1
1
openmpi/ompi/mca/btl/mvapi/btl_mvapi.c
George Bosilca 1cb26e3b9c Finally the convertor export a convenience function to allow a consistent
computation of the current location on the pack/unpack process. This can
be used both for retrieving the pointer to the first byte (in the special
case of the cached RDMA protocol) and for getting the current
position (for the pipelined protocol).

I modified all BTLs, but most of them are still untested.

This commit was SVN r14180.
2007-03-30 22:02:45 +00:00

849 строки
29 KiB
C

/*
* Copyright (c) 2004-2007 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2005 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2007 Cisco, Inc. All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "ompi_config.h"
#include <string.h>
#include "opal/util/output.h"
#include "opal/util/if.h"
#include "ompi/mca/pml/pml.h"
#include "ompi/mca/btl/btl.h"
#include "btl_mvapi.h"
#include "btl_mvapi_frag.h"
#include "btl_mvapi_proc.h"
#include "btl_mvapi_endpoint.h"
#include "ompi/datatype/convertor.h"
#include "ompi/datatype/datatype.h"
#include "ompi/mca/mpool/base/base.h"
#include "ompi/mca/mpool/mpool.h"
#include "ompi/mca/mpool/rdma/mpool_rdma.h"
#include "ompi/mca/btl/base/btl_base_error.h"
#include <vapi_types.h>
#include <math.h> /* for log2 */
mca_btl_mvapi_module_t mca_btl_mvapi_module = {
{
&mca_btl_mvapi_component.super,
0, /* max size of first fragment */
0, /* min send fragment size */
0, /* max send fragment size */
0, /* min rdma fragment size */
0, /* max rdma fragment size */
0, /* exclusivity */
0, /* latency */
0, /* bandwidth */
0, /* TODO this should be PUT btl flags */
mca_btl_mvapi_add_procs,
mca_btl_mvapi_del_procs,
mca_btl_mvapi_register,
mca_btl_mvapi_finalize,
/* we need alloc free, pack */
mca_btl_mvapi_alloc,
mca_btl_mvapi_free,
mca_btl_mvapi_prepare_src,
mca_btl_mvapi_prepare_dst,
mca_btl_mvapi_send,
mca_btl_mvapi_put,
mca_btl_mvapi_get,
mca_btl_mvapi_dump,
NULL, /* mpool */
NULL, /* error call back registration */
mca_btl_mvapi_ft_event
}
};
/*
* add a proc to this btl module
* creates an endpoint that is setup on the
* first send to the endpoint
*/
int mca_btl_mvapi_add_procs(
struct mca_btl_base_module_t* btl,
size_t nprocs,
struct ompi_proc_t **ompi_procs,
struct mca_btl_base_endpoint_t** peers,
ompi_bitmap_t* reachable)
{
mca_btl_mvapi_module_t* mvapi_btl = (mca_btl_mvapi_module_t*)btl;
int i, rc;
for(i = 0; i < (int) nprocs; i++) {
struct ompi_proc_t* ompi_proc = ompi_procs[i];
mca_btl_mvapi_proc_t* ib_proc;
mca_btl_base_endpoint_t* ib_peer;
/* mvapi doesn't support heterogeneous yet... */
if (ompi_proc_local()->proc_arch != ompi_proc->proc_arch) {
continue;
}
if(NULL == (ib_proc = mca_btl_mvapi_proc_create(ompi_proc))) {
continue;
}
/*
* Check to make sure that the peer has at least as many interface
* addresses exported as we are trying to use. If not, then
* don't bind this PTL instance to the proc.
*/
OPAL_THREAD_LOCK(&ib_proc->proc_lock);
/* The btl_proc datastructure is shared by all IB PTL
* instances that are trying to reach this destination.
* Cache the peer instance on the btl_proc.
