1
1
openmpi/opal/mca/btl/smcuda/btl_smcuda_component.c
Brian Barrett e9e4d2a4bc Handle asprintf errors with opal_asprintf wrapper
The Open MPI code base assumed that asprintf always behaved like
the FreeBSD variant, where ptr is set to NULL on error.  However,
the C standard (and Linux) only guarantee that the return code will
be -1 on error and leave ptr undefined.  Rather than fix all the
usage in the code, we use opal_asprintf() wrapper instead, which
guarantees the BSD-like behavior of ptr always being set to NULL.
In addition to being correct, this will fix many, many warnings
in the Open MPI code base.

Signed-off-by: Brian Barrett <bbarrett@amazon.com>
2018-10-08 16:43:53 -07:00

1151 строка
46 KiB
C

/* -*- Mode: C; c-basic-offset:4 ; indent-tabs-mode:nil -*- */
/*
* Copyright (c) 2004-2011 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2009 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2006-2007 Voltaire. All rights reserved.
* Copyright (c) 2009-2010 Cisco Systems, Inc. All rights reserved.
* Copyright (c) 2010-2016 Los Alamos National Security, LLC. All rights
* reserved.
* Copyright (c) 2011-2015 NVIDIA Corporation. All rights reserved.
* Copyright (c) 2014 Intel, Inc. All rights reserved.
* Copyright (c) 2018 Amazon.com, Inc. or its affiliates. All Rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "opal_config.h"
#include <errno.h>
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif /* HAVE_UNISTD_H */
#include <string.h>
#ifdef HAVE_FCNTL_H
#include <fcntl.h>
#endif /* HAVE_FCNTL_H */
#ifdef HAVE_SYS_TYPES_H
#include <sys/types.h>
#endif /* HAVE_SYS_TYPES_H */
#ifdef HAVE_SYS_MMAN_H
#include <sys/mman.h>
#endif /* HAVE_SYS_MMAN_H */
#ifdef HAVE_SYS_STAT_H
#include <sys/stat.h> /* for mkfifo */
#endif /* HAVE_SYS_STAT_H */
#include "opal/mca/shmem/base/base.h"
#include "opal/mca/shmem/shmem.h"
#include "opal/util/bit_ops.h"
#include "opal/util/output.h"
#include "opal/util/show_help.h"
#include "opal/util/printf.h"
#include "opal/mca/mpool/base/base.h"
#include "opal/mca/common/sm/common_sm.h"
#include "opal/mca/btl/base/btl_base_error.h"
#include "opal/runtime/opal_params.h"
#if OPAL_CUDA_SUPPORT
#include "opal/mca/common/cuda/common_cuda.h"
#endif /* OPAL_CUDA_SUPPORT */
#if OPAL_ENABLE_FT_CR == 1
#include "opal/runtime/opal_cr.h"
#endif
#include "btl_smcuda.h"
#include "btl_smcuda_frag.h"
#include "btl_smcuda_fifo.h"
static int mca_btl_smcuda_component_open(void);
static int mca_btl_smcuda_component_close(void);
static int smcuda_register(void);
static mca_btl_base_module_t** mca_btl_smcuda_component_init(
int *num_btls,
bool enable_progress_threads,
bool enable_mpi_threads
);
typedef enum {
MCA_BTL_SM_RNDV_MOD_SM = 0,
MCA_BTL_SM_RNDV_MOD_MPOOL
} mca_btl_sm_rndv_module_type_t;
/*
* Shared Memory (SM) component instance.
*/
mca_btl_smcuda_component_t mca_btl_smcuda_component = {
.super = {
/* First, the mca_base_component_t struct containing meta information
about the component itself */
.btl_version = {
MCA_BTL_DEFAULT_VERSION("smcuda"),
.mca_open_component = mca_btl_smcuda_component_open,
.mca_close_component = mca_btl_smcuda_component_close,
.mca_register_component_params = smcuda_register,
},
.btl_data = {
/* The component is checkpoint ready */
.param_field = MCA_BASE_METADATA_PARAM_CHECKPOINT
},
.btl_init = mca_btl_smcuda_component_init,
.btl_progress = mca_btl_smcuda_component_progress,
} /* end super */
};
/*
* utility routines for parameter registration
*/
static inline int mca_btl_smcuda_param_register_int(
const char* param_name,
int default_value,
int level,
int *storage)
{
*storage = default_value;
(void) mca_base_component_var_register (&mca_btl_smcuda_component.super.btl_version,
param_name, NULL, MCA_BASE_VAR_TYPE_INT,
NULL, 0, 0, level,
MCA_BASE_VAR_SCOPE_READONLY, storage);
return *storage;
}
static inline unsigned int mca_btl_smcuda_param_register_uint(
const char* param_name,
unsigned int default_value,
int level,
unsigned int *storage)
{
*storage = default_value;
(void) mca_base_component_var_register (&mca_btl_smcuda_component.super.btl_version,
param_name, NULL, MCA_BASE_VAR_TYPE_UNSIGNED_INT,
NULL, 0, 0, level,
MCA_BASE_VAR_SCOPE_READONLY, storage);
return *storage;
}
static int mca_btl_smcuda_component_verify(void) {
