struct opal_convertor_t* convertor,
uint8_t order,
size_t reserve,
size_t* size,
uint32_t flags)
{
mca_btl_smcuda_frag_t* frag;
struct iovec iov;
uint32_t iov_count = 1;
size_t max_data = *size;
int rc;
if ( reserve + max_data <= mca_btl_smcuda_component.eager_limit ) {
MCA_BTL_SMCUDA_FRAG_ALLOC_EAGER(frag);
} else {
MCA_BTL_SMCUDA_FRAG_ALLOC_MAX(frag);
}
if( OPAL_UNLIKELY(NULL == frag) ) {
return NULL;
}
if( OPAL_UNLIKELY(reserve + max_data > frag->size) ) {
max_data = frag->size - reserve;
}
iov.iov_len = max_data;
iov.iov_base =
(IOVBASE_TYPE*)(((unsigned char*)(frag->segment.seg_addr.pval)) + reserve);
rc = opal_convertor_pack(convertor, &iov, &iov_count, &max_data );
if( OPAL_UNLIKELY(rc < 0) ) {
MCA_BTL_SMCUDA_FRAG_RETURN(frag);
return NULL;
}
frag->segment.seg_len = reserve + max_data;
frag->base.des_segments = &frag->segment;
frag->base.des_segment_count = 1;
frag->base.order = MCA_BTL_NO_ORDER;
frag->base.des_flags = flags;
*size = max_data;
return &frag->base;
}
#if 0
#define MCA_BTL_SMCUDA_TOUCH_DATA_TILL_CACHELINE_BOUNDARY(sm_frag) \
do { \
char* _memory = (char*)(sm_frag)->segment.seg_addr.pval + \
(sm_frag)->segment.seg_len; \
int* _intmem; \
size_t align = (intptr_t)_memory & 0xFUL; \
switch( align & 0x3 ) { \
case 3: *_memory = 0; _memory++; \
case 2: *_memory = 0; _memory++; \
case 1: *_memory = 0; _memory++; \
} \
align >>= 2; \
_intmem = (int*)_memory; \
switch( align ) { \
case 3: *_intmem = 0; _intmem++; \
case 2: *_intmem = 0; _intmem++; \
case 1: *_intmem = 0; _intmem++; \
} \
} while(0)
#else
#define MCA_BTL_SMCUDA_TOUCH_DATA_TILL_CACHELINE_BOUNDARY(sm_frag)
#endif
#if 0
if( OPAL_LIKELY(align > 0) ) { \
align = 0xFUL - align; \
memset( _memory, 0, align ); \
} \
#endif
/**
* Initiate an inline send to the peer. If failure then return a descriptor.
*
* @param btl (IN) BTL module
* @param peer (IN) BTL peer addressing
*/
int mca_btl_smcuda_sendi( struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
struct opal_convertor_t* convertor,
void* header,
size_t header_size,
size_t payload_size,
uint8_t order,
uint32_t flags,
mca_btl_base_tag_t tag,
mca_btl_base_descriptor_t** descriptor )
{
size_t length = (header_size + payload_size);
mca_btl_smcuda_frag_t* frag;
int rc;
if ( mca_btl_smcuda_component.num_outstanding_frags * 2 > (int) mca_btl_smcuda_component.fifo_size ) {
mca_btl_smcuda_component_progress();
}
#if OPAL_CUDA_SUPPORT
/* Initiate setting up CUDA IPC support. */
if (mca_common_cuda_enabled && (IPC_INIT == endpoint->ipcstate) && mca_btl_smcuda_component.use_cuda_ipc) {
mca_btl_smcuda_send_cuda_ipc_request(btl, endpoint);
}
/* We do not want to use this path when we have CUDA IPC support */
if ((convertor->flags & CONVERTOR_CUDA) && (IPC_ACKED == endpoint->ipcstate)) {
if (NULL != descriptor) {
*descriptor = mca_btl_smcuda_alloc(btl, endpoint, order, payload_size+header_size, flags);
}
return OPAL_ERR_RESOURCE_BUSY;
}
#endif /* OPAL_CUDA_SUPPORT */
/* this check should be unnecessary... turn into an assertion? */
if( length < mca_btl_smcuda_component.eager_limit ) {
/* allocate a fragment, giving up if we can't get one */
/* note that frag==NULL is equivalent to rc returning an error code */
MCA_BTL_SMCUDA_FRAG_ALLOC_EAGER(frag);
if( OPAL_UNLIKELY(NULL == frag) ) {
*descriptor = NULL;
return OPAL_ERR_OUT_OF_RESOURCE;
}
/* fill in fragment fields */
frag->segment.seg_len = length;
frag->hdr->len = length;
assert( 0 == (flags & MCA_BTL_DES_SEND_ALWAYS_CALLBACK) );
frag->base.des_flags = flags | MCA_BTL_DES_FLAGS_BTL_OWNERSHIP; /* why do any flags matter here other than OWNERSHIP? */
frag->hdr->tag = tag;
frag->endpoint = endpoint;
/* write the match header (with MPI comm/tag/etc. info) */
memcpy( frag->segment.seg_addr.pval, header, header_size );
/* write the message data if there is any */
/*
We can add MEMCHECKER calls before and after the packing.