*/
ib_peer = OBJ_NEW(mca_btl_mvapi_endpoint_t);
if(NULL == ib_peer) {
OPAL_THREAD_UNLOCK(&ib_proc->proc_lock);
return OMPI_ERR_OUT_OF_RESOURCE;
}
ib_peer->endpoint_btl = mvapi_btl;
ib_peer->subnet = mvapi_btl->port_info.subnet;
rc = mca_btl_mvapi_proc_insert(ib_proc, ib_peer);
if(rc != OMPI_SUCCESS) {
OBJ_RELEASE(ib_peer);
OPAL_THREAD_UNLOCK(&ib_proc->proc_lock);
continue;
}
ompi_bitmap_set_bit(reachable, i);
OPAL_THREAD_UNLOCK(&ib_proc->proc_lock);
peers[i] = ib_peer;
}
/* currently we only scale the srq the first time
add_procs is called, subsequent calls are ignored,
we should be able to change this to modify the SRQ but
I am unsure as to what this entails
*/
if( 0 == mvapi_btl->num_peers ) {
mvapi_btl->num_peers += nprocs;
if(mca_btl_mvapi_component.use_srq) {
mvapi_btl->rd_num = mca_btl_mvapi_component.rd_num + log2(nprocs) * mca_btl_mvapi_component.srq_rd_per_peer;
if(mvapi_btl->rd_num > mca_btl_mvapi_component.srq_rd_max)
mvapi_btl->rd_num = mca_btl_mvapi_component.srq_rd_max;
mvapi_btl->rd_low = mvapi_btl->rd_num - 1;
free(mvapi_btl->rr_desc_post);
mvapi_btl->rr_desc_post = (VAPI_rr_desc_t*) malloc((mvapi_btl->rd_num * sizeof(VAPI_rr_desc_t)));
}
}
return OMPI_SUCCESS;
}
/*
* delete the proc as reachable from this btl module
*/
int mca_btl_mvapi_del_procs(struct mca_btl_base_module_t* btl,
size_t nprocs,
struct ompi_proc_t **procs,
struct mca_btl_base_endpoint_t ** peers)
{
/* Stub */
BTL_VERBOSE(("Stub\n"));
return OMPI_SUCCESS;
}
/*
*Register callback function to support send/recv semantics
*/
int mca_btl_mvapi_register(
struct mca_btl_base_module_t* btl,
mca_btl_base_tag_t tag,
mca_btl_base_module_recv_cb_fn_t cbfunc,
void* cbdata)
{
mca_btl_mvapi_module_t* mvapi_btl = (mca_btl_mvapi_module_t*) btl;
OPAL_THREAD_LOCK(&mvapi_btl->ib_lock);
mvapi_btl->ib_reg[tag].cbfunc = cbfunc;
mvapi_btl->ib_reg[tag].cbdata = cbdata;
OPAL_THREAD_UNLOCK(&mvapi_btl->ib_lock);
return OMPI_SUCCESS;
}
/**
* Allocate a segment.
*
* @param btl (IN) BTL module
* @param size (IN) Request segment size.
*
* When allocating a segment we pull a pre-alllocated segment
* from one of two free lists, an eager list and a max list
*/
mca_btl_base_descriptor_t* mca_btl_mvapi_alloc(
struct mca_btl_base_module_t* btl,
size_t size)
{
mca_btl_mvapi_frag_t* frag;
mca_btl_mvapi_module_t* mvapi_btl;
int rc;
mvapi_btl = (mca_btl_mvapi_module_t*) btl;
if(size <= mca_btl_mvapi_component.eager_limit){
MCA_BTL_IB_FRAG_ALLOC_EAGER(btl, frag, rc);
if(NULL == frag) return NULL;
frag->segment.seg_len = size;
} else if (size <= mca_btl_mvapi_component.max_send_size) {
MCA_BTL_IB_FRAG_ALLOC_MAX(btl, frag, rc);
if(NULL == frag) return NULL;
frag->segment.seg_len = size;
} else {
return NULL;
}
frag->segment.seg_len = size <= mvapi_btl->super.btl_eager_limit ? size : mvapi_btl->super.btl_eager_limit;
frag->base.des_flags = 0;
return (mca_btl_base_descriptor_t*)frag;
}
/**
* Return a segment
*
* Return the segment to the appropriate
* preallocated segment list
*/
int mca_btl_mvapi_free(
struct mca_btl_base_module_t* btl,
mca_btl_base_descriptor_t* des)
{
mca_btl_mvapi_frag_t* frag = (mca_btl_mvapi_frag_t*)des;
if (MCA_BTL_MVAPI_FRAG_FRAG == frag->type && frag->registration != NULL) {
btl->btl_mpool->mpool_deregister(btl->btl_mpool, (mca_mpool_base_registration_t*) frag->registration);
frag->registration = NULL;
}
MCA_BTL_IB_FRAG_RETURN(btl, frag);
return OMPI_SUCCESS;
}
/**
* register user buffer or pack
* data into pre-registered buffer and return a
* descriptor that can be
* used for send/put.