return mca_btl_base_param_verify(&mca_btl_smcuda.super);
}
static int smcuda_register(void)
{
/* register SM component parameters */
mca_btl_smcuda_component.mpool_min_size = 134217728;
(void) mca_base_component_var_register(&mca_btl_smcuda_component.super.btl_version, "min_size",
"Minimum size of the common/sm mpool shared memory file",
MCA_BASE_VAR_TYPE_UNSIGNED_LONG, NULL, 0, 0,
OPAL_INFO_LVL_9, MCA_BASE_VAR_SCOPE_READONLY,
&mca_btl_smcuda_component.mpool_min_size);
mca_btl_smcuda_param_register_int("free_list_num", 8, OPAL_INFO_LVL_5, &mca_btl_smcuda_component.sm_free_list_num);
mca_btl_smcuda_param_register_int("free_list_max", -1, OPAL_INFO_LVL_5, &mca_btl_smcuda_component.sm_free_list_max);
mca_btl_smcuda_param_register_int("free_list_inc", 64, OPAL_INFO_LVL_5, &mca_btl_smcuda_component.sm_free_list_inc);
mca_btl_smcuda_param_register_int("max_procs", -1, OPAL_INFO_LVL_5, &mca_btl_smcuda_component.sm_max_procs);
/* there is no practical use for the mpool name parameter since mpool resources differ
between components */
mca_btl_smcuda_component.sm_mpool_name = "sm";
mca_btl_smcuda_param_register_uint("fifo_size", 4096, OPAL_INFO_LVL_4, &mca_btl_smcuda_component.fifo_size);
mca_btl_smcuda_param_register_int("num_fifos", 1, OPAL_INFO_LVL_4, &mca_btl_smcuda_component.nfifos);
mca_btl_smcuda_param_register_uint("fifo_lazy_free", 120, OPAL_INFO_LVL_5, &mca_btl_smcuda_component.fifo_lazy_free);
/* default number of extra procs to allow for future growth */
mca_btl_smcuda_param_register_int("sm_extra_procs", 0, OPAL_INFO_LVL_9, &mca_btl_smcuda_component.sm_extra_procs);
mca_btl_smcuda_component.allocator = "bucket";
(void) mca_base_component_var_register (&mca_btl_smcuda_component.super.btl_version, "allocator",
"Name of allocator component to use for btl/smcuda allocations",
MCA_BASE_VAR_TYPE_STRING, NULL, 0, 0, OPAL_INFO_LVL_9,
MCA_BASE_VAR_SCOPE_LOCAL, &mca_btl_smcuda_component.allocator);
#if OPAL_CUDA_SUPPORT
/* Lower priority when CUDA support is not requested */
if (opal_cuda_support) {
mca_btl_smcuda.super.btl_exclusivity = MCA_BTL_EXCLUSIVITY_HIGH+1;
} else {
mca_btl_smcuda.super.btl_exclusivity = MCA_BTL_EXCLUSIVITY_LOW;
}
mca_btl_smcuda_param_register_int("use_cuda_ipc", 1, OPAL_INFO_LVL_4, &mca_btl_smcuda_component.use_cuda_ipc);
mca_btl_smcuda_param_register_int("use_cuda_ipc_same_gpu", 1, OPAL_INFO_LVL_4,&mca_btl_smcuda_component.use_cuda_ipc_same_gpu);
mca_btl_smcuda_param_register_int("cuda_ipc_verbose", 0, OPAL_INFO_LVL_4, &mca_btl_smcuda_component.cuda_ipc_verbose);
mca_btl_smcuda_component.cuda_ipc_output = opal_output_open(NULL);
opal_output_set_verbosity(mca_btl_smcuda_component.cuda_ipc_output, mca_btl_smcuda_component.cuda_ipc_verbose);
#else /* OPAL_CUDA_SUPPORT */
mca_btl_smcuda.super.btl_exclusivity = MCA_BTL_EXCLUSIVITY_LOW;
#endif /* OPAL_CUDA_SUPPORT */
mca_btl_smcuda.super.btl_eager_limit = 4*1024;
mca_btl_smcuda.super.btl_rndv_eager_limit = 4*1024;
mca_btl_smcuda.super.btl_max_send_size = 32*1024;
mca_btl_smcuda.super.btl_rdma_pipeline_send_length = 64*1024;
mca_btl_smcuda.super.btl_rdma_pipeline_frag_size = 64*1024;
mca_btl_smcuda.super.btl_min_rdma_pipeline_size = 64*1024;
mca_btl_smcuda.super.btl_flags = MCA_BTL_FLAGS_SEND;
mca_btl_smcuda.super.btl_registration_handle_size = sizeof (mca_btl_base_registration_handle_t);
mca_btl_smcuda.super.btl_bandwidth = 9000; /* Mbs */
mca_btl_smcuda.super.btl_latency = 1; /* Microsecs */
/* Call the BTL based to register its MCA params */
mca_btl_base_param_register(&mca_btl_smcuda_component.super.btl_version,
&mca_btl_smcuda.super);
#if OPAL_CUDA_SUPPORT
/* If user has not set the value, then set to the defalt */
if (0 == mca_btl_smcuda.super.btl_cuda_max_send_size) {
mca_btl_smcuda.super.btl_cuda_max_send_size = 128*1024;
}
/* If user has not set the value, then set to magic number which will be converted to the minimum
* size needed to fit the PML header (see pml_ob1.c) */
if (0 == mca_btl_smcuda.super.btl_cuda_eager_limit) {
mca_btl_smcuda.super.btl_cuda_eager_limit = SIZE_MAX; /* magic number */
}
mca_common_cuda_register_mca_variables();
#endif /* OPAL_CUDA_SUPPORT */
return mca_btl_smcuda_component_verify();
}
/*
* Called by MCA framework to open the component, registers
* component parameters.
