1
1
openmpi/ompi/runtime/ompi_mpi_init.c
Ralph Castain 9fc3079ac2 Implement a background fence that collects all data during modex operation
The direct modex operation is slow, especially at scale for even modestly-connected applications. Likewise, blocking in MPI_Init while we wait for a full modex to complete takes too long. However, as George pointed out, there is a middle ground here. We could kickoff the modex operation in the background, and then trap any modex_recv's until the modex completes and the data is delivered. For most non-benchmark apps, this may prove to be the best of the available options as they are likely to perform other (non-communicating) setup operations after MPI_Init, and so there is a reasonable chance that the modex will actually be done before the first modex_recv gets called.

Once we get instant-on-enabled hardware, this won't be necessary. Clearly, zero time will always out-perform the time spent doing a modex. However, this provides a decent compromise in the interim.

This PR changes the default settings of a few relevant params to make "background modex" the default behavior:

* pmix_base_async_modex -> defaults to true

* pmix_base_collect_data -> continues to default to true (no change)

* async_mpi_init - defaults to true. Note that the prior code attempted to base the default setting of this value on the setting of pmix_base_async_modex. Unfortunately, the pmix value isn't set prior to setting async_mpi_init, and so that attempt failed to accomplish anything.

The logic in MPI_Init is:

* if async_modex AND collect_data are set, AND we have a non-blocking fence available, then we execute the background modex operation

* if async_modex is set, but collect_data is false, then we simply skip the modex entirely - no fence is performed

* if async_modex is not set, then we block until the fence completes (regardless of collecting data or not)

* if we do NOT have a non-blocking fence (e.g., we are not using PMIx), then we always perform the full blocking modex operation.

* if we do perform the background modex, and the user requested the barrier be performed at the end of MPI_Init, then we check to see if the modex has completed when we reach that point. If it has, then we execute the barrier. However, if the modex has NOT completed, then we block until the modex does complete and skip the extra barrier. So we never perform two barriers in that case.

