1
1
openmpi/ompi/mca/btl/sm/btl_sm.c
Li-Ta Lo ec8a859a44 fixed typo
This commit was SVN r14207.
2007-04-03 17:21:54 +00:00

826 строки
29 KiB
C

/*
* Copyright (c) 2004-2007 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2006 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "ompi_config.h"
#include <string.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
#include "opal/threads/mutex.h"
#include "ompi/datatype/convertor.h"
#include "opal/sys/atomic.h"
#include "opal/util/output.h"
#include "opal/util/if.h"
#include "orte/util/proc_info.h"
#include "opal/util/printf.h"
#include "orte/util/sys_info.h"
#include "ompi/class/ompi_fifo.h"
#include "ompi/class/ompi_free_list.h"
#include "ompi/mca/pml/pml.h"
#include "ompi/mca/btl/btl.h"
#include "ompi/mca/mpool/base/base.h"
#include "ompi/mca/common/sm/common_sm_mmap.h"
#include "btl_sm.h"
#include "btl_sm_endpoint.h"
#include "btl_sm_frag.h"
#include "btl_sm_fifo.h"
#include "ompi/proc/proc.h"
/**
* @file
*
* Note that there are effectively two versions of the btl sm module
* -- one that assumes that the base address of the shared memory
* segment is the same between pairs of processes (i.e., mmap()
* returned the same virtual address for the same segment in both
* processes), and one that assumes that the base addresses are
* different.
*
* In the former, no translation is necessary -- all pointers can be
* stored directly as-is and used in both processes.
*
* In the latter, we calculate the difference between the base virtual
* address of the two process' shared memory segments and cache it.
* This difference is used to access memory and pointers written by
* the other process.
*
* Specifically, a good portion of this btl is implemented in the
* ompi_fifo_t and ompi_circular_buffer_t classes. These classes
* *always* store absolute virtual addresses in their data structures.
* The virtual addresses are always meaningful in the *sender's*
* process space. If the base address is the same in both processes,
* then we get the happy side effect that the virtual addresses are
* also valid in the receiver's process space, and therefore no
* address translation needs to be done when the reader accesses the
* data.
*
* However, in the case where the base addresses are different, the
* receiver must translate every pointer address in the ompi_fifo_t
* and ompi_circular_buffer_t data structures (even when writing back
* to those data structures, such as updating a head or tail pointer).
*
* In short, we use a "receiver makes right" scheme, and in some
* cases, the receiver doesn't have to do anything.
*/
mca_btl_sm_t mca_btl_sm = {
{
&mca_btl_sm_component.super,
0, /* btl_eager_limit */
0, /* btl_min_send_size */
0, /* btl_max_send_size */
0, /* btl_min_rdma_size */
0, /* btl_max_rdma_size */
0, /* btl_exclusivity */
0, /* btl_latency */
0, /* btl_bandwidth */
0, /* btl flags */
mca_btl_sm_add_procs,
mca_btl_sm_del_procs,
mca_btl_sm_register,
mca_btl_sm_finalize,
mca_btl_sm_alloc,
mca_btl_sm_free,
mca_btl_sm_prepare_src,
NULL,
mca_btl_sm_send,
NULL, /* put */
NULL, /* get */
mca_btl_base_dump,
NULL, /* mpool */
mca_btl_sm_register_error_cb, /* register error */
mca_btl_sm_ft_event
}
};
/* track information needed to synchronise a Shared Memory BTL module */
mca_btl_sm_module_resource_t mca_btl_sm_module_resource;
/*
* calculate offset of an address from the beginning of a shared memory segment
*/
#define ADDR2OFFSET(ADDR, BASE) ((char*)(ADDR) - (char*)(BASE))
/*
* calculate an absolute address in a local address space given an offset and
* a base address of a shared memory segment