*/
static int mca_btl_smcuda_component_open(void)
{
if (OPAL_SUCCESS != mca_btl_smcuda_component_verify()) {
return OPAL_ERROR;
}
mca_btl_smcuda_component.sm_max_btls = 1;
/* make sure the number of fifos is a power of 2 */
mca_btl_smcuda_component.nfifos = opal_next_poweroftwo_inclusive (mca_btl_smcuda_component.nfifos);
/* make sure that queue size and lazy free parameter are compatible */
if (mca_btl_smcuda_component.fifo_lazy_free >= (mca_btl_smcuda_component.fifo_size >> 1) )
mca_btl_smcuda_component.fifo_lazy_free = (mca_btl_smcuda_component.fifo_size >> 1);
if (mca_btl_smcuda_component.fifo_lazy_free <= 0)
mca_btl_smcuda_component.fifo_lazy_free = 1;
mca_btl_smcuda_component.max_frag_size = mca_btl_smcuda.super.btl_max_send_size;
mca_btl_smcuda_component.eager_limit = mca_btl_smcuda.super.btl_eager_limit;
#if OPAL_CUDA_SUPPORT
/* Possibly adjust max_frag_size if the cuda size is bigger */
if (mca_btl_smcuda.super.btl_cuda_max_send_size > mca_btl_smcuda.super.btl_max_send_size) {
mca_btl_smcuda_component.max_frag_size = mca_btl_smcuda.super.btl_cuda_max_send_size;
}
opal_output_verbose(10, opal_btl_base_framework.framework_output,
"btl: smcuda: cuda_max_send_size=%d, max_send_size=%d, max_frag_size=%d",
(int)mca_btl_smcuda.super.btl_cuda_max_send_size, (int)mca_btl_smcuda.super.btl_max_send_size,
(int)mca_btl_smcuda_component.max_frag_size);
#endif /* OPAL_CUDA_SUPPORT */
/* initialize objects */
OBJ_CONSTRUCT(&mca_btl_smcuda_component.sm_lock, opal_mutex_t);
OBJ_CONSTRUCT(&mca_btl_smcuda_component.sm_frags_eager, opal_free_list_t);
OBJ_CONSTRUCT(&mca_btl_smcuda_component.sm_frags_max, opal_free_list_t);
OBJ_CONSTRUCT(&mca_btl_smcuda_component.sm_frags_user, opal_free_list_t);
OBJ_CONSTRUCT(&mca_btl_smcuda_component.pending_send_fl, opal_free_list_t);
return OPAL_SUCCESS;
}
/*
* component cleanup - sanity checking of queue lengths
*/
static int mca_btl_smcuda_component_close(void)
{
int return_value = OPAL_SUCCESS;
OBJ_DESTRUCT(&mca_btl_smcuda_component.sm_lock);
/**
* We don't have to destroy the fragment lists. They are allocated
* directly into the mmapped file, they will auto-magically disappear
* when the file get unmapped.
*/
/*OBJ_DESTRUCT(&mca_btl_smcuda_component.sm_frags_eager);*/
/*OBJ_DESTRUCT(&mca_btl_smcuda_component.sm_frags_max);*/
/* unmap the shared memory control structure */
if(mca_btl_smcuda_component.sm_seg != NULL) {
return_value = mca_common_sm_fini( mca_btl_smcuda_component.sm_seg );
if( OPAL_SUCCESS != return_value ) {
return_value = OPAL_ERROR;
opal_output(0," mca_common_sm_fini failed\n");
goto CLEANUP;
}
/* unlink file, so that it will be deleted when all references
* to it are gone - no error checking, since we want all procs
* to call this, so that in an abnormal termination scenario,
* this file will still get cleaned up */
#if OPAL_ENABLE_FT_CR == 1
/* Only unlink the file if we are *not* restarting
* If we are restarting the file will be unlinked at a later time.
*/
if(OPAL_CR_STATUS_RESTART_PRE != opal_cr_checkpointing_state &&
OPAL_CR_STATUS_RESTART_POST != opal_cr_checkpointing_state ) {
unlink(mca_btl_smcuda_component.sm_seg->shmem_ds.seg_name);
}
#else
unlink(mca_btl_smcuda_component.sm_seg->shmem_ds.seg_name);
#endif
OBJ_RELEASE(mca_btl_smcuda_component.sm_seg);
}
#if OPAL_ENABLE_PROGRESS_THREADS == 1
/* close/cleanup fifo create for event notification */
if(mca_btl_smcuda_component.sm_fifo_fd > 0) {
/* write a done message down the pipe */
unsigned char cmd = DONE;
if( write(mca_btl_smcuda_component.sm_fifo_fd,&cmd,sizeof(cmd)) !=
sizeof(cmd)){
opal_output(0, "mca_btl_smcuda_component_close: write fifo failed: errno=%d\n",
errno);
}
opal_thread_join(&mca_btl_smcuda_component.sm_fifo_thread, NULL);
close(mca_btl_smcuda_component.sm_fifo_fd);
unlink(mca_btl_smcuda_component.sm_fifo_path);
}
#endif
CLEANUP:
#if OPAL_CUDA_SUPPORT
mca_common_cuda_fini();
#endif /* OPAL_CUDA_SUPPORT */
/* return */
return return_value;
}
/*
* Returns the number of processes on the node.
*/
static inline int
get_num_local_procs(void)
{
/* num_local_peers does not include us in
* its calculation, so adjust for that */
return (int)(1 + opal_process_info.num_local_peers);
}
static void
calc_sm_max_procs(int n)
{
/* see if need to allocate space for extra procs */
if (0 > mca_btl_smcuda_component.sm_max_procs) {
/* no limit */
if (0 <= mca_btl_smcuda_component.sm_extra_procs) {
/* limit */
mca_btl_smcuda_component.sm_max_procs =
n + mca_btl_smcuda_component.sm_extra_procs;
} else {
/* no limit */
mca_btl_smcuda_component.sm_max_procs = 2 * n;
}
}
}
static int
create_and_attach(mca_btl_smcuda_component_t *comp_ptr,
size_t size,
char *file_name,
size_t size_ctl_structure,
size_t data_seg_alignment,
mca_common_sm_module_t **out_modp)
{
if (NULL == (*out_modp =
mca_common_sm_module_create_and_attach(size, file_name,
size_ctl_structure,
data_seg_alignment))) {
opal_output(0, "create_and_attach: unable to create shared memory "
"BTL coordinating strucure :: size %lu \n",
(unsigned long)size);
return OPAL_ERROR;
}
return OPAL_SUCCESS;
}
static int
get_mpool_res_size(int32_t max_procs,
size_t *out_res_size)
{
size_t size = 0;
*out_res_size = 0;
/* determine how much memory to create */
/*
* This heuristic formula mostly says that we request memory for:
* - nfifos FIFOs, each comprising:
* . a sm_fifo_t structure
* . many pointers (fifo_size of them per FIFO)
* - eager fragments (2*n of them, allocated in sm_free_list_inc chunks)
* - max fragments (sm_free_list_num of them)
*
* On top of all that, we sprinkle in some number of
* "opal_cache_line_size" additions to account for some
* padding and edge effects that may lie in the allocator.
*/
size = FIFO_MAP_NUM(max_procs) *
(sizeof(sm_fifo_t) + sizeof(void *) *
mca_btl_smcuda_component.fifo_size + 4 * opal_cache_line_size) +
(2 * max_procs + mca_btl_smcuda_component.sm_free_list_inc) *
(mca_btl_smcuda_component.eager_limit + 2 * opal_cache_line_size) +
mca_btl_smcuda_component.sm_free_list_num *
(mca_btl_smcuda_component.max_frag_size + 2 * opal_cache_line_size);
/* add something for the control structure */
size += sizeof(mca_common_sm_module_t);
/* before we multiply by max_procs, make sure the result won't overflow */
/* Stick that little pad in, particularly since we'll eventually
* need a little extra space. E.g., in mca_mpool_sm_init() in
* mpool_sm_component.c when sizeof(mca_common_sm_module_t) is
* added.