*
* @param btl (IN) BTL module
* @param endpoint (IN) BTL peer addressing
*
* prepare source's behavior depends on the following:
* Has a valid memory registration been passed to prepare_src?
* if so we attempt to use the pre-registred user-buffer, if the memory registration
* is to small (only a portion of the user buffer) then we must reregister the user buffer
* Has the user requested the memory to be left pinned?
* if so we insert the memory registration into a memory tree for later lookup, we
* may also remove a previous registration if a MRU (most recently used) list of
* registions is full, this prevents resources from being exhausted.
* Is the requested size larger than the btl's max send size?
* if so and we aren't asked to leave the registration pinned than we register the memory if
* the users buffer is contiguous
* Otherwise we choose from two free lists of pre-registered memory in which to pack the data into.
*
*/
mca_btl_base_descriptor_t* mca_btl_mvapi_prepare_src(
struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
mca_mpool_base_registration_t* registration,
struct ompi_convertor_t* convertor,
size_t reserve,
size_t* size
)
{
mca_btl_mvapi_module_t* mvapi_btl;
mca_btl_mvapi_frag_t* frag = NULL;
mca_btl_mvapi_reg_t *mvapi_reg;
struct iovec iov;
uint32_t iov_count = 1;
size_t max_data = *size;
int rc;
mvapi_btl = (mca_btl_mvapi_module_t*)btl;
if(ompi_convertor_need_buffers(convertor) == false && 0 == reserve) {
if(registration != NULL || max_data > btl->btl_max_send_size) {
MCA_BTL_IB_FRAG_ALLOC_FRAG(btl, frag, rc);
if(NULL == frag) {
return NULL;
}
iov.iov_len = max_data;
iov.iov_base = NULL;
ompi_convertor_pack(convertor, &iov, &iov_count, &max_data);
*size = max_data;
if(NULL == registration) {
rc = btl->btl_mpool->mpool_register(btl->btl_mpool,
iov.iov_base, max_data, 0, &registration);
if(OMPI_SUCCESS != rc || NULL == registration) {
MCA_BTL_IB_FRAG_RETURN(mvapi_btl, frag);
return NULL;
}
frag->registration = (mca_btl_mvapi_reg_t*)registration;
}
mvapi_reg = (mca_btl_mvapi_reg_t*)registration;
frag->base.des_flags = 0;
frag->base.des_src = &frag->segment;
frag->base.des_src_cnt = 1;
frag->base.des_dst = NULL;
frag->base.des_dst_cnt = 0;
frag->base.des_flags = 0;
frag->sg_entry.len = max_data;
frag->sg_entry.lkey = mvapi_reg->l_key;
frag->sg_entry.addr = (VAPI_virt_addr_t) (MT_virt_addr_t)iov.iov_base;
frag->segment.seg_len = max_data;
frag->segment.seg_addr.pval = iov.iov_base;
frag->segment.seg_key.key32[0] = (uint32_t)frag->sg_entry.lkey;
BTL_VERBOSE(("frag->sg_entry.lkey = %lu .addr = %llu "
"frag->segment.seg_key.key32[0] = %lu",
frag->sg_entry.lkey, frag->sg_entry.addr,
frag->segment.seg_key.key32[0]));
return &frag->base;
}
}
if(max_data + reserve <= btl->btl_eager_limit) {
/* the data is small enough to fit in the eager frag and
* memory is not prepinned */
MCA_BTL_IB_FRAG_ALLOC_EAGER(btl, frag, rc);
}
if(NULL == frag) {
/* the data doesn't fit into eager frag or eger frag is
* not available */
MCA_BTL_IB_FRAG_ALLOC_MAX(btl, frag, rc);
if(NULL == frag) {
return NULL;
}
if(max_data + reserve > btl->btl_max_send_size) {
max_data = btl->btl_max_send_size - reserve;
}
}
iov.iov_len = max_data;
iov.iov_base = (unsigned char*)frag->segment.seg_addr.pval + reserve;
rc = ompi_convertor_pack(convertor, &iov, &iov_count, &max_data);
if( rc < 0 ) {
MCA_BTL_IB_FRAG_RETURN(mvapi_btl, frag);
return NULL;
}
*size = max_data;
frag->segment.seg_len = max_data + reserve;
frag->segment.seg_key.key32[0] = (uint32_t)frag->sg_entry.lkey;
frag->base.des_src = &frag->segment;
frag->base.des_src_cnt = 1;
frag->base.des_dst = NULL;
frag->base.des_dst_cnt = 0;
frag->base.des_flags = 0;
return &frag->base;
}
/**
* Prepare the dst buffer
*
* @param btl (IN) BTL module
* @param peer (IN) BTL peer addressing
* prepare dest's behavior depends on the following:
* Has a valid memory registration been passed to prepare_src?