*/
#define OFFSET2ADDR(OFFSET, BASE) ((ptrdiff_t)(OFFSET) + (char*)(BASE))
int mca_btl_sm_add_procs(
struct mca_btl_base_module_t* btl,
size_t nprocs,
struct ompi_proc_t **procs,
struct mca_btl_base_endpoint_t **peers,
ompi_bitmap_t* reachability)
{
int return_code = OMPI_SUCCESS, cnt, len;
size_t size, length;
int32_t n_local_procs, proc, j, n_to_allocate, i;
ompi_proc_t* my_proc; /* pointer to caller's proc structure */
mca_btl_sm_t *btl_sm;
ompi_fifo_t *my_fifos;
ompi_fifo_t * volatile *fifo_tmp;
ptrdiff_t diff;
volatile char **tmp_ptr;
volatile int *tmp_int_ptr;
bool have_connected_peer = false;
/* initializion */
btl_sm=(mca_btl_sm_t *)btl;
/* allocate array to hold setup shared memory from all
* other procs */
mca_btl_sm_component.sm_proc_connect=(int *)malloc(nprocs*sizeof(int));
if( NULL == mca_btl_sm_component.sm_proc_connect ){
return OMPI_ERR_OUT_OF_RESOURCE;
}
/* get pointer to my proc structure */
my_proc=ompi_proc_local();
if( NULL == my_proc ) {
return_code=OMPI_ERR_OUT_OF_RESOURCE;
goto CLEANUP;
}
/* Get unique host identifier for each process in the list,
* and idetify procs that are on this host. Add procs on this
* host to shared memory reachbility list. Also, get number
* of local procs in the prcs list. */
n_local_procs=0;
for( proc=0 ; proc < (int32_t)nprocs; proc++ ) {
#if OMPI_ENABLE_PROGRESS_THREADS == 1
char path[PATH_MAX];
#endif
struct mca_btl_base_endpoint_t *peer;
/* check to see if this proc can be reached via shmem (i.e.,
if they're on my local host and in my job) */
if (procs[proc]->proc_name.jobid != my_proc->proc_name.jobid ||
0 == (procs[proc]->proc_flags & OMPI_PROC_FLAG_LOCAL)) {
peers[proc] = NULL;
mca_btl_sm_component.sm_proc_connect[proc] = 0;
continue;
}
/* If we got here, the proc is reachable via sm. So
initialize the peers information */
/* check to see if this is me */
if( my_proc == procs[proc] ) {
mca_btl_sm_component.my_smp_rank = n_local_procs;
} else {
/* we have someone to talk to */
have_connected_peer = true;
}
peer = peers[proc] = (struct mca_btl_base_endpoint_t*)malloc(sizeof(struct mca_btl_base_endpoint_t));
if( NULL == peer ){
return_code=OMPI_ERR_OUT_OF_RESOURCE;
goto CLEANUP;
}
peer->peer_smp_rank = n_local_procs +
mca_btl_sm_component.num_smp_procs;
#if OMPI_ENABLE_PROGRESS_THREADS == 1
sprintf(path, "%s"OPAL_PATH_SEP"sm_fifo.%lu", orte_process_info.job_session_dir,
(unsigned long)procs[proc]->proc_name.vpid);
peer->fifo_fd = open(path, O_WRONLY);
if(peer->fifo_fd < 0) {
opal_output(0, "mca_btl_sm_add_procs: open(%s) failed with errno=%d\n", path, errno);
goto CLEANUP;
}
#endif
n_local_procs++;
mca_btl_sm_component.sm_proc_connect[proc]=SM_CONNECTED;
}
/* jump out if there's not someone we can talk to */
if (!have_connected_peer) {
return_code = OMPI_SUCCESS;
goto CLEANUP;
}
/* lookup shared memory pool */
if(NULL == mca_btl_sm_component.sm_mpool) {
mca_btl_sm_component.sm_mpool =
mca_mpool_base_module_lookup(mca_btl_sm_component.sm_mpool_name);
if (NULL == mca_btl_sm_component.sm_mpool) {
mca_btl_sm_component.sm_mpool =
mca_mpool_base_module_create(mca_btl_sm_component.sm_mpool_name,btl,NULL);
}
/* Sanity check to ensure that we found it */
if (NULL == mca_btl_sm_component.sm_mpool) {
return_code = OMPI_ERR_OUT_OF_RESOURCE;
goto CLEANUP;
}
mca_btl_sm_component.sm_mpool_base =
mca_btl_sm_component.sm_mpool->mpool_base((mca_mpool_base_module_t*)mca_btl_sm_component.sm_mpool_base);
}
/* make sure that my_smp_rank has been defined */
if( -1 == mca_btl_sm_component.my_smp_rank ) {
return_code=OMPI_ERROR;
goto CLEANUP;
}
/* see if need to allocate space for extra procs */