*/
if (((double)size) * max_procs > LONG_MAX - 4096) {
return OPAL_ERR_VALUE_OUT_OF_BOUNDS;
}
size *= (size_t)max_procs;
*out_res_size = size;
return OPAL_SUCCESS;
}
/* Generates all the unique paths for the shared-memory segments that this BTL
* needs along with other file paths used to share "connection information". */
static int
set_uniq_paths_for_init_rndv(mca_btl_smcuda_component_t *comp_ptr)
{
int rc = OPAL_ERR_OUT_OF_RESOURCE;
/* NOTE: don't forget to free these after init */
comp_ptr->sm_mpool_ctl_file_name = NULL;
comp_ptr->sm_mpool_rndv_file_name = NULL;
comp_ptr->sm_ctl_file_name = NULL;
comp_ptr->sm_rndv_file_name = NULL;
if (opal_asprintf(&comp_ptr->sm_mpool_ctl_file_name,
"%s"OPAL_PATH_SEP"shared_mem_cuda_pool.%s",
opal_process_info.job_session_dir,
opal_process_info.nodename) < 0) {
/* rc set */
goto out;
}
if (opal_asprintf(&comp_ptr->sm_mpool_rndv_file_name,
"%s"OPAL_PATH_SEP"shared_mem_cuda_pool_rndv.%s",
opal_process_info.job_session_dir,
opal_process_info.nodename) < 0) {
/* rc set */
goto out;
}
if (opal_asprintf(&comp_ptr->sm_ctl_file_name,
"%s"OPAL_PATH_SEP"shared_mem_cuda_btl_module.%s",
opal_process_info.job_session_dir,
opal_process_info.nodename) < 0) {
/* rc set */
goto out;
}
if (opal_asprintf(&comp_ptr->sm_rndv_file_name,
"%s"OPAL_PATH_SEP"shared_mem_cuda_btl_rndv.%s",
opal_process_info.job_session_dir,
opal_process_info.nodename) < 0) {
/* rc set */
goto out;
}
/* all is well */
rc = OPAL_SUCCESS;
out:
if (OPAL_SUCCESS != rc) {
if (comp_ptr->sm_mpool_ctl_file_name) {
free(comp_ptr->sm_mpool_ctl_file_name);
}
if (comp_ptr->sm_mpool_rndv_file_name) {
free(comp_ptr->sm_mpool_rndv_file_name);
}
if (comp_ptr->sm_ctl_file_name) {
free(comp_ptr->sm_ctl_file_name);
}
if (comp_ptr->sm_rndv_file_name) {
free(comp_ptr->sm_rndv_file_name);
}
}
return rc;
}
static int
create_rndv_file(mca_btl_smcuda_component_t *comp_ptr,
mca_btl_sm_rndv_module_type_t type)
{
size_t size = 0;
int rc = OPAL_SUCCESS;
int fd = -1;
char *fname = NULL;
/* used as a temporary store so we can extract shmem_ds info */
mca_common_sm_module_t *tmp_modp = NULL;
if (MCA_BTL_SM_RNDV_MOD_MPOOL == type) {
/* get the segment size for the sm mpool. */
if (OPAL_SUCCESS != (rc = get_mpool_res_size(comp_ptr->sm_max_procs,
&size))) {
/* rc is already set */
goto out;
}
/* update size if less than required minimum */
if (size < mca_btl_smcuda_component.mpool_min_size) {
size = mca_btl_smcuda_component.mpool_min_size;
}
/* we only need the shmem_ds info at this point. initilization will be
* completed in the mpool module code. the idea is that we just need this
* info so we can populate the rndv file (or modex when we have it). */
if (OPAL_SUCCESS != (rc =
create_and_attach(comp_ptr, size, comp_ptr->sm_mpool_ctl_file_name,
sizeof(mca_common_sm_module_t), 8, &tmp_modp))) {
/* rc is set */
goto out;
}
fname = comp_ptr->sm_mpool_rndv_file_name;
}
else if (MCA_BTL_SM_RNDV_MOD_SM == type) {
/* calculate the segment size. */
size = sizeof(mca_common_sm_seg_header_t) +
comp_ptr->sm_max_procs *
(sizeof(sm_fifo_t *) +
sizeof(char *) + sizeof(uint16_t)) +
opal_cache_line_size;
if (OPAL_SUCCESS != (rc =
create_and_attach(comp_ptr, size, comp_ptr->sm_ctl_file_name,
sizeof(mca_common_sm_seg_header_t),
opal_cache_line_size, &comp_ptr->sm_seg))) {
/* rc is set */
goto out;
}
fname = comp_ptr->sm_rndv_file_name;
tmp_modp = comp_ptr->sm_seg;
}
else {
return OPAL_ERR_BAD_PARAM;
}
/* at this point, we have all the info we need to populate the rendezvous
* file containing all the meta info required for attach. */
/* now just write the contents of tmp_modp->shmem_ds to the full
* sizeof(opal_shmem_ds_t), so we know where the mpool_res_size starts. */
if (-1 == (fd = open(fname, O_CREAT | O_RDWR, 0600))) {
int err = errno;
opal_show_help("help-mpi-btl-smcuda.txt", "sys call fail", true,
"open(2)", strerror(err), err);
rc = OPAL_ERR_IN_ERRNO;
goto out;
}
if ((ssize_t)sizeof(opal_shmem_ds_t) != write(fd, &(tmp_modp->shmem_ds),
sizeof(opal_shmem_ds_t))) {
int err = errno;
opal_show_help("help-mpi-btl-smcuda.txt", "sys call fail", true,
"write(2)", strerror(err), err);
rc = OPAL_ERR_IN_ERRNO;
goto out;
}
if (MCA_BTL_SM_RNDV_MOD_MPOOL == type) {
if ((ssize_t)sizeof(size) != write(fd, &size, sizeof(size))) {
int err = errno;
opal_show_help("help-mpi-btl-smcuda.txt", "sys call fail", true,
"write(2)", strerror(err), err);
rc = OPAL_ERR_IN_ERRNO;
goto out;
}
/* only do this for the mpool case */
OBJ_RELEASE(tmp_modp);
}
out:
if (-1 != fd) {
(void)close(fd);
}
return rc;
}
/*
* Creates information required for the sm modex and modex sends it.