* if so we attempt to use the pre-registred user-buffer, if the memory registration
* is to small (only a portion of the user buffer) then we must reregister the user buffer
* Has the user requested the memory to be left pinned?
* if so we insert the memory registration into a memory tree for later lookup, we
* may also remove a previous registration if a MRU (most recently used) list of
* registions is full, this prevents resources from being exhausted.
*/
mca_btl_base_descriptor_t* mca_btl_mvapi_prepare_dst(
struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
mca_mpool_base_registration_t* registration,
struct ompi_convertor_t* convertor,
size_t reserve,
size_t* size)
{
mca_btl_mvapi_module_t* mvapi_btl;
mca_btl_mvapi_frag_t* frag;
mca_btl_mvapi_reg_t *mvapi_reg;
int rc;
mvapi_btl = (mca_btl_mvapi_module_t*) btl;
MCA_BTL_IB_FRAG_ALLOC_FRAG(btl, frag, rc);
if(NULL == frag){
return NULL;
}
frag->segment.seg_len = *size;
ompi_convertor_get_current_pointer( convertor, (void**)&(frag->segment.seg_addr.pval) );
frag->base.des_flags = 0;
if(NULL == registration) {
/* we didn't get a memory registration passed in, so we have to register the region
* ourselves
*/
rc = btl->btl_mpool->mpool_register(btl->btl_mpool,
frag->segment.seg_addr.pval, *size, 0, &registration);
if(OMPI_SUCCESS != rc || NULL == registration) {
BTL_ERROR(("mpool_register(%p,%lu) failed: base %p offset %lu",
frag->segment.seg_addr.pval, *size, convertor->pBaseBuf, convertor->bConverted));
MCA_BTL_IB_FRAG_RETURN(btl, frag);
return NULL;
}
frag->registration = (mca_btl_mvapi_reg_t*)registration;
}
mvapi_reg = (mca_btl_mvapi_reg_t*)registration;
frag->sg_entry.len = *size;
frag->sg_entry.lkey = mvapi_reg->l_key;
frag->sg_entry.addr = (VAPI_virt_addr_t) (MT_virt_addr_t) frag->segment.seg_addr.pval;
frag->segment.seg_key.key32[0] =mvapi_reg->r_key;
frag->base.des_dst = &frag->segment;
frag->base.des_dst_cnt = 1;
frag->base.des_src = NULL;
frag->base.des_src_cnt = 0;
return &frag->base;
}
int mca_btl_mvapi_finalize(struct mca_btl_base_module_t* btl)
{
mca_btl_mvapi_module_t* mvapi_btl;
mvapi_btl = (mca_btl_mvapi_module_t*) btl;
return OMPI_SUCCESS;
}
/*
* Initiate a send.
*/
int mca_btl_mvapi_send(
struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
struct mca_btl_base_descriptor_t* descriptor,
mca_btl_base_tag_t tag)
{
mca_btl_mvapi_frag_t* frag = (mca_btl_mvapi_frag_t*)descriptor;
frag->endpoint = endpoint;
frag->hdr->tag = tag;
frag->desc.sr_desc.opcode = VAPI_SEND;
return mca_btl_mvapi_endpoint_send(endpoint, frag);
}
/*
* RDMA local buffer to remote buffer address.