if( 0 > mca_btl_sm_component.sm_max_procs ) {
/* no limit */
if( 0 <= mca_btl_sm_component.sm_extra_procs ) {
/* limit */
mca_btl_sm_component.sm_max_procs=n_local_procs+
mca_btl_sm_component.sm_extra_procs;
} else {
/* no limit */
mca_btl_sm_component.sm_max_procs=2*n_local_procs;
}
}
n_to_allocate=mca_btl_sm_component.sm_max_procs;
/* make sure n_to_allocate is greater than 0 */
if ( !mca_btl_sm.btl_inited ) {
/* set the shared memory offset */
mca_btl_sm_component.sm_offset=(ptrdiff_t*)
malloc(n_to_allocate*sizeof(ptrdiff_t));
if(NULL == mca_btl_sm_component.sm_offset ) {
return_code=OMPI_ERR_OUT_OF_RESOURCE;
goto CLEANUP;
}
/* create a list of peers */
mca_btl_sm_component.sm_peers=(struct mca_btl_base_endpoint_t**)
malloc(n_to_allocate*sizeof(struct mca_btl_base_endpoint_t*));
if(NULL == mca_btl_sm_component.sm_peers ) {
return_code=OMPI_ERR_OUT_OF_RESOURCE;
goto CLEANUP;
}
}
/* set local proc's smp rank in the peers structure for
* rapid access */
for( proc=0 ; proc < (int32_t)nprocs; proc++ ) {
struct mca_btl_base_endpoint_t* peer = peers[proc];
if(NULL != peer) {
mca_btl_sm_component.sm_peers[peer->peer_smp_rank] = peer;
peer->my_smp_rank=mca_btl_sm_component.my_smp_rank;
}
}
/* Allocate Shared Memory BTL process coordination
* data structure. This will reside in shared memory */
/*
* Create backing file - only first time through
*/
if ( !mca_btl_sm.btl_inited ) {
/* set file name */
len=asprintf(&(mca_btl_sm_component.sm_resource_ctl_file),
"%s"OPAL_PATH_SEP"shared_mem_btl_module.%s",orte_process_info.job_session_dir,
orte_system_info.nodename);
if( 0 > len ) {
goto CLEANUP;
}
/* Pass in a data segment alignment of 0 to get no data
segment (only the shared control structure */
size = sizeof(mca_btl_sm_module_resource_t);
if(NULL==(mca_btl_sm_component.mmap_file=mca_common_sm_mmap_init(size,
mca_btl_sm_component.sm_resource_ctl_file,
sizeof(mca_btl_sm_module_resource_t), 0)))
{
opal_output(0, "mca_btl_sm_add_procs: unable to create shared memory BTL coordinating strucure :: size %lu \n",
(unsigned long)size);
return_code=OMPI_ERROR;
goto CLEANUP;
}
/* set the pointer to the shared memory control structure */
mca_btl_sm_component.sm_ctl_header=(mca_btl_sm_module_resource_t *)
mca_btl_sm_component.mmap_file->map_seg;
/* Allocate a fixed size pointer array for the 2-D Shared memory queues.
* Excess slots will be allocated for future growth. One could
* make this array growable, but then one would need to uses mutexes
* for any access to these queues to ensure data consistancy when
* the array is grown */
if(0 == mca_btl_sm_component.my_smp_rank ) {
/* allocate ompi_fifo_t strucutes for each fifo of the queue
* pairs - one per pair of local processes */
/* check to make sure number of local procs is within the
* specified limits */
if( ( 0 < mca_btl_sm_component.sm_max_procs ) &&
( mca_btl_sm_component.num_smp_procs + n_local_procs >
mca_btl_sm_component.sm_max_procs) ) {
return_code=OMPI_ERROR;
goto CLEANUP;
}
/* allocate array of ompi_fifo_t* elements -
* offset relative to base segement is stored, so that
* this can be used by other procs */
mca_btl_sm_component.sm_ctl_header->fifo= (volatile ompi_fifo_t**)
mca_btl_sm_component.sm_mpool->mpool_alloc
(mca_btl_sm_component.sm_mpool, n_to_allocate*sizeof(ompi_fifo_t *),
CACHE_LINE_SIZE, 0, NULL);
if ( NULL == mca_btl_sm_component.sm_ctl_header->fifo ) {
return_code=OMPI_ERR_OUT_OF_RESOURCE;
goto CLEANUP;
}
/* allocate and initialize the array to hold the virtual address
* of the shared memory base */
mca_btl_sm_component.sm_ctl_header->segment_header.