*/
static int
backing_store_init(mca_btl_smcuda_component_t *comp_ptr,
uint32_t local_rank)
{
int rc = OPAL_SUCCESS;
if (OPAL_SUCCESS != (rc = set_uniq_paths_for_init_rndv(comp_ptr))) {
goto out;
}
/* only let the lowest rank setup the metadata */
if (0 == local_rank) {
/* === sm mpool === */
if (OPAL_SUCCESS != (rc =
create_rndv_file(comp_ptr, MCA_BTL_SM_RNDV_MOD_MPOOL))) {
goto out;
}
/* === sm === */
if (OPAL_SUCCESS != (rc =
create_rndv_file(comp_ptr, MCA_BTL_SM_RNDV_MOD_SM))) {
goto out;
}
}
out:
return rc;
}
#if OPAL_CUDA_SUPPORT
/**
* Send a CUDA IPC ACK or NOTREADY message back to the peer.
*
* @param btl (IN) BTL module
* @param peer (IN) BTL peer addressing
* @param peer (IN) If ready, then send ACK
*/
static void mca_btl_smcuda_send_cuda_ipc_ack(struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint, int ready)
{
mca_btl_smcuda_frag_t* frag;
ctrlhdr_t ctrlhdr;
int rc;
if ( mca_btl_smcuda_component.num_outstanding_frags * 2 > (int) mca_btl_smcuda_component.fifo_size ) {
mca_btl_smcuda_component_progress();
}
/* allocate a fragment, giving up if we can't get one */
MCA_BTL_SMCUDA_FRAG_ALLOC_EAGER(frag);
if( OPAL_UNLIKELY(NULL == frag) ) {
endpoint->ipcstate = IPC_BAD;
return;
}
if (ready) {
ctrlhdr.ctag = IPC_ACK;
} else {
ctrlhdr.ctag = IPC_NOTREADY;
}
/* Fill in fragment fields. */
frag->hdr->tag = MCA_BTL_TAG_SMCUDA;
frag->base.des_flags = MCA_BTL_DES_FLAGS_BTL_OWNERSHIP;
frag->endpoint = endpoint;
memcpy(frag->segment.seg_addr.pval, &ctrlhdr, sizeof(struct ctrlhdr_st));
/* write the fragment pointer to the FIFO */
/*
* Note that we don't care what the FIFO-write return code is. Even if
* the return code indicates failure, the write has still "completed" from
* our point of view: it has been posted to a "pending send" queue.
*/
OPAL_THREAD_ADD_FETCH32(&mca_btl_smcuda_component.num_outstanding_frags, +1);
MCA_BTL_SMCUDA_FIFO_WRITE(endpoint, endpoint->my_smp_rank,
endpoint->peer_smp_rank, (void *) VIRTUAL2RELATIVE(frag->hdr), false, true, rc);
/* Set state now that we have sent message */
if (ready) {
endpoint->ipcstate = IPC_ACKED;
} else {
endpoint->ipcstate = IPC_INIT;
}
return;
}
/* This function is utilized to set up CUDA IPC support within the smcuda
* BTL. It handles smcuda specific control messages that are triggered
* when GPU memory transfers are initiated. */
static void btl_smcuda_control(mca_btl_base_module_t* btl,
mca_btl_base_tag_t tag,
mca_btl_base_descriptor_t* des, void* cbdata)
{
int mydevnum, ipcaccess, res;
ctrlhdr_t ctrlhdr;
opal_proc_t *ep_proc;
struct mca_btl_base_endpoint_t *endpoint;
mca_btl_smcuda_t *smcuda_btl = (mca_btl_smcuda_t *)btl;
mca_btl_smcuda_frag_t *frag = (mca_btl_smcuda_frag_t *)des;
mca_btl_base_segment_t* segments = des->des_segments;
/* Use the rank of the peer that sent the data to get to the endpoint
* structure. This is needed for PML callback. */
endpoint = mca_btl_smcuda_component.sm_peers[frag->hdr->my_smp_rank];
ep_proc = endpoint->proc_opal;
/* Copy out control message payload to examine it */
memcpy(&ctrlhdr, segments->seg_addr.pval, sizeof(struct ctrlhdr_st));
/* Handle an incoming CUDA IPC control message. */
switch (ctrlhdr.ctag) {
case IPC_REQ:
/* Initial request to set up IPC. If the state of IPC
* initialization is IPC_INIT, then check on the peer to peer
* access and act accordingly. If we are in the IPC_SENT
* state, then this means both sides are trying to set up the
* connection. If my smp rank is higher then check and act
* accordingly. Otherwise, drop the request and let the other
* side continue the handshake. */
OPAL_THREAD_LOCK(&endpoint->endpoint_lock);
if ((IPC_INIT == endpoint->ipcstate) ||
((IPC_SENT == endpoint->ipcstate) && (endpoint->my_smp_rank > endpoint->peer_smp_rank))) {
endpoint->ipcstate = IPC_ACKING; /* Move into new state to prevent any new connection attempts */
OPAL_THREAD_UNLOCK(&endpoint->endpoint_lock);
/* If not yet CUDA ready, send a NOTREADY message back. */
if (!mca_common_cuda_enabled) {
opal_output_verbose(10, mca_btl_smcuda_component.cuda_ipc_output,
"Sending CUDA IPC NOTREADY: myrank=%d, peerrank=%d",
mca_btl_smcuda_component.my_smp_rank,
endpoint->peer_smp_rank);
mca_btl_smcuda_send_cuda_ipc_ack(btl, endpoint, 0);
return;
}
/* Get my current device. If this fails, move this endpoint state into
* bad state. No need to send a reply. */
res = mca_common_cuda_get_device(&mydevnum);
if (0 != res) {
endpoint->ipcstate = IPC_BAD;
return;
}
/* Check for IPC support between devices. If they are the
* same device and use_cuda_ipc_same_gpu is 1 (default),
* then assume CUDA IPC is possible. This could be a
* device running in DEFAULT mode or running under MPS.