*/
if( payload_size ) {
size_t max_data;
struct iovec iov;
uint32_t iov_count;
/* pack the data into the supplied buffer */
iov.iov_base = (IOVBASE_TYPE*)((unsigned char*)frag->segment.seg_addr.pval + header_size);
iov.iov_len = max_data = payload_size;
iov_count = 1;
(void)opal_convertor_pack( convertor, &iov, &iov_count, &max_data);
assert(max_data == payload_size);
}
MCA_BTL_SMCUDA_TOUCH_DATA_TILL_CACHELINE_BOUNDARY(frag);
/* write the fragment pointer to the FIFO */
/*
* Note that we don't care what the FIFO-write return code is. Even if
* the return code indicates failure, the write has still "completed" from
* our point of view: it has been posted to a "pending send" queue.
*/
OPAL_THREAD_ADD_FETCH32(&mca_btl_smcuda_component.num_outstanding_frags, +1);
MCA_BTL_SMCUDA_FIFO_WRITE(endpoint, endpoint->my_smp_rank,
endpoint->peer_smp_rank, (void *) VIRTUAL2RELATIVE(frag->hdr), false, true, rc);
(void)rc; /* this is safe to ignore as the message is requeued till success */
return OPAL_SUCCESS;
}
/* presumably, this code path will never get executed */
*descriptor = mca_btl_smcuda_alloc( btl, endpoint, order,
payload_size + header_size, flags);
return OPAL_ERR_RESOURCE_BUSY;
}
/**
* Initiate a send to the peer.
*
* @param btl (IN) BTL module
* @param peer (IN) BTL peer addressing
*/
int mca_btl_smcuda_send( struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
struct mca_btl_base_descriptor_t* descriptor,
mca_btl_base_tag_t tag )
{
mca_btl_smcuda_frag_t* frag = (mca_btl_smcuda_frag_t*)descriptor;
int rc;
if ( mca_btl_smcuda_component.num_outstanding_frags * 2 > (int) mca_btl_smcuda_component.fifo_size ) {
mca_btl_smcuda_component_progress();
}
#if OPAL_CUDA_SUPPORT
/* Initiate setting up CUDA IPC support */
if (mca_common_cuda_enabled && (IPC_INIT == endpoint->ipcstate) && mca_btl_smcuda_component.use_cuda_ipc) {
mca_btl_smcuda_send_cuda_ipc_request(btl, endpoint);
}
#endif /* OPAL_CUDA_SUPPORT */
/* available header space */
frag->hdr->len = frag->segment.seg_len;
/* type of message, pt-2-pt, one-sided, etc */
frag->hdr->tag = tag;
MCA_BTL_SMCUDA_TOUCH_DATA_TILL_CACHELINE_BOUNDARY(frag);
frag->endpoint = endpoint;
/*
* post the descriptor in the queue - post with the relative
* address
*/
OPAL_THREAD_ADD_FETCH32(&mca_btl_smcuda_component.num_outstanding_frags, +1);
MCA_BTL_SMCUDA_FIFO_WRITE(endpoint, endpoint->my_smp_rank,
endpoint->peer_smp_rank, (void *) VIRTUAL2RELATIVE(frag->hdr), false, true, rc);
if( OPAL_LIKELY(0 == rc) ) {
return 1; /* the data is completely gone */
}
frag->base.des_flags |= MCA_BTL_DES_SEND_ALWAYS_CALLBACK;
/* not yet gone, but pending. Let the upper level knows that
* the callback will be triggered when the data will be sent.
