1
1
openmpi/ompi/mca/coll/base/coll_base_topo.c
George Bosilca 0445670bb9 Fix the automatic handling of communicator associated requests.
If the array doesn't exist, or if it's size is not adequate then
we reallocate it. Otherwise just keep using the same array of requests.
2015-02-26 15:52:18 -05:00

621 строка
19 KiB
C

/*
* Copyright (c) 2004-2005 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2005 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2015 Research Organization for Information Science
* and Technology (RIST). All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "ompi_config.h"
#include "mpi.h"
#include "opal/util/bit_ops.h"
#include "ompi/constants.h"
#include "ompi/communicator/communicator.h"
#include "ompi/mca/coll/base/coll_tags.h"
#include "ompi/mca/coll/base/coll_base_functions.h"
#include "coll_base_topo.h"
/*
* Some static helpers.
*/
static int pown( int fanout, int num )
{
int j, p = 1;
if( num < 0 ) return 0;
if (1==num) return fanout;
if (2==fanout) {
return p<<num;
}
else {
for( j = 0; j < num; j++ ) { p*= fanout; }
}
return p;
}
static int calculate_level( int fanout, int rank )
{
int level, num;
if( rank < 0 ) return -1;
for( level = 0, num = 0; num <= rank; level++ ) {
num += pown(fanout, level);
}
return level-1;
}
static int calculate_num_nodes_up_to_level( int fanout, int level )
{
/* just use geometric progression formula for sum:
a^0+a^1+...a^(n-1) = (a^n-1)/(a-1) */
return ((pown(fanout,level) - 1)/(fanout - 1));
}
/*
* And now the building functions.
*
* An example for fanout = 2, comm_size = 7
*
* 0 <-- delta = 1 (fanout^0)
* / \
* 1 2 <-- delta = 2 (fanout^1)
* / \ / \
* 3 5 4 6 <-- delta = 4 (fanout^2)
*/
ompi_coll_tree_t*
ompi_coll_base_topo_build_tree( int fanout,
struct ompi_communicator_t* comm,
int root )
{
int rank, size, schild, sparent, shiftedrank, i;
int level; /* location of my rank in the tree structure of size */
int delta; /* number of nodes on my level */
int slimit; /* total number of nodes on levels above me */
ompi_coll_tree_t* tree;
OPAL_OUTPUT((ompi_coll_base_framework.framework_output, "coll:base:topo_build_tree Building fo %d rt %d", fanout, root));
if (fanout<1) {
OPAL_OUTPUT((ompi_coll_base_framework.framework_output, "coll:base:topo_build_tree invalid fanout %d", fanout));
return NULL;
}
if (fanout>MAXTREEFANOUT) {
OPAL_OUTPUT((ompi_coll_base_framework.framework_output,"coll:base:topo_build_tree invalid fanout %d bigger than max %d", fanout, MAXTREEFANOUT));
return NULL;
}
/*
* Get size and rank of the process in this communicator
*/
size = ompi_comm_size(comm);
rank = ompi_comm_rank(comm);
tree = (ompi_coll_tree_t*)malloc(sizeof(ompi_coll_tree_t));
if (!tree) {
OPAL_OUTPUT((ompi_coll_base_framework.framework_output,"coll:base:topo_build_tree PANIC::out of memory"));
return NULL;
}
tree->tree_root = MPI_UNDEFINED;
tree->tree_nextsize = MPI_UNDEFINED;
/*
* Set root
*/
tree->tree_root = root;
/*
* Initialize tree
*/
tree->tree_fanout = fanout;
tree->tree_bmtree = 0;
tree->tree_root = root;
tree->tree_prev = -1;
tree->tree_nextsize = 0;
for( i = 0; i < fanout; i++ ) {
tree->tree_next[i] = -1;
}
/* return if we have less than 2 processes */
if( size < 2 ) {
return tree;
}
/*
* Shift all ranks by root, so that the algorithm can be
* designed as if root would be always 0
* shiftedrank should be used in calculating distances
* and position in tree
*/
shiftedrank = rank - root;
if( shiftedrank < 0 ) {
shiftedrank += size;
}
/* calculate my level */
level = calculate_level( fanout, shiftedrank );
delta = pown( fanout, level );
/* find my children */
for( i = 0; i < fanout; i++ ) {
schild = shiftedrank + delta * (i+1);
if( schild < size ) {
tree->tree_next[i] = (schild+root)%size;
tree->tree_nextsize = tree->tree_nextsize + 1;
} else {
break;
}
}
/* find my parent */
slimit = calculate_num_nodes_up_to_level( fanout, level );
sparent = shiftedrank;
if( sparent < fanout ) {
sparent = 0;
} else {
while( sparent >= slimit ) {
sparent -= delta/fanout;
}
}
tree->tree_prev = (sparent+root)%size;
return tree;
}
/*
* Constructs in-order binary tree which can be used for non-commutative reduce
* operations.