* Otherwise, check peer acces to determine CUDA IPC
* support. If the CUDA API call fails, then just move
* endpoint into bad state. No need to send a reply. */
if (mydevnum == ctrlhdr.cudev) {
if (mca_btl_smcuda_component.use_cuda_ipc_same_gpu) {
ipcaccess = 1;
} else {
opal_output_verbose(10, mca_btl_smcuda_component.cuda_ipc_output,
"Analyzed CUDA IPC request: myrank=%d, mydev=%d, peerrank=%d, "
"peerdev=%d --> Access is disabled by btl_smcuda_use_cuda_ipc_same_gpu",
endpoint->my_smp_rank, mydevnum, endpoint->peer_smp_rank,
ctrlhdr.cudev);
endpoint->ipcstate = IPC_BAD;
return;
}
} else {
res = mca_common_cuda_device_can_access_peer(&ipcaccess, mydevnum, ctrlhdr.cudev);
if (0 != res) {
opal_output_verbose(10, mca_btl_smcuda_component.cuda_ipc_output,
"Analyzed CUDA IPC request: myrank=%d, mydev=%d, peerrank=%d, "
"peerdev=%d --> Access is disabled because peer check failed with err=%d",
endpoint->my_smp_rank, mydevnum, endpoint->peer_smp_rank,
ctrlhdr.cudev, res);
endpoint->ipcstate = IPC_BAD;
return;
}
}
assert(endpoint->peer_smp_rank == frag->hdr->my_smp_rank);
opal_output_verbose(10, mca_btl_smcuda_component.cuda_ipc_output,
"Analyzed CUDA IPC request: myrank=%d, mydev=%d, peerrank=%d, "
"peerdev=%d --> ACCESS=%d",
endpoint->my_smp_rank, mydevnum, endpoint->peer_smp_rank,
ctrlhdr.cudev, ipcaccess);
if (0 == ipcaccess) {
/* No CUDA IPC support */
opal_output_verbose(10, mca_btl_smcuda_component.cuda_ipc_output,
"Not sending CUDA IPC ACK, no P2P support");
endpoint->ipcstate = IPC_BAD;
} else {
/* CUDA IPC works */
smcuda_btl->error_cb(&smcuda_btl->super, MCA_BTL_ERROR_FLAGS_ADD_CUDA_IPC,
ep_proc, (char *)&mca_btl_smcuda_component.cuda_ipc_output);
opal_output_verbose(10, mca_btl_smcuda_component.cuda_ipc_output,
"Sending CUDA IPC ACK: myrank=%d, mydev=%d, peerrank=%d, peerdev=%d",
endpoint->my_smp_rank, mydevnum, endpoint->peer_smp_rank,
ctrlhdr.cudev);
mca_btl_smcuda_send_cuda_ipc_ack(btl, endpoint, 1);
}
} else {
OPAL_THREAD_UNLOCK(&endpoint->endpoint_lock);
opal_output_verbose(10, mca_btl_smcuda_component.cuda_ipc_output,
"Not sending CUDA IPC ACK because request already initiated");
}
break;
case IPC_ACK:
opal_output_verbose(10, mca_btl_smcuda_component.cuda_ipc_output,
"Received CUDA IPC ACK, notifying PML: myrank=%d, peerrank=%d",
endpoint->my_smp_rank, endpoint->peer_smp_rank);
smcuda_btl->error_cb(&smcuda_btl->super, MCA_BTL_ERROR_FLAGS_ADD_CUDA_IPC,
ep_proc, (char *)&mca_btl_smcuda_component.cuda_ipc_output);
assert(endpoint->ipcstate == IPC_SENT);
endpoint->ipcstate = IPC_ACKED;
break;
case IPC_NOTREADY:
/* The remote side is not ready. Reset state to initialized so next
* send call will try again to set up connection. */
opal_output_verbose(10, mca_btl_smcuda_component.cuda_ipc_output,
"Received CUDA IPC NOTREADY, reset state to allow another attempt: "
"myrank=%d, peerrank=%d",
endpoint->my_smp_rank, endpoint->peer_smp_rank);
OPAL_THREAD_LOCK(&endpoint->endpoint_lock);
if (IPC_SENT == endpoint->ipcstate) {
endpoint->ipcstate = IPC_INIT;
}
OPAL_THREAD_UNLOCK(&endpoint->endpoint_lock);
break;
default:
opal_output(0, "Received UNKNOWN CUDA IPC control message. This should not happen.");
}
}
#endif /* OPAL_CUDA_SUPPORT */
/*
* SM component initialization
*/
static mca_btl_base_module_t **
mca_btl_smcuda_component_init(int *num_btls,
bool enable_progress_threads,
bool enable_mpi_threads)
{
int num_local_procs = 0;
mca_btl_base_module_t **btls = NULL;
uint32_t my_local_rank = UINT32_MAX;
*num_btls = 0;
/* lookup/create shared memory pool only when used */
mca_btl_smcuda_component.sm_mpool = NULL;
mca_btl_smcuda_component.sm_mpool_base = NULL;
#if OPAL_CUDA_SUPPORT
mca_common_cuda_stage_one_init();
#endif /* OPAL_CUDA_SUPPORT */
/* if no session directory was created, then we cannot be used */
if (NULL == opal_process_info.job_session_dir) {
/* SKG - this isn't true anymore. Some backing facilities don't require a
* file-backed store. Extend shmem to provide this info one day. Especially
* when we use a proper modex for init. */
return NULL;
}
/* if we don't have locality information, then we cannot be used because we
* need to know who the respective node ranks for initialization. note the
* use of my_local_rank here. we use this instead of my_node_rank because in
* the spawn case we need to designate a metadata creator rank within the
* set of processes that are initializing the btl, and my_local_rank seems
* to provide that for us. */
if (UINT32_MAX ==
(my_local_rank = opal_process_info.my_local_rank)) {
opal_show_help("help-mpi-btl-smcuda.txt", "no locality", true);
return NULL;
}
/* no use trying to use sm with less than two procs, so just bail. */