base_shared_mem_segment = ( volatile char **)
mca_btl_sm_component.sm_mpool->mpool_alloc
(mca_btl_sm_component.sm_mpool, n_to_allocate*sizeof(char *), CACHE_LINE_SIZE, 0, NULL);
if ( NULL == mca_btl_sm_component.sm_ctl_header->segment_header.
base_shared_mem_segment ) {
return_code=OMPI_ERR_OUT_OF_RESOURCE;
goto CLEANUP;
}
/* allocate and initialize the array of flags indicating
* when the virtual address of the shared memory address
* has been set */
mca_btl_sm_component.sm_ctl_header->segment_header.
base_shared_mem_flags = ( int *)
mca_btl_sm_component.sm_mpool->mpool_alloc
(mca_btl_sm_component.sm_mpool, n_to_allocate*sizeof(int), CACHE_LINE_SIZE, 0, NULL);
if ( NULL == mca_btl_sm_component.sm_ctl_header->segment_header.
base_shared_mem_flags ) {
return_code=OMPI_ERR_OUT_OF_RESOURCE;
goto CLEANUP;
}
for(i=0 ; i < n_to_allocate ; i++ ) {
mca_btl_sm_component.sm_ctl_header->segment_header.
base_shared_mem_flags[i]=0;
mca_btl_sm_component.sm_ctl_header->fifo[i]=NULL;
mca_btl_sm_component.sm_ctl_header->segment_header.
base_shared_mem_segment[i]=NULL;
}
/* set the addresses to be a relative, so that
* they can be used by other procs */
mca_btl_sm_component.sm_ctl_header->fifo = (volatile ompi_fifo_t **)
ADDR2OFFSET(mca_btl_sm_component.sm_ctl_header->fifo,
mca_btl_sm_component.sm_mpool_base);
mca_btl_sm_component.sm_ctl_header->segment_header.
base_shared_mem_segment = (volatile char **)
ADDR2OFFSET(mca_btl_sm_component.sm_ctl_header->
segment_header.base_shared_mem_segment,
mca_btl_sm_component.sm_mpool_base);
mca_btl_sm_component.sm_ctl_header->segment_header.
base_shared_mem_flags = (volatile int *)
ADDR2OFFSET(mca_btl_sm_component.sm_ctl_header->segment_header.
base_shared_mem_flags,
mca_btl_sm_component.sm_mpool_base);
/* allow other procs to use this shared memory map */
mca_btl_sm_component.mmap_file->map_seg->seg_inited=true;
/* memory barrier to ensure this flag is set before other
* flags are set */
opal_atomic_mb();
}
/* Note: Need to make sure that proc 0 initializes control
* structures before any of the other procs can progress */
if( 0 != mca_btl_sm_component.my_smp_rank )
{
/* spin unitl local proc 0 initializes the segment */
while(!mca_btl_sm_component.mmap_file->map_seg->seg_inited) {
opal_atomic_rmb();
opal_progress();
}
}
/* set the base of the shared memory segment, and flag
* indicating that it is set */
tmp_ptr=(volatile char **)
OFFSET2ADDR(mca_btl_sm_component.sm_ctl_header->segment_header.
base_shared_mem_segment,
mca_btl_sm_component.sm_mpool_base);
tmp_ptr[mca_btl_sm_component.my_smp_rank] =
(char*)mca_btl_sm_component.sm_mpool_base;
/* memory barrier to ensure this flag is set before other
* flags are set */
opal_atomic_wmb();
/* Set my flag to 1 (convert from relative address first) */
tmp_int_ptr=(volatile int *)
OFFSET2ADDR(mca_btl_sm_component.sm_ctl_header->segment_header.
base_shared_mem_flags, mca_btl_sm_component.sm_mpool_base);
tmp_int_ptr[mca_btl_sm_component.my_smp_rank]=1;
opal_atomic_wmb();
/*
* initialize the array of fifo's "owned" by this process
* The virtual addresses are valid only in the sender's
* address space - unless the base of the shared memory
* segment is mapped at the same location in the reader's
* virtual address space.