*/
int mca_btl_mvapi_put( mca_btl_base_module_t* btl,
mca_btl_base_endpoint_t* endpoint,
mca_btl_base_descriptor_t* descriptor)
{
int rc;
mca_btl_mvapi_module_t* mvapi_btl = (mca_btl_mvapi_module_t*) btl;
mca_btl_mvapi_frag_t* frag = (mca_btl_mvapi_frag_t*) descriptor;
/* setup for queued requests */
frag->endpoint = endpoint;
frag->desc.sr_desc.opcode = VAPI_RDMA_WRITE;
/* check for a send wqe */
if (OPAL_THREAD_ADD32(&endpoint->sd_wqe_lp,-1) < 0) {
OPAL_THREAD_ADD32(&endpoint->sd_wqe_lp,1);
OPAL_THREAD_LOCK(&endpoint->endpoint_lock);
opal_list_append(&endpoint->pending_frags_lp, (opal_list_item_t *)frag);
OPAL_THREAD_UNLOCK(&endpoint->endpoint_lock);
return OMPI_SUCCESS;
/* post descriptor */
} else {
frag->desc.sr_desc.remote_qp = endpoint->rem_info.rem_qp_num_lp;
frag->desc.sr_desc.remote_addr = (VAPI_virt_addr_t) frag->base.des_dst->seg_addr.lval;
frag->desc.sr_desc.r_key = frag->base.des_dst->seg_key.key32[0];
frag->sg_entry.addr = (VAPI_virt_addr_t) (MT_virt_addr_t) frag->base.des_src->seg_addr.pval;
frag->sg_entry.len = frag->base.des_src->seg_len;
if(VAPI_OK != VAPI_post_sr(mvapi_btl->nic, endpoint->lcl_qp_hndl_lp, &frag->desc.sr_desc)) {
rc = OMPI_ERROR;
} else {
rc = OMPI_SUCCESS;
}
#ifdef VAPI_FEATURE_SRQ
if(mca_btl_mvapi_component.use_srq) {
MCA_BTL_MVAPI_POST_SRR_HIGH(mvapi_btl, 1);
MCA_BTL_MVAPI_POST_SRR_LOW(mvapi_btl, 1);
} else
#endif
{
MCA_BTL_MVAPI_ENDPOINT_POST_RR_HIGH(endpoint, 1);
MCA_BTL_MVAPI_ENDPOINT_POST_RR_LOW(endpoint, 1);
}
}
return rc;
}
/*
* RDMA read remote buffer to local buffer address.
*/
int mca_btl_mvapi_get( mca_btl_base_module_t* btl,
mca_btl_base_endpoint_t* endpoint,
mca_btl_base_descriptor_t* descriptor)
{
int rc;
mca_btl_mvapi_module_t* mvapi_btl = (mca_btl_mvapi_module_t*) btl;
mca_btl_mvapi_frag_t* frag = (mca_btl_mvapi_frag_t*) descriptor;
frag->endpoint = endpoint;
frag->desc.sr_desc.opcode = VAPI_RDMA_READ;
/* check for a send wqe */
if (OPAL_THREAD_ADD32(&endpoint->sd_wqe_lp,-1) < 0) {
OPAL_THREAD_ADD32(&endpoint->sd_wqe_lp,1);
OPAL_THREAD_LOCK(&mvapi_btl->ib_lock);
opal_list_append(&mvapi_btl->pending_frags_lp, (opal_list_item_t *)frag);
OPAL_THREAD_UNLOCK(&mvapi_btl->ib_lock);
return OMPI_SUCCESS;
/* check for a get token */
} else if(OPAL_THREAD_ADD32(&endpoint->get_tokens,-1) < 0) {
OPAL_THREAD_ADD32(&endpoint->sd_wqe_lp,1);
OPAL_THREAD_ADD32(&endpoint->get_tokens,1);
OPAL_THREAD_LOCK(&endpoint->endpoint_lock);
opal_list_append(&endpoint->pending_frags_lp, (opal_list_item_t*)frag);
OPAL_THREAD_UNLOCK(&endpoint->endpoint_lock);
return OMPI_SUCCESS;
} else {
frag->desc.sr_desc.remote_qp = endpoint->rem_info.rem_qp_num_lp;