HTH
Ralph

Signed-off-by: Ralph Castain <rhc@open-mpi.org>
2017-04-21 10:29:23 -07:00

1023 строки
38 KiB
C

/* -*- Mode: C; c-basic-offset:4 ; indent-tabs-mode:nil -*- */
/*
* Copyright (c) 2004-2010 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2014 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2006-2015 Cisco Systems, Inc. All rights reserved.
* Copyright (c) 2006-2015 Los Alamos National Security, LLC. All rights
* reserved.
* Copyright (c) 2006-2009 University of Houston. All rights reserved.
* Copyright (c) 2008-2009 Sun Microsystems, Inc. All rights reserved.
* Copyright (c) 2011 Sandia National Laboratories. All rights reserved.
* Copyright (c) 2012-2013 Inria. All rights reserved.
* Copyright (c) 2014-2017 Intel, Inc. All rights reserved.
* Copyright (c) 2014-2016 Research Organization for Information Science
* and Technology (RIST). All rights reserved.
* Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved.
*
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "ompi_config.h"
#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#endif /* HAVE_SYS_TIME_H */
#include <pthread.h>
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#include "mpi.h"
#include "opal/class/opal_list.h"
#include "opal/mca/base/base.h"
#include "opal/mca/hwloc/base/base.h"
#include "opal/runtime/opal_progress.h"
#include "opal/threads/threads.h"
#include "opal/util/arch.h"
#include "opal/util/argv.h"
#include "opal/util/output.h"
#include "opal/util/error.h"
#include "opal/util/stacktrace.h"
#include "opal/util/show_help.h"
#include "opal/runtime/opal.h"
#include "opal/mca/event/event.h"
#include "opal/mca/allocator/base/base.h"
#include "opal/mca/rcache/base/base.h"
#include "opal/mca/rcache/rcache.h"
#include "opal/mca/mpool/base/base.h"
#include "opal/mca/btl/base/base.h"
#include "opal/mca/pmix/pmix.h"
#include "opal/util/timings.h"
#include "opal/util/opal_environ.h"
#include "ompi/constants.h"
#include "ompi/mpi/fortran/base/constants.h"
#include "ompi/runtime/mpiruntime.h"
#include "ompi/runtime/params.h"
#include "ompi/communicator/communicator.h"
#include "ompi/info/info.h"
#include "ompi/errhandler/errcode.h"
#include "ompi/errhandler/errhandler.h"
#include "ompi/request/request.h"
#include "ompi/message/message.h"
#include "ompi/op/op.h"
#include "ompi/mca/op/op.h"
#include "ompi/mca/op/base/base.h"
#include "ompi/file/file.h"
#include "ompi/attribute/attribute.h"
#include "ompi/mca/pml/pml.h"
#include "ompi/mca/bml/bml.h"
#include "ompi/mca/pml/base/base.h"
#include "ompi/mca/bml/base/base.h"
#include "ompi/mca/osc/base/base.h"
#include "ompi/mca/coll/base/base.h"
#include "ompi/mca/io/io.h"
#include "ompi/mca/io/base/base.h"
#include "ompi/mca/rte/rte.h"
#include "ompi/mca/rte/base/base.h"
#include "ompi/debuggers/debuggers.h"
#include "ompi/proc/proc.h"
#include "ompi/mca/pml/base/pml_base_bsend.h"
#include "ompi/dpm/dpm.h"
#include "ompi/mpiext/mpiext.h"
#include "ompi/mca/hook/base/base.h"
#include "ompi/util/timings.h"
#if OPAL_ENABLE_FT_CR == 1
#include "ompi/mca/crcp/crcp.h"
#include "ompi/mca/crcp/base/base.h"
#endif
#include "ompi/runtime/ompi_cr.h"
/* newer versions of gcc have poisoned this deprecated feature */
#ifdef HAVE___MALLOC_INITIALIZE_HOOK
#include "opal/mca/memory/base/base.h"
/* So this sucks, but with OPAL in its own library that is brought in
implicity from libmpi, there are times when the malloc initialize
hook in the memory component doesn't work. So we have to do it