*/
return 0;
}
#if OPAL_CUDA_SUPPORT
static struct mca_btl_base_registration_handle_t *mca_btl_smcuda_register_mem (
struct mca_btl_base_module_t* btl, struct mca_btl_base_endpoint_t *endpoint, void *base,
size_t size, uint32_t flags)
{
mca_btl_smcuda_t *smcuda_module = (mca_btl_smcuda_t *) btl;
mca_rcache_common_cuda_reg_t *reg;
int access_flags = flags & MCA_BTL_REG_FLAG_ACCESS_ANY;
int rcache_flags = 0;
if (MCA_BTL_REG_FLAG_CUDA_GPU_MEM & flags) {
rcache_flags |= MCA_RCACHE_FLAGS_CUDA_GPU_MEM;
}
smcuda_module->rcache->rcache_register (smcuda_module->rcache, base, size, rcache_flags,
access_flags, (mca_rcache_base_registration_t **) &reg);
if (OPAL_UNLIKELY(NULL == reg)) {
return NULL;
}
return (mca_btl_base_registration_handle_t *) &reg->data;
}
static int mca_btl_smcuda_deregister_mem (struct mca_btl_base_module_t* btl,
struct mca_btl_base_registration_handle_t *handle)
{
mca_btl_smcuda_t *smcuda_module = (mca_btl_smcuda_t *) btl;
mca_rcache_common_cuda_reg_t *reg = (mca_rcache_common_cuda_reg_t *)
((intptr_t) handle - offsetof (mca_rcache_common_cuda_reg_t, data));
smcuda_module->rcache->rcache_deregister (smcuda_module->rcache, &reg->base);
return OPAL_SUCCESS;
}
int mca_btl_smcuda_get_cuda (struct mca_btl_base_module_t *btl,
struct mca_btl_base_endpoint_t *ep, void *local_address,
uint64_t remote_address, struct mca_btl_base_registration_handle_t *local_handle,
struct mca_btl_base_registration_handle_t *remote_handle, size_t size, int flags,
int order, mca_btl_base_rdma_completion_fn_t cbfunc, void *cbcontext, void *cbdata)
{
mca_rcache_common_cuda_reg_t rget_reg;
mca_rcache_common_cuda_reg_t *reg_ptr = &rget_reg;
int rc, done;
void *remote_memory_address;
size_t offset;
mca_btl_smcuda_frag_t *frag;
/* NTH: copied from old prepare_dst function */
MCA_BTL_SMCUDA_FRAG_ALLOC_USER(frag);
if(OPAL_UNLIKELY(NULL == frag)) {
return OPAL_ERR_OUT_OF_RESOURCE;
}
/* shove all the info needed for completion callbacks into the fragment */
frag->segment.seg_len = size;
frag->segment.seg_addr.pval = local_address;
frag->base.des_segments = &frag->segment;
frag->base.des_segment_count = 1;
frag->base.des_flags = flags;
frag->base.des_cbfunc = (mca_btl_base_completion_fn_t) cbfunc;
frag->base.des_cbdata = cbdata;
frag->base.des_context = cbcontext;
frag->local_handle = local_handle;
/* Set to 0 for debugging since it is a list item but I am not
* intializing it properly and it is annoying to see all the
* garbage in the debugger. */
memset(&rget_reg, 0, sizeof(rget_reg));
memcpy(&rget_reg.data.memHandle, remote_handle->reg_data.memHandle,
sizeof(remote_handle->reg_data.memHandle));
#if !OPAL_CUDA_SYNC_MEMOPS
/* Only need the remote event handle when syncing with remote events */
memcpy(&rget_reg.data.evtHandle, remote_handle->reg_data.evtHandle,
sizeof(remote_handle->reg_data.evtHandle));
#endif
/* Open the memory handle to the remote memory. If it is cached, then
* we just retrieve it from cache and avoid a call to open the handle. That
* is taken care of in the memory pool. Note that we are searching for the
* memory based on the base address and size of the memory handle, not the
* remote memory which may lie somewhere in the middle. This is taken care of
* a few lines down. Note that we hand in the peer rank just for debugging
* support. */
rc = ep->rcache->rcache_register (ep->rcache, remote_handle->reg_data.memh_seg_addr.pval,
remote_handle->reg_data.memh_seg_len, ep->peer_smp_rank,
MCA_RCACHE_ACCESS_LOCAL_WRITE,
(mca_rcache_base_registration_t **)&reg_ptr);
if (OPAL_SUCCESS != rc) {
opal_output(0, "Failed to register remote memory, rc=%d", rc);
return rc;
}
frag->registration = (mca_rcache_base_registration_t *)reg_ptr;
frag->endpoint = ep;
/* The registration has given us back the memory block that this
* address lives in. However, the base address of the block may
* not equal the address that was used to retrieve the block.