if ((num_local_procs = get_num_local_procs()) < 2) {
return NULL;
}
/* calculate max procs so we can figure out how large to make the
* shared-memory segment. this routine sets component sm_max_procs. */
calc_sm_max_procs(num_local_procs);
/* This is where the modex will live some day. For now, just have local rank
* 0 create a rendezvous file containing the backing store info, so the
* other local procs can read from it during add_procs. The rest will just
* stash the known paths for use later in init. */
if (OPAL_SUCCESS != backing_store_init(&mca_btl_smcuda_component,
my_local_rank)) {
return NULL;
}
#if OPAL_ENABLE_PROGRESS_THREADS == 1
/* create a named pipe to receive events */
sprintf( mca_btl_smcuda_component.sm_fifo_path,
"%s"OPAL_PATH_SEP"sm_fifo.%lu", opal_process_info.job_session_dir,
(unsigned long)OPAL_PROC_MY_NAME->vpid );
if(mkfifo(mca_btl_smcuda_component.sm_fifo_path, 0660) < 0) {
opal_output(0, "mca_btl_smcuda_component_init: mkfifo failed with errno=%d\n",errno);
return NULL;
}
mca_btl_smcuda_component.sm_fifo_fd = open(mca_btl_smcuda_component.sm_fifo_path,
O_RDWR);
if(mca_btl_smcuda_component.sm_fifo_fd < 0) {
opal_output(0, "mca_btl_smcuda_component_init: "
"open(%s) failed with errno=%d\n",
mca_btl_smcuda_component.sm_fifo_path, errno);
return NULL;
}
OBJ_CONSTRUCT(&mca_btl_smcuda_component.sm_fifo_thread, opal_thread_t);
mca_btl_smcuda_component.sm_fifo_thread.t_run =
(opal_thread_fn_t)mca_btl_smcuda_component_event_thread;
opal_thread_start(&mca_btl_smcuda_component.sm_fifo_thread);
#endif
mca_btl_smcuda_component.sm_btls =
(mca_btl_smcuda_t **)malloc(mca_btl_smcuda_component.sm_max_btls *
sizeof(mca_btl_smcuda_t *));
if (NULL == mca_btl_smcuda_component.sm_btls) {
return NULL;
}
/* allocate the Shared Memory BTL */
*num_btls = 1;
btls = (mca_btl_base_module_t**)malloc(sizeof(mca_btl_base_module_t*));
if (NULL == btls) {
return NULL;
}
/* get pointer to the btls */
btls[0] = (mca_btl_base_module_t*)(&(mca_btl_smcuda));
mca_btl_smcuda_component.sm_btls[0] = (mca_btl_smcuda_t*)(&(mca_btl_smcuda));
/* initialize some BTL data */
/* start with no SM procs */
mca_btl_smcuda_component.num_smp_procs = 0;
mca_btl_smcuda_component.my_smp_rank = -1; /* not defined */
mca_btl_smcuda_component.sm_num_btls = 1;
/* set flag indicating btl not inited */
mca_btl_smcuda.btl_inited = false;
#if OPAL_CUDA_SUPPORT
/* Assume CUDA GET works. */
mca_btl_smcuda.super.btl_get = mca_btl_smcuda_get_cuda;
/* Register a smcuda control function to help setup IPC support */
mca_btl_base_active_message_trigger[MCA_BTL_TAG_SMCUDA].cbfunc = btl_smcuda_control;
mca_btl_base_active_message_trigger[MCA_BTL_TAG_SMCUDA].cbdata = NULL;
#endif /* OPAL_CUDA_SUPPORT */
return btls;
}
/*
* SM component progress.
*/
#if OPAL_ENABLE_PROGRESS_THREADS == 1
void mca_btl_smcuda_component_event_thread(opal_object_t* thread)
{
while(1) {
unsigned char cmd;
if(read(mca_btl_smcuda_component.sm_fifo_fd, &cmd, sizeof(cmd)) != sizeof(cmd)) {
/* error condition */
return;
}
if( DONE == cmd ){
/* return when done message received */
return;
}
mca_btl_smcuda_component_progress();
}
}
#endif
void btl_smcuda_process_pending_sends(struct mca_btl_base_endpoint_t *ep)
{
btl_smcuda_pending_send_item_t *si;
int rc;
while ( 0 < opal_list_get_size(&ep->pending_sends) ) {
/* Note that we access the size of ep->pending_sends unlocked
as it doesn't really matter if the result is wrong as
opal_list_remove_first is called with a lock and we handle it
not finding an item to process */
OPAL_THREAD_LOCK(&ep->endpoint_lock);
si = (btl_smcuda_pending_send_item_t*)opal_list_remove_first(&ep->pending_sends);
OPAL_THREAD_UNLOCK(&ep->endpoint_lock);
if(NULL == si) return; /* Another thread got in before us. Thats ok. */
OPAL_THREAD_ADD_FETCH32(&mca_btl_smcuda_component.num_pending_sends, -1);
MCA_BTL_SMCUDA_FIFO_WRITE(ep, ep->my_smp_rank, ep->peer_smp_rank, si->data,
true, false, rc);
opal_free_list_return (&mca_btl_smcuda_component.pending_send_fl, (opal_free_list_item_t*)si);
if ( OPAL_SUCCESS != rc )
return;
}
}
int mca_btl_smcuda_component_progress(void)
{
/* local variables */
mca_btl_base_segment_t seg;
mca_btl_smcuda_frag_t *frag;
mca_btl_smcuda_frag_t Frag;
sm_fifo_t *fifo = NULL;
mca_btl_smcuda_hdr_t *hdr;
int my_smp_rank = mca_btl_smcuda_component.my_smp_rank;
int peer_smp_rank, j, rc = 0, nevents = 0;
/* first, deal with any pending sends */
/* This check should be fast since we only need to check one variable. */
if ( 0 < mca_btl_smcuda_component.num_pending_sends ) {
/* perform a loop to find the endpoints that have pending sends */