from here, since any MPI code is going to call MPI_Init... */
OPAL_DECLSPEC void (*__malloc_initialize_hook) (void) =
opal_memory_base_malloc_init_hook;
#endif
/* This is required for the boundaries of the hash tables used to store
* the F90 types returned by the MPI_Type_create_f90_XXX functions.
*/
#include <float.h>
#if OPAL_CC_USE_PRAGMA_IDENT
#pragma ident OMPI_IDENT_STRING
#elif OPAL_CC_USE_IDENT
#ident OMPI_IDENT_STRING
#endif
const char ompi_version_string[] = OMPI_IDENT_STRING;
/*
* Global variables and symbols for the MPI layer
*/
opal_mutex_t ompi_mpi_bootstrap_mutex = OPAL_MUTEX_STATIC_INIT;
volatile bool ompi_mpi_init_started = false;
volatile bool ompi_mpi_initialized = false;
volatile bool ompi_mpi_finalize_started = false;
volatile bool ompi_mpi_finalized = false;
volatile bool ompi_rte_initialized = false;
bool ompi_mpi_thread_multiple = false;
int ompi_mpi_thread_requested = MPI_THREAD_SINGLE;
int ompi_mpi_thread_provided = MPI_THREAD_SINGLE;
opal_thread_t *ompi_mpi_main_thread = NULL;
/*
* These variables are for the MPI F08 bindings (F08 must bind Fortran
* varaiables to symbols; it cannot bind Fortran variables to the
* address of a C variable).
*/
ompi_predefined_datatype_t *ompi_mpi_character_addr = &ompi_mpi_character;
ompi_predefined_datatype_t *ompi_mpi_logical_addr = &ompi_mpi_logical;
ompi_predefined_datatype_t *ompi_mpi_logical1_addr = &ompi_mpi_logical1;
ompi_predefined_datatype_t *ompi_mpi_logical2_addr = &ompi_mpi_logical2;
ompi_predefined_datatype_t *ompi_mpi_logical4_addr = &ompi_mpi_logical4;
ompi_predefined_datatype_t *ompi_mpi_logical8_addr = &ompi_mpi_logical8;
ompi_predefined_datatype_t *ompi_mpi_integer_addr = &ompi_mpi_integer;
ompi_predefined_datatype_t *ompi_mpi_integer1_addr = &ompi_mpi_integer1;
ompi_predefined_datatype_t *ompi_mpi_integer2_addr = &ompi_mpi_integer2;
ompi_predefined_datatype_t *ompi_mpi_integer4_addr = &ompi_mpi_integer4;
ompi_predefined_datatype_t *ompi_mpi_integer8_addr = &ompi_mpi_integer8;
ompi_predefined_datatype_t *ompi_mpi_integer16_addr = &ompi_mpi_integer16;
ompi_predefined_datatype_t *ompi_mpi_real_addr = &ompi_mpi_real;
ompi_predefined_datatype_t *ompi_mpi_real4_addr = &ompi_mpi_real4;
ompi_predefined_datatype_t *ompi_mpi_real8_addr = &ompi_mpi_real8;
ompi_predefined_datatype_t *ompi_mpi_real16_addr = &ompi_mpi_real16;
ompi_predefined_datatype_t *ompi_mpi_dblprec_addr = &ompi_mpi_dblprec;
ompi_predefined_datatype_t *ompi_mpi_cplex_addr = &ompi_mpi_cplex;
ompi_predefined_datatype_t *ompi_mpi_complex8_addr = &ompi_mpi_complex8;
ompi_predefined_datatype_t *ompi_mpi_complex16_addr = &ompi_mpi_complex16;
ompi_predefined_datatype_t *ompi_mpi_complex32_addr = &ompi_mpi_complex32;
ompi_predefined_datatype_t *ompi_mpi_dblcplex_addr = &ompi_mpi_dblcplex;
ompi_predefined_datatype_t *ompi_mpi_2real_addr = &ompi_mpi_2real;
ompi_predefined_datatype_t *ompi_mpi_2dblprec_addr = &ompi_mpi_2dblprec;
ompi_predefined_datatype_t *ompi_mpi_2integer_addr = &ompi_mpi_2integer;
struct ompi_status_public_t *ompi_mpi_status_ignore_addr =
(ompi_status_public_t *) 0;
struct ompi_status_public_t *ompi_mpi_statuses_ignore_addr =
(ompi_status_public_t *) 0;
/*
* These variables are here, rather than under ompi/mpi/c/foo.c
* because it is not sufficient to have a .c file that only contains
* variables -- you must have a function that is invoked from
* elsewhere in the code to guarantee that all linkers will pull in
* the .o file from the library. Hence, although these are MPI
* constants, we might as well just define them here (i.e., in a file