*/
my_fifos=( ompi_fifo_t *)
mca_btl_sm_component.sm_mpool->mpool_alloc
(mca_btl_sm_component.sm_mpool, n_to_allocate*sizeof(ompi_fifo_t), CACHE_LINE_SIZE, 0, NULL);
if ( NULL == my_fifos ) {
return_code=OMPI_ERR_OUT_OF_RESOURCE;
goto CLEANUP;
}
for( j=0 ; j < n_to_allocate ; j++ ) {
char *buf;
my_fifos[j].head = (ompi_cb_fifo_wrapper_t*)OMPI_CB_FREE;
my_fifos[j].tail = (ompi_cb_fifo_wrapper_t*)OMPI_CB_FREE;
if(opal_using_threads()) {
/* allocate head and tail locks on different cache lines */
buf = (char*)mca_btl_sm_component.sm_mpool->mpool_alloc(
mca_btl_sm_component.sm_mpool,
CACHE_LINE_SIZE*2, CACHE_LINE_SIZE, 0, NULL);
if(NULL == buf) {
return_code = OMPI_ERR_OUT_OF_RESOURCE;
goto CLEANUP;
}
my_fifos[j].head_lock = (opal_atomic_lock_t*)buf;
my_fifos[j].tail_lock = (opal_atomic_lock_t*)(buf +
CACHE_LINE_SIZE);
opal_atomic_init(my_fifos[j].head_lock, OPAL_ATOMIC_UNLOCKED);
opal_atomic_init(my_fifos[j].tail_lock, OPAL_ATOMIC_UNLOCKED);
} else {
my_fifos[j].head_lock = NULL;
my_fifos[j].tail_lock = NULL;
}
}
fifo_tmp = (ompi_fifo_t * volatile *)
OFFSET2ADDR(mca_btl_sm_component.sm_ctl_header->fifo,
mca_btl_sm_component.sm_mpool_base);
fifo_tmp[mca_btl_sm_component.my_smp_rank]=my_fifos;
opal_atomic_wmb();
/* cache the pointer to the 2d fifo array. These addresses
* are valid in the current process space */
mca_btl_sm_component.fifo=(ompi_fifo_t **)
malloc(sizeof(ompi_fifo_t *)*n_to_allocate);
if( NULL == mca_btl_sm_component.fifo ) {
return_code=OMPI_ERROR;
goto CLEANUP;
}
mca_btl_sm_component.fifo[mca_btl_sm_component.my_smp_rank]=my_fifos;
}
fifo_tmp = (ompi_fifo_t * volatile *)
OFFSET2ADDR(mca_btl_sm_component.sm_ctl_header->fifo,
mca_btl_sm_component.sm_mpool_base);
tmp_ptr=(volatile char **)
OFFSET2ADDR(mca_btl_sm_component.sm_ctl_header->segment_header.
base_shared_mem_segment,
mca_btl_sm_component.sm_mpool_base);
for( j=mca_btl_sm_component.num_smp_procs ; j <
mca_btl_sm_component.num_smp_procs+n_local_procs ; j++ ) {
/* spin until this element is allocated */
while ( NULL == fifo_tmp[j] ) {
opal_atomic_rmb();
opal_progress();
}
/* Calculate the difference as (my_base - their_base) */
diff = tmp_ptr[mca_btl_sm_component.my_smp_rank] - tmp_ptr[j];
mca_btl_sm_component.fifo[j] = (ompi_fifo_t*)((char*)fifo_tmp[j]+diff);
mca_btl_sm_component.sm_offset[j] = diff;
}
for( j=mca_btl_sm_component.num_smp_procs ; j <
mca_btl_sm_component.num_smp_procs+n_local_procs ; j++ ) {
if(j == mca_btl_sm_component.my_smp_rank)
continue;
return_code = ompi_fifo_init((int)mca_btl_sm_component.size_of_cb_queue,
(int)mca_btl_sm_component.cb_lazy_free_freq,
(int)mca_btl_sm_component.cb_max_num,
0,0,0,
&mca_btl_sm_component.fifo[j][mca_btl_sm_component.my_smp_rank],
mca_btl_sm_component.sm_offset[j],
mca_btl_sm_component.sm_mpool);
if(return_code != OMPI_SUCCESS)
goto CLEANUP;
}
/* initialize some of the free-lists */
if( !mca_btl_sm.btl_inited ) {
/* some initialization happens only the first time this routine
* is called, i.e. when btl_inited is false */
/* initialize fragment descriptor free lists */
/* allocation will be for the fragment descriptor and payload buffer */
length = sizeof(mca_btl_sm_frag1_t) + sizeof(mca_btl_sm_hdr_t) +
mca_btl_sm_component.eager_limit;