/* This can take a while longer if there are many endpoints to check. */
for ( peer_smp_rank = 0; peer_smp_rank < mca_btl_smcuda_component.num_smp_procs; peer_smp_rank++) {
struct mca_btl_base_endpoint_t* endpoint;
if ( peer_smp_rank == my_smp_rank )
continue;
endpoint = mca_btl_smcuda_component.sm_peers[peer_smp_rank];
if ( 0 < opal_list_get_size(&endpoint->pending_sends) )
btl_smcuda_process_pending_sends(endpoint);
}
}
/* poll each fifo */
for(j = 0; j < FIFO_MAP_NUM(mca_btl_smcuda_component.num_smp_procs); j++) {
fifo = &(mca_btl_smcuda_component.fifo[my_smp_rank][j]);
recheck_peer:
/* aquire thread lock */
if(opal_using_threads()) {
opal_atomic_lock(&(fifo->tail_lock));
}
hdr = (mca_btl_smcuda_hdr_t *)sm_fifo_read(fifo);
/* release thread lock */
if(opal_using_threads()) {
opal_atomic_unlock(&(fifo->tail_lock));
}
if(SM_FIFO_FREE == hdr) {
continue;
}
nevents++;
/* dispatch fragment by type */
switch(((uintptr_t)hdr) & MCA_BTL_SMCUDA_FRAG_TYPE_MASK) {
case MCA_BTL_SMCUDA_FRAG_SEND:
{
mca_btl_active_message_callback_t* reg;
/* change the address from address relative to the shared
* memory address, to a true virtual address */
hdr = (mca_btl_smcuda_hdr_t *) RELATIVE2VIRTUAL(hdr);
peer_smp_rank = hdr->my_smp_rank;
#if OPAL_ENABLE_DEBUG
if ( FIFO_MAP(peer_smp_rank) != j ) {
opal_output(0, "mca_btl_smcuda_component_progress: "
"rank %d got %d on FIFO %d, but this sender should send to FIFO %d\n",
my_smp_rank, peer_smp_rank, j, FIFO_MAP(peer_smp_rank));
}
#endif
/* recv upcall */
reg = mca_btl_base_active_message_trigger + hdr->tag;
seg.seg_addr.pval = ((char *)hdr) + sizeof(mca_btl_smcuda_hdr_t);
seg.seg_len = hdr->len;
Frag.base.des_segment_count = 1;
Frag.base.des_segments = &seg;
#if OPAL_CUDA_SUPPORT
Frag.hdr = hdr; /* needed for peer rank in control messages */
#endif /* OPAL_CUDA_SUPPORT */
reg->cbfunc(&mca_btl_smcuda.super, hdr->tag, &(Frag.base),
reg->cbdata);
/* return the fragment */
MCA_BTL_SMCUDA_FIFO_WRITE(
mca_btl_smcuda_component.sm_peers[peer_smp_rank],
my_smp_rank, peer_smp_rank, hdr->frag, false, true, rc);
break;
}
case MCA_BTL_SMCUDA_FRAG_ACK:
{
int status = (uintptr_t)hdr & MCA_BTL_SMCUDA_FRAG_STATUS_MASK;
int btl_ownership;
struct mca_btl_base_endpoint_t* endpoint;
frag = (mca_btl_smcuda_frag_t *)((char*)((uintptr_t)hdr &
(~(MCA_BTL_SMCUDA_FRAG_TYPE_MASK |
MCA_BTL_SMCUDA_FRAG_STATUS_MASK))));
endpoint = frag->endpoint;
btl_ownership = (frag->base.des_flags & MCA_BTL_DES_FLAGS_BTL_OWNERSHIP);
if( MCA_BTL_DES_SEND_ALWAYS_CALLBACK & frag->base.des_flags ) {
/* completion callback */
frag->base.des_cbfunc(&mca_btl_smcuda.super, frag->endpoint,
&frag->base, status?OPAL_ERROR:OPAL_SUCCESS);
}
if( btl_ownership ) {
MCA_BTL_SMCUDA_FRAG_RETURN(frag);
}
OPAL_THREAD_ADD_FETCH32(&mca_btl_smcuda_component.num_outstanding_frags, -1);
if ( 0 < opal_list_get_size(&endpoint->pending_sends) ) {
btl_smcuda_process_pending_sends(endpoint);
}
goto recheck_peer;
}
default:
/* unknown */
/*
* This code path should presumably never be called.
* It's unclear if it should exist or, if so, how it should be written.
* If we want to return it to the sending process,
* we have to figure out who the sender is.
* It seems we need to subtract the mask bits.
* Then, hopefully this is an sm header that has an smp_rank field.
* Presumably that means the received header was relative.
* Or, maybe this code should just be removed.
*/
opal_output(0, "mca_btl_smcuda_component_progress read an unknown type of header");
hdr = (mca_btl_smcuda_hdr_t *) RELATIVE2VIRTUAL(hdr);
peer_smp_rank = hdr->my_smp_rank;
hdr = (mca_btl_smcuda_hdr_t*)((uintptr_t)hdr->frag |
MCA_BTL_SMCUDA_FRAG_STATUS_MASK);
MCA_BTL_SMCUDA_FIFO_WRITE(
mca_btl_smcuda_component.sm_peers[peer_smp_rank],
my_smp_rank, peer_smp_rank, hdr, false, true, rc);
break;
}
}
(void)rc; /* this is safe to ignore as the message is requeued till success */
#if OPAL_CUDA_SUPPORT
/* Check to see if there are any outstanding CUDA events that have
* completed. If so, issue the PML callbacks on the fragments.
*/
while (1 == progress_one_cuda_ipc_event((mca_btl_base_descriptor_t **)&frag)) {
mca_btl_base_rdma_completion_fn_t cbfunc = (mca_btl_base_rdma_completion_fn_t) frag->base.des_cbfunc;
cbfunc (&mca_btl_smcuda.super, frag->endpoint, frag->segment.seg_addr.pval,
frag->local_handle, frag->base.des_context, frag->base.des_cbdata,
OPAL_SUCCESS);
if(frag->registration != NULL) {
frag->endpoint->rcache->rcache_deregister (frag->endpoint->rcache,
(mca_rcache_base_registration_t*)frag->registration);
frag->registration = NULL;
MCA_BTL_SMCUDA_FRAG_RETURN(frag);
}
nevents++;
}
#endif /* OPAL_CUDA_SUPPORT */
return nevents;
}