* that already has a function that is guaranteed to be linked in,
* rather than make a new .c file with the constants and a
* corresponding dummy function that is invoked from this function).
*
* Additionally, there can be/are strange linking paths such that
* ompi_info needs symbols such as ompi_fortran_status_ignore,
* which, if they weren't here with a collection of other global
* symbols that are initialized (which seems to force this .o file to
* be pulled into the resolution process, because ompi_info certainly
* does not call ompi_mpi_init()), would not be able to be found by
* the OSX linker.
*
* NOTE: See the big comment in ompi/mpi/fortran/base/constants.h
* about why we have four symbols for each of the common blocks (e.g.,
* the Fortran equivalent(s) of MPI_STATUS_IGNORE). Here, we can only
* have *one* value (not four). So the only thing we can do is make
* it equal to the fortran compiler convention that was selected at
* configure time. Note that this is also true for the value of
* .TRUE. from the Fortran compiler, so even though Open MPI supports
* all four Fortran symbol conventions, it can only support one
* convention for the two C constants (MPI_FORTRAN_STATUS[ES]_IGNORE)
* and only support one compiler for the value of .TRUE. Ugh!!
*
* Note that the casts here are ok -- we're *only* comparing pointer
* values (i.e., they'll never be de-referenced). The global symbols
* are actually of type (ompi_fortran_common_t) (for alignment
* issues), but MPI says that MPI_F_STATUS[ES]_IGNORE must be of type
* (MPI_Fint*). Hence, we have to cast to make compilers not
* complain.
*/
#if OMPI_BUILD_FORTRAN_BINDINGS
# if OMPI_FORTRAN_CAPS
MPI_Fint *MPI_F_STATUS_IGNORE = (MPI_Fint*) &MPI_FORTRAN_STATUS_IGNORE;
MPI_Fint *MPI_F_STATUSES_IGNORE = (MPI_Fint*) &MPI_FORTRAN_STATUSES_IGNORE;
# elif OMPI_FORTRAN_PLAIN
MPI_Fint *MPI_F_STATUS_IGNORE = (MPI_Fint*) &mpi_fortran_status_ignore;
MPI_Fint *MPI_F_STATUSES_IGNORE = (MPI_Fint*) &mpi_fortran_statuses_ignore;
# elif OMPI_FORTRAN_SINGLE_UNDERSCORE
MPI_Fint *MPI_F_STATUS_IGNORE = (MPI_Fint*) &mpi_fortran_status_ignore_;
MPI_Fint *MPI_F_STATUSES_IGNORE = (MPI_Fint*) &mpi_fortran_statuses_ignore_;
# elif OMPI_FORTRAN_DOUBLE_UNDERSCORE
MPI_Fint *MPI_F_STATUS_IGNORE = (MPI_Fint*) &mpi_fortran_status_ignore__;
MPI_Fint *MPI_F_STATUSES_IGNORE = (MPI_Fint*) &mpi_fortran_statuses_ignore__;
# else
# error Unrecognized Fortran name mangling scheme
# endif
#else
MPI_Fint *MPI_F_STATUS_IGNORE = NULL;
MPI_Fint *MPI_F_STATUSES_IGNORE = NULL;
#endif /* OMPI_BUILD_FORTRAN_BINDINGS */
/* Constants for the Fortran layer. These values are referred to via
common blocks in the Fortran equivalents. See
ompi/mpi/fortran/base/constants.h for a more detailed explanation.
The values are *NOT* initialized. We do not use the values of
these constants; only their addresses (because they're always
passed by reference by Fortran).
Initializing upon instantiation these can reveal size and/or
alignment differences between Fortran and C (!) which can cause
warnings or errors upon linking (e.g., making static libraries with
the intel 9.0 compilers on 64 bit platforms shows alignment
differences between libmpi.a and the user's application, resulting
in a linker warning). FWIW, if you initialize these variables in
functions (i.e., not at the instantiation in the global scope), the
linker somehow "figures it all out" (w.r.t. different alignments
between fortan common blocks and the corresponding C variables) and