ompi_free_list_init(&mca_btl_sm_component.sm_frags1, length,
OBJ_CLASS(mca_btl_sm_frag1_t),
mca_btl_sm_component.sm_free_list_num,
mca_btl_sm_component.sm_free_list_max,
mca_btl_sm_component.sm_free_list_inc,
mca_btl_sm_component.sm_mpool); /* use shared-memory pool */
length = sizeof(mca_btl_sm_frag2_t) + sizeof(mca_btl_sm_hdr_t) +
mca_btl_sm_component.max_frag_size;
ompi_free_list_init(&mca_btl_sm_component.sm_frags2, length,
OBJ_CLASS(mca_btl_sm_frag2_t),
mca_btl_sm_component.sm_free_list_num,
mca_btl_sm_component.sm_free_list_max,
mca_btl_sm_component.sm_free_list_inc,
mca_btl_sm_component.sm_mpool); /* use shared-memory pool */
ompi_free_list_init(&mca_btl_sm_component.sm_frags,
sizeof(mca_btl_sm_frag_t),
OBJ_CLASS(mca_btl_sm_frag_t),
mca_btl_sm_component.sm_free_list_num,
-1,
mca_btl_sm_component.sm_free_list_inc,
NULL);
/* set up mca_btl_sm_component.list_smp_procs */
mca_btl_sm_component.list_smp_procs=(int *)
malloc(mca_btl_sm_component.sm_max_procs*sizeof(int));
if( NULL == mca_btl_sm_component.list_smp_procs ){
return_code=OMPI_ERR_OUT_OF_RESOURCE;
goto CLEANUP;
}
/* set flag indicating btl has been inited */
btl_sm->btl_inited=true;
}
/* set connectivity */
cnt = 0;
i = mca_btl_sm_component.num_smp_procs;
for(proc = 0 ; proc < (int32_t)nprocs ; proc++ ) {
struct mca_btl_base_endpoint_t* peer = peers[proc];
if(peer == NULL)
continue;
if( SM_CONNECTED == mca_btl_sm_component.sm_proc_connect[proc] ) {
/* don't count if same process */
if( (mca_btl_sm_component.num_smp_procs+cnt ) ==
mca_btl_sm_component.my_smp_rank) {
cnt++;
continue;
}
mca_btl_sm_component.list_smp_procs[i++] = cnt++;
/* add this proc to shared memory accessibility list */
return_code=ompi_bitmap_set_bit(reachability,proc);
if( OMPI_SUCCESS != return_code ){
goto CLEANUP;
}
}
}
/* make sure we have enough eager fragmnents for each process */
return_code = ompi_free_list_resize(&mca_btl_sm_component.sm_frags1,
(mca_btl_sm_component.num_smp_procs + n_local_procs) * 2);
if (OMPI_SUCCESS != return_code) {
goto CLEANUP;
}
/* update the local smp process count */
mca_btl_sm_component.num_smp_procs+=n_local_procs;
CLEANUP:
/* free local memory */
if(mca_btl_sm_component.sm_proc_connect){
free(mca_btl_sm_component.sm_proc_connect);
mca_btl_sm_component.sm_proc_connect=NULL;
}
return return_code;
}
int mca_btl_sm_del_procs(
struct mca_btl_base_module_t* btl,
size_t nprocs,
struct ompi_proc_t **procs,
struct mca_btl_base_endpoint_t **peers)
{
return OMPI_SUCCESS;
}
/**
* MCA->BTL Clean up any resources held by BTL module
* before the module is unloaded.
*
* @param btl (IN) BTL module.
*
* Prior to unloading a BTL module, the MCA framework will call
* the BTL finalize method of the module. Any resources held by
* the BTL should be released and if required the memory corresponding
* to the BTL module freed.
*
*/
int mca_btl_sm_finalize(struct mca_btl_base_module_t* btl)
{
return OMPI_SUCCESS;
}
/**
* Register a callback function that is called on receipt
* of a fragment.
*
* @param btl (IN) BTL module
* @return Status indicating if cleanup was successful
*
* When the process list changes, the PML notifies the BTL of the
* change, to provide the opportunity to cleanup or release any
* resources associated with the peer.