* Therefore, compute the offset and add it to the address of the
* memory handle. */
offset = (size_t) ((intptr_t) remote_address - (intptr_t) reg_ptr->base.base);
remote_memory_address = (unsigned char *)reg_ptr->base.alloc_base + offset;
if (0 != offset) {
opal_output(-1, "OFFSET=%d", (int)offset);
}
/* The remote side posted an IPC event to make sure we do not start our
* copy until IPC event completes. This is to ensure that the data being sent
* is available in the sender's GPU buffer. Therefore, do a stream synchronize
* on the IPC event that we received. Note that we pull it from
* rget_reg, not reg_ptr, as we do not cache the event. */
mca_common_wait_stream_synchronize(&rget_reg);
rc = mca_common_cuda_memcpy(local_address, remote_memory_address, size,
"mca_btl_smcuda_get", (mca_btl_base_descriptor_t *)frag,
&done);
if (OPAL_SUCCESS != rc) {
/* Out of resources can be handled by upper layers. */
if (OPAL_ERR_OUT_OF_RESOURCE != rc) {
opal_output(0, "Failed to cuMemcpy GPU memory, rc=%d", rc);
}
return rc;
}
if (OPAL_UNLIKELY(1 == done)) {
cbfunc (btl, ep, local_address, local_handle, cbcontext, cbdata, OPAL_SUCCESS);
mca_btl_smcuda_free(btl, (mca_btl_base_descriptor_t *)frag);
}
return OPAL_SUCCESS;
}
/**
* Send a CUDA IPC request message to the peer. This indicates that this rank
* is interested in establishing CUDA IPC support between this rank and GPU
* and the remote rank and GPU. This is called when we do a send of some
* type.
*
* @param btl (IN) BTL module
* @param peer (IN) BTL peer addressing
*/
#define MAXTRIES 5
static void mca_btl_smcuda_send_cuda_ipc_request(struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint)
{
mca_btl_smcuda_frag_t* frag;
int rc, mydevnum, res;
ctrlhdr_t ctrlhdr;
/* We need to grab the lock when changing the state from IPC_INIT as multiple
* threads could be doing sends. */
OPAL_THREAD_LOCK(&endpoint->endpoint_lock);
if (endpoint->ipcstate != IPC_INIT) {
OPAL_THREAD_UNLOCK(&endpoint->endpoint_lock);
return;
} else {
endpoint->ipctries++;
if (endpoint->ipctries > MAXTRIES) {
endpoint->ipcstate = IPC_BAD;
OPAL_THREAD_UNLOCK(&endpoint->endpoint_lock);
return;
}
/* All is good. Set up state and continue. */
endpoint->ipcstate = IPC_SENT;
OPAL_THREAD_UNLOCK(&endpoint->endpoint_lock);
}
if ( mca_btl_smcuda_component.num_outstanding_frags * 2 > (int) mca_btl_smcuda_component.fifo_size ) {
mca_btl_smcuda_component_progress();
}
if (0 != (res = mca_common_cuda_get_device(&mydevnum))) {
opal_output(0, "Cannot determine device. IPC cannot be set.");
endpoint->ipcstate = IPC_BAD;
return;
}
/* allocate a fragment, giving up if we can't get one */
MCA_BTL_SMCUDA_FRAG_ALLOC_EAGER(frag);
if( OPAL_UNLIKELY(NULL == frag) ) {
endpoint->ipcstate = IPC_BAD;
return;
}
/* Fill in fragment fields. */
frag->hdr->tag = MCA_BTL_TAG_SMCUDA;
frag->base.des_flags = MCA_BTL_DES_FLAGS_BTL_OWNERSHIP;
frag->endpoint = endpoint;
ctrlhdr.ctag = IPC_REQ;
ctrlhdr.cudev = mydevnum;
memcpy(frag->segment.seg_addr.pval, &ctrlhdr, sizeof(struct ctrlhdr_st));
MCA_BTL_SMCUDA_TOUCH_DATA_TILL_CACHELINE_BOUNDARY(frag);
/* write the fragment pointer to the FIFO */
/*
* Note that we don't care what the FIFO-write return code is. Even if
* the return code indicates failure, the write has still "completed" from
* our point of view: it has been posted to a "pending send" queue.