no linker warnings occur.
Note that the rationale for the types of each of these variables is
discussed in ompi/include/mpif-common.h. Do not change the types
without also modifying ompi/mpi/fortran/base/constants.h and
ompi/include/mpif-common.h.
*/
#include "mpif-c-constants.h"
/*
* Hash tables for MPI_Type_create_f90* functions
*/
opal_hash_table_t ompi_mpi_f90_integer_hashtable = {{0}};
opal_hash_table_t ompi_mpi_f90_real_hashtable = {{0}};
opal_hash_table_t ompi_mpi_f90_complex_hashtable = {{0}};
/*
* Per MPI-2:9.5.3, MPI_REGISTER_DATAREP is a memory leak. There is
* no way to *de*register datareps once they've been registered. So
* we have to track all registrations here so that they can be
* de-registered during MPI_FINALIZE so that memory-tracking debuggers
* don't show Open MPI as leaking memory.
*/
opal_list_t ompi_registered_datareps = {{0}};
bool ompi_enable_timing = false;
extern bool ompi_mpi_yield_when_idle;
extern int ompi_mpi_event_tick_rate;
/**
* Static functions used to configure the interactions between the OPAL and
* the runtime.
*/
static char*
_process_name_print_for_opal(const opal_process_name_t procname)
{
ompi_process_name_t* rte_name = (ompi_process_name_t*)&procname;
return OMPI_NAME_PRINT(rte_name);
}
static int
_process_name_compare(const opal_process_name_t p1, const opal_process_name_t p2)
{
ompi_process_name_t* o1 = (ompi_process_name_t*)&p1;
ompi_process_name_t* o2 = (ompi_process_name_t*)&p2;
return ompi_rte_compare_name_fields(OMPI_RTE_CMP_ALL, o1, o2);
}
static int _convert_string_to_process_name(opal_process_name_t *name,
const char* name_string)
{
return ompi_rte_convert_string_to_process_name(name, name_string);
}
static int _convert_process_name_to_string(char** name_string,
const opal_process_name_t *name)
{
return ompi_rte_convert_process_name_to_string(name_string, name);
}
void ompi_mpi_thread_level(int requested, int *provided)
{
/**
* These values are monotonic; MPI_THREAD_SINGLE < MPI_THREAD_FUNNELED
* < MPI_THREAD_SERIALIZED < MPI_THREAD_MULTIPLE.
* If possible, the call will return provided = required. Failing this,
* the call will return the least supported level such that
* provided > required. Finally, if the user requirement cannot be
* satisfied, then the call will return in provided the highest
* supported level.
*/
ompi_mpi_thread_requested = requested;
ompi_mpi_thread_provided = *provided = requested;
if (!ompi_mpi_main_thread) {
ompi_mpi_main_thread = opal_thread_get_self();
}
ompi_mpi_thread_multiple = (ompi_mpi_thread_provided ==
MPI_THREAD_MULTIPLE);
}
static int ompi_register_mca_variables(void)
{
int ret;
/* Register MPI variables */
if (OMPI_SUCCESS != (ret = ompi_mpi_register_params())) {
return ret;
}
/* check to see if we want timing information */
/* TODO: enable OMPI init and OMPI finalize timings if
* this variable was set to 1!
*/
ompi_enable_timing = false;
(void) mca_base_var_register("ompi", "ompi", NULL, "timing",
"Request that critical timing loops be measured",
MCA_BASE_VAR_TYPE_BOOL, NULL, 0, 0,
OPAL_INFO_LVL_9,
MCA_BASE_VAR_SCOPE_READONLY,
&ompi_enable_timing);
return OMPI_SUCCESS;
}
static void fence_release(int status, void *cbdata)
{
volatile bool *active = (volatile bool*)cbdata;
*active = false;
}
int ompi_mpi_init(int argc, char **argv, int requested, int *provided)
{
int ret;
ompi_proc_t** procs;
size_t nprocs;
char *error = NULL;
ompi_errhandler_errtrk_t errtrk;
volatile bool active;
opal_list_t info;
opal_value_t *kv;