*/
int mca_btl_sm_register(
struct mca_btl_base_module_t* btl,
mca_btl_base_tag_t tag,
mca_btl_base_module_recv_cb_fn_t cbfunc,
void* cbdata)
{
mca_btl_sm_t* sm_btl = (mca_btl_sm_t*)btl;
sm_btl->sm_reg[tag].cbfunc = cbfunc;
sm_btl->sm_reg[tag].cbdata = cbdata;
return OMPI_SUCCESS;
}
/*
* Register callback function for error handling..
*/
int mca_btl_sm_register_error_cb(
struct mca_btl_base_module_t* btl,
mca_btl_base_module_error_cb_fn_t cbfunc)
{
mca_btl_sm_t *sm_btl = (mca_btl_sm_t *)btl;
sm_btl->error_cb = cbfunc;
return OMPI_SUCCESS;
}
/**
* Allocate a segment.
*
* @param btl (IN) BTL module
* @param size (IN) Request segment size.
*/
extern mca_btl_base_descriptor_t* mca_btl_sm_alloc(
struct mca_btl_base_module_t* btl,
size_t size)
{
mca_btl_sm_frag_t* frag;
int rc;
if(size <= mca_btl_sm_component.eager_limit) {
MCA_BTL_SM_FRAG_ALLOC1(frag,rc);
} else if (size <= mca_btl_sm_component.max_frag_size) {
MCA_BTL_SM_FRAG_ALLOC2(frag,rc);
} else {
return NULL;
}
if (frag != NULL) {
frag->segment.seg_len = size;
}
return (mca_btl_base_descriptor_t*)frag;
}
/**
* Return a segment allocated by this BTL.
*
* @param btl (IN) BTL module
* @param segment (IN) Allocated segment.
*/
extern int mca_btl_sm_free(
struct mca_btl_base_module_t* btl,
mca_btl_base_descriptor_t* des)
{
mca_btl_sm_frag_t* frag = (mca_btl_sm_frag_t*)des;
MCA_BTL_SM_FRAG_RETURN(frag);
return OMPI_SUCCESS;
}
/**
* Pack data
*
* @param btl (IN) BTL module
*/
struct mca_btl_base_descriptor_t* mca_btl_sm_prepare_src(
struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
mca_mpool_base_registration_t* registration,
struct ompi_convertor_t* convertor,
size_t reserve,
size_t* size)
{
mca_btl_sm_frag_t* frag;
struct iovec iov;
uint32_t iov_count = 1;
size_t max_data = *size;
int rc;
MCA_BTL_SM_FRAG_ALLOC2(frag, rc);
if(NULL == frag) {
return NULL;
}
if(reserve + max_data > frag->size) {
max_data = frag->size - reserve;
}
iov.iov_len = max_data;
iov.iov_base =
(IOVBASE_TYPE*)(((unsigned char*)(frag->segment.seg_addr.pval)) +
reserve);
rc = ompi_convertor_pack(convertor, &iov, &iov_count, &max_data );
if(rc < 0) {
MCA_BTL_SM_FRAG_RETURN(frag);
return NULL;
}
frag->segment.seg_len = reserve + max_data;
*size = max_data;
return &frag->base;
}
/**
* Initiate a send to the peer.
*
* @param btl (IN) BTL module
* @param peer (IN) BTL peer addressing
*/
int mca_btl_sm_send(
struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
struct mca_btl_base_descriptor_t* descriptor,
mca_btl_base_tag_t tag)
{
mca_btl_sm_frag_t* frag = (mca_btl_sm_frag_t*)descriptor;
int rc;
frag->hdr->len = frag->segment.seg_len;
frag->hdr->tag = tag;
/*
* post the descriptor in the queue - post with the relative
* address
*/
MCA_BTL_SM_FIFO_WRITE(endpoint, endpoint->my_smp_rank, endpoint->peer_smp_rank, frag->hdr, rc);
return rc;
}
int mca_btl_sm_ft_event(int state) {
if(OPAL_CRS_CHECKPOINT == state) {
;
}
else if(OPAL_CRS_CONTINUE == state) {
;
}
else if(OPAL_CRS_RESTART == state) {
;
}
else if(OPAL_CRS_TERM == state ) {
;
}
else {
;
}
return OMPI_SUCCESS;
}