frag->desc.sr_desc.remote_addr = (VAPI_virt_addr_t) frag->base.des_src->seg_addr.lval;
frag->desc.sr_desc.r_key = frag->base.des_src->seg_key.key32[0];
frag->sg_entry.addr = (VAPI_virt_addr_t) (MT_virt_addr_t) frag->base.des_dst->seg_addr.pval;
frag->sg_entry.len = frag->base.des_dst->seg_len;
if(VAPI_OK != VAPI_post_sr(mvapi_btl->nic, endpoint->lcl_qp_hndl_lp, &frag->desc.sr_desc)) {
rc = OMPI_ERROR;
} else {
rc = OMPI_SUCCESS;
}
#ifdef VAPI_FEATURE_SRQ
if(mca_btl_mvapi_component.use_srq) {
MCA_BTL_MVAPI_POST_SRR_HIGH(mvapi_btl, 1);
MCA_BTL_MVAPI_POST_SRR_LOW(mvapi_btl, 1);
} else
#endif
{
MCA_BTL_MVAPI_ENDPOINT_POST_RR_HIGH(endpoint, 1);
MCA_BTL_MVAPI_ENDPOINT_POST_RR_LOW(endpoint, 1);
}
}
return rc;
}
/*
* Asynchronous event handler to detect unforseen
* events. Usually, such events are catastrophic.
* Should have a robust mechanism to handle these
* events and abort the OMPI application if necessary.
*
*/
static void async_event_handler(VAPI_hca_hndl_t hca_hndl,
VAPI_event_record_t * event_p,
void *priv_data)
{
switch (event_p->type) {
case VAPI_QP_PATH_MIGRATED:
case VAPI_EEC_PATH_MIGRATED:
case VAPI_QP_COMM_ESTABLISHED:
case VAPI_EEC_COMM_ESTABLISHED:
case VAPI_SEND_QUEUE_DRAINED:
case VAPI_PORT_ACTIVE:
{
BTL_VERBOSE(("Got an asynchronous event: %s\n", VAPI_event_record_sym(event_p->type)));
break;
}
case VAPI_CQ_ERROR:
case VAPI_LOCAL_WQ_INV_REQUEST_ERROR:
case VAPI_LOCAL_WQ_ACCESS_VIOL_ERROR:
case VAPI_LOCAL_WQ_CATASTROPHIC_ERROR:
case VAPI_PATH_MIG_REQ_ERROR:
case VAPI_LOCAL_EEC_CATASTROPHIC_ERROR:
case VAPI_LOCAL_CATASTROPHIC_ERROR:
case VAPI_PORT_ERROR:
{
BTL_ERROR(("Got an asynchronous event: %s (%s)",
VAPI_event_record_sym(event_p->type),
VAPI_event_syndrome_sym(event_p->syndrome)));
break;
}
#ifdef VAPI_FEATURE_SRQ
case VAPI_SRQ_LIMIT_REACHED:
{
size_t i;
BTL_ERROR(("SRQ limit is reached, posting more buffers %s\n", VAPI_event_record_sym(event_p->type)));
for(i = 0; i < mca_btl_mvapi_component.ib_num_btls; i++) {
mca_btl_mvapi_module_t* mvapi_btl = &mca_btl_mvapi_component.mvapi_btls[i];
MCA_BTL_MVAPI_POST_SRR_HIGH(mvapi_btl, 1);
MCA_BTL_MVAPI_POST_SRR_LOW(mvapi_btl, 1);
}
}
#endif
/* BWB - is this right? */
#ifdef VAPI_FEATURE_SRQ
case VAPI_RECEIVE_QUEUE_DRAINED: {
fprintf(stderr, "VAPI_RECEIVE_QUEUE_DRAINEDD\n");
}
#endif
default:
BTL_ERROR(("Warning!! Got an undefined "
"asynchronous event %s", VAPI_event_record_sym(event_p->type)));
}
}
/*
* Initialize the btl module by allocating a protection domain
* and creating both the high and low priority completion queues
*/
int mca_btl_mvapi_module_init(mca_btl_mvapi_module_t *mvapi_btl)