OMPI_TIMING_INIT(32);
/* bitflag of the thread level support provided. To be used
* for the modex in order to work in heterogeneous environments. */
uint8_t threadlevel_bf;
ompi_hook_base_mpi_init_top(argc, argv, requested, provided);
/* Ensure that we were not already initialized or finalized.
This lock is held for the duration of ompi_mpi_init() and
ompi_mpi_finalize(). Hence, if we get it, then no other thread
is inside the critical section (and we don't have to check the
*_started bool variables). */
opal_mutex_lock(&ompi_mpi_bootstrap_mutex);
if (ompi_mpi_finalized) {
opal_show_help("help-mpi-runtime.txt",
"mpi_init: already finalized", true);
opal_mutex_unlock(&ompi_mpi_bootstrap_mutex);
return MPI_ERR_OTHER;
} else if (ompi_mpi_initialized) {
opal_show_help("help-mpi-runtime.txt",
"mpi_init: invoked multiple times", true);
opal_mutex_unlock(&ompi_mpi_bootstrap_mutex);
return MPI_ERR_OTHER;
}
/* Indicate that we have *started* MPI_INIT* */
ompi_mpi_init_started = true;
/* Figure out the final MPI thread levels. If we were not
compiled for support for MPI threads, then don't allow
MPI_THREAD_MULTIPLE. Set this stuff up here early in the
process so that other components can make decisions based on
this value. */
ompi_mpi_thread_level(requested, provided);
/* Setup enough to check get/set MCA params */
if (OPAL_SUCCESS != (ret = opal_init_util(&argc, &argv))) {
error = "ompi_mpi_init: opal_init_util failed";
goto error;
}
/* If thread support was enabled, then setup OPAL to allow for them. This must be done
* early to prevent a race condition that can occur with orte_init(). */
if (*provided != MPI_THREAD_SINGLE) {
opal_set_using_threads(true);
}
/* Convince OPAL to use our naming scheme */
opal_process_name_print = _process_name_print_for_opal;
opal_compare_proc = _process_name_compare;
opal_convert_string_to_process_name = _convert_string_to_process_name;
opal_convert_process_name_to_string = _convert_process_name_to_string;
opal_proc_for_name = ompi_proc_for_name;
/* Register MCA variables */
if (OPAL_SUCCESS != (ret = ompi_register_mca_variables())) {
error = "ompi_mpi_init: ompi_register_mca_variables failed";
goto error;
}
if (OPAL_SUCCESS != (ret = opal_arch_set_fortran_logical_size(sizeof(ompi_fortran_logical_t)))) {
error = "ompi_mpi_init: opal_arch_set_fortran_logical_size failed";
goto error;
}
/* _After_ opal_init_util() but _before_ orte_init(), we need to
set an MCA param that tells libevent that it's ok to use any
mechanism in libevent that is available on this platform (e.g.,
epoll and friends). Per opal/event/event.s, we default to
select/poll -- but we know that MPI processes won't be using
pty's with the event engine, so it's ok to relax this
constraint and let any fd-monitoring mechanism be used. */
ret = mca_base_var_find("opal", "event", "*", "event_include");
if (ret >= 0) {
char *allvalue = "all";
/* We have to explicitly "set" the MCA param value here
because libevent initialization will re-register the MCA
param and therefore override the default. Setting the value
here puts the desired value ("all") in different storage
that is not overwritten if/when the MCA param is
re-registered. This is unless the user has specified a different
value for this MCA parameter. Make sure we check to see if the
default is specified before forcing "all" in case that is not what
the user desires. Note that we do *NOT* set this value as an
environment variable, just so that it won't be inherited by
any spawned processes and potentially cause unintented