* Root of this tree is always rank (size-1) and fanout is 2.
* Here are some of the examples of this tree:
* size == 2 size == 3 size == 4 size == 9
* 1 2 3 8
* / / \ / \ / \
* 0 1 0 2 1 7 3
* / / \ / \
* 0 6 5 2 1
* / /
* 4 0
*/
ompi_coll_tree_t*
ompi_coll_base_topo_build_in_order_bintree( struct ompi_communicator_t* comm )
{
int rank, size, myrank, rightsize, delta, parent, lchild, rchild;
ompi_coll_tree_t* tree;
/*
* Get size and rank of the process in this communicator
*/
size = ompi_comm_size(comm);
rank = ompi_comm_rank(comm);
tree = (ompi_coll_tree_t*)malloc(sizeof(ompi_coll_tree_t));
if (!tree) {
OPAL_OUTPUT((ompi_coll_base_framework.framework_output,
"coll:base:topo_build_tree PANIC::out of memory"));
return NULL;
}
tree->tree_root = MPI_UNDEFINED;
tree->tree_nextsize = MPI_UNDEFINED;
/*
* Initialize tree
*/
tree->tree_fanout = 2;
tree->tree_bmtree = 0;
tree->tree_root = size - 1;
tree->tree_prev = -1;
tree->tree_nextsize = 0;
tree->tree_next[0] = -1;
tree->tree_next[1] = -1;
OPAL_OUTPUT((ompi_coll_base_framework.framework_output,
"coll:base:topo_build_in_order_tree Building fo %d rt %d",
tree->tree_fanout, tree->tree_root));
/*
* Build the tree
*/
myrank = rank;
parent = size - 1;
delta = 0;
while ( 1 ) {
/* Compute the size of the right subtree */
rightsize = size >> 1;
/* Determine the left and right child of this parent */
lchild = -1;
rchild = -1;
if (size - 1 > 0) {
lchild = parent - 1;
if (lchild > 0) {
rchild = rightsize - 1;
}
}
/* The following cases are possible: myrank can be
- a parent,
- belong to the left subtree, or
- belong to the right subtee
Each of the cases need to be handled differently.
*/
if (myrank == parent) {
/* I am the parent:
- compute real ranks of my children, and exit the loop. */
if (lchild >= 0) tree->tree_next[0] = lchild + delta;
if (rchild >= 0) tree->tree_next[1] = rchild + delta;
break;
}
if (myrank > rchild) {
/* I belong to the left subtree:
- If I am the left child, compute real rank of my parent
- Iterate down through tree:
compute new size, shift ranks down, and update delta.
*/
if (myrank == lchild) {
tree->tree_prev = parent + delta;
}
size = size - rightsize - 1;
delta = delta + rightsize;
myrank = myrank - rightsize;
parent = size - 1;
} else {
/* I belong to the right subtree:
- If I am the right child, compute real rank of my parent
- Iterate down through tree:
compute new size and parent,
but the delta and rank do not need to change.