*/
OPAL_THREAD_ADD_FETCH32(&mca_btl_smcuda_component.num_outstanding_frags, +1);
opal_output_verbose(10, mca_btl_smcuda_component.cuda_ipc_output,
"Sending CUDA IPC REQ (try=%d): myrank=%d, mydev=%d, peerrank=%d",
endpoint->ipctries,
mca_btl_smcuda_component.my_smp_rank,
mydevnum, endpoint->peer_smp_rank);
MCA_BTL_SMCUDA_FIFO_WRITE(endpoint, endpoint->my_smp_rank,
endpoint->peer_smp_rank, (void *) VIRTUAL2RELATIVE(frag->hdr), false, true, rc);
return;
}
#endif /* OPAL_CUDA_SUPPORT */
/**
*
*/
void mca_btl_smcuda_dump(struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
int verbose)
{
mca_btl_smcuda_frag_t* frag;
mca_btl_base_err("BTL SM %p endpoint %p [smp_rank %d] [peer_rank %d]\n",
(void*) btl, (void*) endpoint,
endpoint->my_smp_rank, endpoint->peer_smp_rank);
if( NULL != endpoint ) {
OPAL_LIST_FOREACH(frag, &endpoint->pending_sends, mca_btl_smcuda_frag_t) {
mca_btl_base_err(" | frag %p size %lu (hdr frag %p len %lu rank %d tag %d)\n",
(void*) frag, frag->size, (void*) frag->hdr->frag,
frag->hdr->len, frag->hdr->my_smp_rank,
frag->hdr->tag);
}
}
}
#if OPAL_ENABLE_FT_CR == 0
int mca_btl_smcuda_ft_event(int state) {
return OPAL_SUCCESS;
}
#else
int mca_btl_smcuda_ft_event(int state) {
/* Notify mpool */
if( NULL != mca_btl_smcuda_component.sm_mpool &&
NULL != mca_btl_smcuda_component.sm_mpool->mpool_ft_event) {
mca_btl_smcuda_component.sm_mpool->mpool_ft_event(state);
}
if(OPAL_CRS_CHECKPOINT == state) {
if( NULL != mca_btl_smcuda_component.sm_seg ) {
/* On restart we need the old file names to exist (not necessarily
* contain content) so the CRS component does not fail when searching
* for these old file handles. The restart procedure will make sure
* these files get cleaned up appropriately.
*/
/* Disabled to get FT code compiled again
* TODO: FIXIT soon
orte_sstore.set_attr(orte_sstore_handle_current,
SSTORE_METADATA_LOCAL_TOUCH,
mca_btl_smcuda_component.sm_seg->shmem_ds.seg_name);
*/
}
}
else if(OPAL_CRS_CONTINUE == state) {
if (opal_cr_continue_like_restart) {
if( NULL != mca_btl_smcuda_component.sm_seg ) {
/* Add shared memory file */
opal_crs_base_cleanup_append(mca_btl_smcuda_component.sm_seg->shmem_ds.seg_name, false);
}
/* Clear this so we force the module to re-init the sm files */
mca_btl_smcuda_component.sm_mpool = NULL;
}
}
else if(OPAL_CRS_RESTART == state ||
OPAL_CRS_RESTART_PRE == state) {
if( NULL != mca_btl_smcuda_component.sm_seg ) {
/* Add shared memory file */
opal_crs_base_cleanup_append(mca_btl_smcuda_component.sm_seg->shmem_ds.seg_name, false);
}
/* Clear this so we force the module to re-init the sm files */
mca_btl_smcuda_component.sm_mpool = NULL;
}
else if(OPAL_CRS_TERM == state ) {
;
}
else {
;
}
return OPAL_SUCCESS;
}
#endif /* OPAL_ENABLE_FT_CR */