side-effects with launching RTE tools... */
mca_base_var_set_value(ret, allvalue, 4, MCA_BASE_VAR_SOURCE_DEFAULT, NULL);
}
/* open the ompi hook framework */
if (OMPI_SUCCESS != (ret = mca_base_framework_open(&ompi_hook_base_framework, 0))) {
error = "ompi_hook_base_open() failed";
goto error;
}
ompi_hook_base_mpi_init_top_post_opal(argc, argv, requested, provided);
OMPI_TIMING_NEXT("initialization");
/* if we were not externally started, then we need to setup
* some envars so the MPI_INFO_ENV can get the cmd name
* and argv (but only if the user supplied a non-NULL argv!), and
* the requested thread level
*/
if (NULL == getenv("OMPI_COMMAND") && NULL != argv && NULL != argv[0]) {
opal_setenv("OMPI_COMMAND", argv[0], true, &environ);
}
if (NULL == getenv("OMPI_ARGV") && 1 < argc) {
char *tmp;
tmp = opal_argv_join(&argv[1], ' ');
opal_setenv("OMPI_ARGV", tmp, true, &environ);
free(tmp);
}
/* open the rte framework */
if (OMPI_SUCCESS != (ret = mca_base_framework_open(&ompi_rte_base_framework, 0))) {
error = "ompi_rte_base_open() failed";
goto error;
}
/* no select is required as this is a static framework */
/* Setup RTE */
if (OMPI_SUCCESS != (ret = ompi_rte_init(NULL, NULL))) {
error = "ompi_mpi_init: ompi_rte_init failed";
goto error;
}
OMPI_TIMING_NEXT("rte_init");
ompi_rte_initialized = true;
/* Register the default errhandler callback */
errtrk.status = OPAL_ERROR;
errtrk.active = true;
/* we want to go first */
OBJ_CONSTRUCT(&info, opal_list_t);
kv = OBJ_NEW(opal_value_t);
kv->key = strdup(OPAL_PMIX_EVENT_ORDER_PREPEND);
opal_list_append(&info, &kv->super);
opal_pmix.register_evhandler(NULL, &info, ompi_errhandler_callback,
ompi_errhandler_registration_callback,
(void*)&errtrk);
OMPI_LAZY_WAIT_FOR_COMPLETION(errtrk.active);
OPAL_LIST_DESTRUCT(&info);
if (OPAL_SUCCESS != errtrk.status) {
error = "Error handler registration";
ret = errtrk.status;
goto error;
}
/* determine the bitflag belonging to the threadlevel_support provided */
memset ( &threadlevel_bf, 0, sizeof(uint8_t));
OMPI_THREADLEVEL_SET_BITFLAG ( ompi_mpi_thread_provided, threadlevel_bf );
/* add this bitflag to the modex */
OPAL_MODEX_SEND_STRING(ret, OPAL_PMIX_GLOBAL,
"MPI_THREAD_LEVEL", &threadlevel_bf, sizeof(uint8_t));
if (OPAL_SUCCESS != ret) {
error = "ompi_mpi_init: modex send thread level";
goto error;
}
/* initialize datatypes. This step should be done early as it will
* create the local convertor and local arch used in the proc
* init.
*/
if (OMPI_SUCCESS != (ret = ompi_datatype_init())) {
error = "ompi_datatype_init() failed";
goto error;
}
/* Initialize OMPI procs */
if (OMPI_SUCCESS != (ret = ompi_proc_init())) {
error = "mca_proc_init() failed";
goto error;
}
/* Initialize the op framework. This has to be done *after*
ddt_init, but befor mca_coll_base_open, since some collective
modules (e.g., the hierarchical coll component) may need ops in
their query function. */
if (OMPI_SUCCESS != (ret = mca_base_framework_open(&ompi_op_base_framework, 0))) {
error = "ompi_op_base_open() failed";
goto error;
}
if (OMPI_SUCCESS !=
(ret = ompi_op_base_find_available(OPAL_ENABLE_PROGRESS_THREADS,
ompi_mpi_thread_multiple))) {
error = "ompi_op_base_find_available() failed";
goto error;
}
if (OMPI_SUCCESS != (ret = ompi_op_init())) {
error = "ompi_op_init() failed";
goto error;
}
/* Open up MPI-related MCA components */
if (OMPI_SUCCESS != (ret = mca_base_framework_open(&opal_allocator_base_framework, 0))) {
error = "mca_allocator_base_open() failed";