*/
if (myrank == rchild) {
tree->tree_prev = parent + delta;
}
size = rightsize;
parent = rchild;
}
}
if (tree->tree_next[0] >= 0) { tree->tree_nextsize = 1; }
if (tree->tree_next[1] >= 0) { tree->tree_nextsize += 1; }
return tree;
}
int ompi_coll_base_topo_destroy_tree( ompi_coll_tree_t** tree )
{
ompi_coll_tree_t *ptr;
if ((!tree)||(!*tree)) {
return OMPI_SUCCESS;
}
ptr = *tree;
free (ptr);
*tree = NULL; /* mark tree as gone */
return OMPI_SUCCESS;
}
/*
*
* Here are some of the examples of this tree:
* size == 2 size = 4 size = 8
* 0 0 0
* / | \ / | \
* 1 2 1 4 2 1
* | | |\
* 3 6 5 3
* |
* 7
*/
ompi_coll_tree_t*
ompi_coll_base_topo_build_bmtree( struct ompi_communicator_t* comm,
int root )
{
int childs = 0, rank, size, mask = 1, index, remote, i;
ompi_coll_tree_t *bmtree;
OPAL_OUTPUT((ompi_coll_base_framework.framework_output,"coll:base:topo:build_bmtree rt %d", root));
/*
* Get size and rank of the process in this communicator
*/
size = ompi_comm_size(comm);
rank = ompi_comm_rank(comm);
index = rank -root;
bmtree = (ompi_coll_tree_t*)malloc(sizeof(ompi_coll_tree_t));
if (!bmtree) {
OPAL_OUTPUT((ompi_coll_base_framework.framework_output,"coll:base:topo:build_bmtree PANIC out of memory"));
return NULL;
}
bmtree->tree_bmtree = 1;
bmtree->tree_root = MPI_UNDEFINED;
bmtree->tree_nextsize = MPI_UNDEFINED;
for( i = 0;i < MAXTREEFANOUT; i++ ) {
bmtree->tree_next[i] = -1;
}
if( index < 0 ) index += size;
mask = opal_next_poweroftwo(index);
/* Now I can compute my father rank */
if( root == rank ) {
bmtree->tree_prev = root;
} else {
remote = (index ^ (mask >> 1)) + root;
if( remote >= size ) remote -= size;
bmtree->tree_prev = remote;
}
/* And now let's fill my childs */
while( mask < size ) {
remote = (index ^ mask);
if( remote >= size ) break;
remote += root;
if( remote >= size ) remote -= size;
if (childs==MAXTREEFANOUT) {
OPAL_OUTPUT((ompi_coll_base_framework.framework_output,"coll:base:topo:build_bmtree max fanout incorrect %d needed %d", MAXTREEFANOUT, childs));
free(bmtree);
return NULL;
}
bmtree->tree_next[childs] = remote;
mask <<= 1;
childs++;
}
bmtree->tree_nextsize = childs;
bmtree->tree_root = root;
return bmtree;
}
/*
* Constructs in-order binomial tree which can be used for gather/scatter
* operations.
*
* Here are some of the examples of this tree:
* size == 2 size = 4 size = 8
* 0 0 0
* / / | / | \
* 1 1 2 1 2 4
* | | | \
* 3 3 5 6
* |
* 7
*/
ompi_coll_tree_t*
ompi_coll_base_topo_build_in_order_bmtree( struct ompi_communicator_t* comm,
int root )
{
int childs = 0, rank, vrank, size, mask = 1, remote, i;
ompi_coll_tree_t *bmtree;
OPAL_OUTPUT((ompi_coll_base_framework.framework_output,"coll:base:topo:build_in_order_bmtree rt %d", root));
/*
* Get size and rank of the process in this communicator
*/
size = ompi_comm_size(comm);
rank = ompi_comm_rank(comm);
vrank = (rank - root + size) % size;
bmtree = (ompi_coll_tree_t*)malloc(sizeof(ompi_coll_tree_t));
if (!bmtree) {
OPAL_OUTPUT((ompi_coll_base_framework.framework_output,"coll:base:topo:build_bmtree PANIC out of memory"));
return NULL;
}
bmtree->tree_bmtree = 1;
bmtree->tree_root = MPI_UNDEFINED;
bmtree->tree_nextsize = MPI_UNDEFINED;
for(i=0;i<MAXTREEFANOUT;i++) {
bmtree->tree_next[i] = -1;
}
if (root == rank) {
bmtree->tree_prev = root;
}
while (mask < size) {
remote = vrank ^ mask;
if (remote < vrank) {
bmtree->tree_prev = (remote + root) % size;
break;
} else if (remote < size) {
bmtree->tree_next[childs] = (remote + root) % size;
childs++;
if (childs==MAXTREEFANOUT) {
OPAL_OUTPUT((ompi_coll_base_framework.framework_output,
"coll:base:topo:build_bmtree max fanout incorrect %d needed %d",
MAXTREEFANOUT, childs));
free (bmtree);
return NULL;
}
}
mask <<= 1;
}
bmtree->tree_nextsize = childs;
bmtree->tree_root = root;
return bmtree;
}
ompi_coll_tree_t*