{
/* Allocate Protection Domain */
VAPI_ret_t ret;
uint32_t cqe_cnt = 0;
#ifdef VAPI_FEATURE_SRQ
VAPI_srq_attr_t srq_attr, srq_attr_out, srq_attr_mod;
VAPI_srq_attr_mask_t srq_attr_mask;
uint32_t max_outs_wr;
#endif
ret = VAPI_alloc_pd(mvapi_btl->nic, &mvapi_btl->ptag);
if(ret != VAPI_OK) {
BTL_ERROR(("error in VAPI_alloc_pd: %s", VAPI_strerror(ret)));
return OMPI_ERROR;
}
#ifdef VAPI_FEATURE_SRQ
if(mca_btl_mvapi_component.use_srq) {
mvapi_btl->srd_posted_hp = 0;
mvapi_btl->srd_posted_lp = 0;
srq_attr.pd_hndl = mvapi_btl->ptag;
srq_attr.max_outs_wr = mca_btl_mvapi_component.srq_rd_max;
srq_attr.max_sentries = mca_btl_mvapi_component.ib_sg_list_size;
srq_attr_mod.srq_limit = mvapi_btl->rd_num * 0.9;
ret = VAPI_create_srq(mvapi_btl->nic,
&srq_attr,
&mvapi_btl->srq_hndl_hp,
&srq_attr_out);
if(ret != VAPI_OK) {
BTL_ERROR(("error in VAPI_create_srq: %s", VAPI_strerror(ret)));
return OMPI_ERROR;
}
srq_attr_mask = 0;
srq_attr_mask |= VAPI_SRQ_ATTR_LIMIT;
ret = VAPI_modify_srq
(
mvapi_btl->nic,
mvapi_btl->srq_hndl_hp,
&srq_attr_mod,
srq_attr_mask,
&max_outs_wr
);
if(ret != VAPI_OK) {
/* BTL_ERROR(("error in VAPI_modify_srq: %s", VAPI_strerror(ret))); */
/* return OMPI_ERROR; */
}
ret = VAPI_create_srq(mvapi_btl->nic,
&srq_attr,
&mvapi_btl->srq_hndl_lp,
&srq_attr_out);
if(ret != VAPI_OK) {
BTL_ERROR(("error in VAPI_create_srq: %s", VAPI_strerror(ret)));
return OMPI_ERROR;
}
srq_attr_mask = 0;
srq_attr_mask |= VAPI_SRQ_ATTR_LIMIT;
ret = VAPI_modify_srq
(
mvapi_btl->nic,
mvapi_btl->srq_hndl_lp,
&srq_attr_mod,
srq_attr_mask,
&max_outs_wr
);
if(ret != VAPI_OK) {
/* BTL_ERROR(("error in VAPI_modify_srq: %s", VAPI_strerror(ret))); */
/* return OMPI_ERROR; */
}
} else {
mvapi_btl->srq_hndl_hp = VAPI_INVAL_SRQ_HNDL;
mvapi_btl->srq_hndl_lp = VAPI_INVAL_SRQ_HNDL;
}
#endif /* VAPI_FEATURE_SRQ */
ret = VAPI_create_cq(mvapi_btl->nic, mca_btl_mvapi_component.ib_cq_size,
&mvapi_btl->cq_hndl_lp, &cqe_cnt);
if( VAPI_OK != ret) {
BTL_ERROR(("error in VAPI_create_cq: %s", VAPI_strerror(ret)));
return OMPI_ERROR;
}
ret = VAPI_create_cq(mvapi_btl->nic, mca_btl_mvapi_component.ib_cq_size,
&mvapi_btl->cq_hndl_hp, &cqe_cnt);
if( VAPI_OK != ret) {
BTL_ERROR(("error in VAPI_create_cq: %s", VAPI_strerror(ret)));
return OMPI_ERROR;
}
if(cqe_cnt <= 0) {
BTL_ERROR(("error creating completion queue "));
return OMPI_ERROR;
}
ret = EVAPI_set_async_event_handler(mvapi_btl->nic,
async_event_handler, 0, &mvapi_btl->async_handler);
if(VAPI_OK != ret) {
BTL_ERROR(("error in EVAPI_set_async_event_handler: %s", VAPI_strerror(ret)));
return OMPI_ERROR;
}
return OMPI_SUCCESS;
}
/*
* Dump state of btl/queues
*/
/*#include "orte/mca/ns/ns_types.h"*/
void mca_btl_mvapi_dump(
struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
int verbose)
{
mca_btl_mvapi_module_t* mvapi_btl = (mca_btl_mvapi_module_t*)btl;
if( NULL == endpoint ) {
opal_output( 0, "No endpoint for this peer\n" );
return;
}
opal_output( 0, "endpoint with processor (%lu.%lu.%lu)\n",
ORTE_NAME_ARGS( &(endpoint->endpoint_proc->proc_ompi->proc_name) ) );
opal_output( 0, "endpoint state: %s\n",
(endpoint->endpoint_state == MCA_BTL_IB_CONNECTING ? "connecting" :
(endpoint->endpoint_state == MCA_BTL_IB_CONNECT_ACK ? "waiting ack" :
(endpoint->endpoint_state == MCA_BTL_IB_WAITING_ACK ? "waiting final ack" :
(endpoint->endpoint_state == MCA_BTL_IB_CONNECTED ? "connected" :
(endpoint->endpoint_state == MCA_BTL_IB_CLOSED ? "closed" :
(endpoint->endpoint_state == MCA_BTL_IB_FAILED ? "failed" : "unknown")))))));
opal_output( 0, "pending send frags: %u\n", (unsigned int)opal_list_get_size(&endpoint->pending_send_frags) );
opal_output( 0, "pending frags hp : %u\n", (unsigned int)opal_list_get_size(&endpoint->pending_frags_hp) );
opal_output( 0, "pending frags lp : %u\n", (unsigned int)opal_list_get_size(&endpoint->pending_frags_lp) );
#ifdef VAPI_FEATURE_SRQ
if( mca_btl_mvapi_component.use_srq ) {
opal_output( 0, "mvapi_btl->srd_posted_hp %d\n", mvapi_btl->srd_posted_hp );
opal_output( 0, "mvapi_btl->srd_posted_lp %d\n", mvapi_btl->srd_posted_lp );
opal_output( 0, "mvapi_btl->sd_tokens_hp %d\n", mvapi_btl->sd_tokens_hp );
opal_output( 0, "mvapi_btl->sd_tokens_lp %d\n", mvapi_btl->sd_tokens_lp );
} else {
#endif /* VAPI_FEATURE_SRQ */
opal_output( 0, "sd_tokens_hp %d\n", endpoint->sd_tokens_hp );
opal_output( 0, "sd_tokens_lp %d\n", endpoint->sd_tokens_lp );
opal_output( 0, "get_tokens %d\n", endpoint->get_tokens );
opal_output( 0, "rd_posted_hp %d\n", endpoint->rd_posted_hp );
opal_output( 0, "rd_posted_lp %d\n", endpoint->rd_posted_lp );
opal_output( 0, "rd_credits_hp %d\n", endpoint->rd_credits_hp );
opal_output( 0, "rd_credits_lp %d\n", endpoint->rd_credits_lp );
opal_output( 0, "sd_credits_hp %d\n", endpoint->sd_credits_hp );
opal_output( 0, "sd_credits_lp %d\n", endpoint->sd_credits_lp );
#ifdef VAPI_FEATURE_SRQ
}
#endif /* VAPI_FEATURE_SRQ */
opal_output( 0, "sd_wqe_hp %d\n", endpoint->sd_wqe_hp );
opal_output( 0, "sd_wqe_lp %d\n", endpoint->sd_wqe_lp );
}
int mca_btl_mvapi_ft_event(int state) {
if(OPAL_CRS_CHECKPOINT == state) {
;
}
else if(OPAL_CRS_CONTINUE == state) {
;
}
else if(OPAL_CRS_RESTART == state) {
;
}
else if(OPAL_CRS_TERM == state ) {
;
}
else {
;
}
return OMPI_SUCCESS;
}