ompi_coll_base_topo_build_chain( int fanout,
struct ompi_communicator_t* comm,
int root )
{
int i, maxchainlen, mark, head, len, rank, size, srank /* shifted rank */;
ompi_coll_tree_t *chain;
OPAL_OUTPUT((ompi_coll_base_framework.framework_output,"coll:base:topo:build_chain fo %d rt %d", fanout, root));
/*
* Get size and rank of the process in this communicator
*/
size = ompi_comm_size(comm);
rank = ompi_comm_rank(comm);
if( fanout < 1 ) {
OPAL_OUTPUT((ompi_coll_base_framework.framework_output,"coll:base:topo:build_chain WARNING invalid fanout of ZERO, forcing to 1 (pipeline)!"));
fanout = 1;
}
if (fanout>MAXTREEFANOUT) {
OPAL_OUTPUT((ompi_coll_base_framework.framework_output,"coll:base:topo:build_chain WARNING invalid fanout %d bigger than max %d, forcing to max!", fanout, MAXTREEFANOUT));
fanout = MAXTREEFANOUT;
}
/*
* Allocate space for topology arrays if needed
*/
chain = (ompi_coll_tree_t*)malloc( sizeof(ompi_coll_tree_t) );
if (!chain) {
OPAL_OUTPUT((ompi_coll_base_framework.framework_output,"coll:base:topo:build_chain PANIC out of memory"));
fflush(stdout);
return NULL;
}
chain->tree_root = MPI_UNDEFINED;
chain->tree_nextsize = -1;
for(i=0;i<fanout;i++) chain->tree_next[i] = -1;
/*
* Set root & numchain
*/
chain->tree_root = root;
if( (size - 1) < fanout ) {
chain->tree_nextsize = size-1;
fanout = size-1;
} else {
chain->tree_nextsize = fanout;
}
/*
* Shift ranks
*/
srank = rank - root;
if (srank < 0) srank += size;
/*
* Special case - fanout == 1
*/
if( fanout == 1 ) {
if( srank == 0 ) chain->tree_prev = -1;
else chain->tree_prev = (srank-1+root)%size;
if( (srank + 1) >= size) {
chain->tree_next[0] = -1;
chain->tree_nextsize = 0;
} else {
chain->tree_next[0] = (srank+1+root)%size;
chain->tree_nextsize = 1;
}
return chain;
}
/* Let's handle the case where there is just one node in the communicator */
if( size == 1 ) {
chain->tree_next[0] = -1;
chain->tree_nextsize = 0;
chain->tree_prev = -1;
return chain;
}
/*
* Calculate maximum chain length
*/
maxchainlen = (size-1) / fanout;
if( (size-1) % fanout != 0 ) {
maxchainlen++;
mark = (size-1)%fanout;
} else {
mark = fanout+1;
}
/*
* Find your own place in the list of shifted ranks
*/
if( srank != 0 ) {
int column;
if( srank-1 < (mark * maxchainlen) ) {
column = (srank-1)/maxchainlen;
head = 1+column*maxchainlen;
len = maxchainlen;
} else {
column = mark + (srank-1-mark*maxchainlen)/(maxchainlen-1);
head = mark*maxchainlen+1+(column-mark)*(maxchainlen-1);
len = maxchainlen-1;
}
if( srank == head ) {
chain->tree_prev = 0; /*root*/
} else {
chain->tree_prev = srank-1; /* rank -1 */
}
if( srank == (head + len - 1) ) {
chain->tree_next[0] = -1;
chain->tree_nextsize = 0;
} else {
if( (srank + 1) < size ) {
chain->tree_next[0] = srank+1;
chain->tree_nextsize = 1;
} else {
chain->tree_next[0] = -1;
chain->tree_nextsize = 0;
}
}
chain->tree_prev = (chain->tree_prev+root)%size;
if( chain->tree_next[0] != -1 ) {
chain->tree_next[0] = (chain->tree_next[0]+root)%size;
}
} else {
/*
* Unshift values
*/
chain->tree_prev = -1;
chain->tree_next[0] = (root+1)%size;
for( i = 1; i < fanout; i++ ) {
chain->tree_next[i] = chain->tree_next[i-1] + maxchainlen;
if( i > mark ) {
chain->tree_next[i]--;
}
chain->tree_next[i] %= size;
}
chain->tree_nextsize = fanout;
}
return chain;
}
int ompi_coll_base_topo_dump_tree (ompi_coll_tree_t* tree, int rank)
{
int i;
OPAL_OUTPUT((ompi_coll_base_framework.framework_output, "coll:base:topo:topo_dump_tree %1d tree root %d"
" fanout %d BM %1d nextsize %d prev %d",
rank, tree->tree_root, tree->tree_bmtree, tree->tree_fanout,
tree->tree_nextsize, tree->tree_prev));
if( tree->tree_nextsize ) {
for( i = 0; i < tree->tree_nextsize; i++ )
OPAL_OUTPUT((ompi_coll_base_framework.framework_output,"[%1d] %d", i, tree->tree_next[i]));
}
return (0);
}