goto error;
}
if (OMPI_SUCCESS != (ret = mca_base_framework_open(&opal_rcache_base_framework, 0))) {
error = "mca_rcache_base_open() failed";
goto error;
}
if (OMPI_SUCCESS != (ret = mca_base_framework_open(&opal_mpool_base_framework, 0))) {
error = "mca_mpool_base_open() failed";
goto error;
}
if (OMPI_SUCCESS != (ret = mca_base_framework_open(&ompi_bml_base_framework, 0))) {
error = "mca_bml_base_open() failed";
goto error;
}
if (OMPI_SUCCESS != (ret = mca_bml_base_init (1, ompi_mpi_thread_multiple))) {
error = "mca_bml_base_init() failed";
goto error;
}
if (OMPI_SUCCESS != (ret = mca_base_framework_open(&ompi_pml_base_framework, 0))) {
error = "mca_pml_base_open() failed";
goto error;
}
if (OMPI_SUCCESS != (ret = mca_base_framework_open(&ompi_coll_base_framework, 0))) {
error = "mca_coll_base_open() failed";
goto error;
}
if (OMPI_SUCCESS != (ret = mca_base_framework_open(&ompi_osc_base_framework, 0))) {
error = "ompi_osc_base_open() failed";
goto error;
}
#if OPAL_ENABLE_FT_CR == 1
if (OMPI_SUCCESS != (ret = mca_base_framework_open(&ompi_crcp_base_framework, 0))) {
error = "ompi_crcp_base_open() failed";
goto error;
}
#endif
/* In order to reduce the common case for MPI apps (where they
don't use MPI-2 IO or MPI-1 topology functions), the io and
topo frameworks are initialized lazily, at the first use of
relevant functions (e.g., MPI_FILE_*, MPI_CART_*, MPI_GRAPH_*),
so they are not opened here. */
/* Select which MPI components to use */
if (OMPI_SUCCESS !=
(ret = mca_pml_base_select(OPAL_ENABLE_PROGRESS_THREADS,
ompi_mpi_thread_multiple))) {
error = "mca_pml_base_select() failed";
goto error;
}
OMPI_TIMING_IMPORT_OPAL("orte_init");
OMPI_TIMING_IMPORT_OPAL("opal_init_util");
OMPI_TIMING_NEXT("rte_init-commit");
/* exchange connection info - this function may also act as a barrier
* if data exchange is required. The modex occurs solely across procs
* in our job. If a barrier is required, the "modex" function will
* perform it internally */
opal_pmix.commit();
OMPI_TIMING_NEXT("commit");
/* If we have a non-blocking fence:
* if we are doing an async modex, but we are collecting all
* data, then execute the non-blocking modex in the background.
* All calls to modex_recv will be cached until the background
* modex completes. If collect_all_data is false, then we skip
* the fence completely and retrieve data on-demand from the
* source node.
*
* If we do not have a non-blocking fence, then we must always
* execute the blocking fence as the system does not support
* later data retrieval. */
if (NULL != opal_pmix.fence_nb) {
if (opal_pmix_base_async_modex && opal_pmix_collect_all_data) {
/* execute the fence_nb in the background to collect
* the data */
if (!ompi_async_mpi_init) {
/* we are going to execute a barrier at the
* end of MPI_Init. We can only have ONE fence
* operation with the identical involved procs
* at a time, so we will need to wait when we
* get there */
active = true;
opal_pmix.fence_nb(NULL, true, fence_release, (void*)&active);
} else {
opal_pmix.fence_nb(NULL, true, NULL, NULL);
}
} else if (!opal_pmix_base_async_modex) {
active = true;
opal_pmix.fence_nb(NULL, opal_pmix_collect_all_data,
fence_release, (void*)&active);
OMPI_LAZY_WAIT_FOR_COMPLETION(active);
}
} else {
opal_pmix.fence(NULL, opal_pmix_collect_all_data);
}
OMPI_TIMING_NEXT("modex");
/* select buffered send allocator component to be used */
if( OMPI_SUCCESS !=
(ret = mca_pml_base_bsend_init(ompi_mpi_thread_multiple))) {
error = "mca_pml_base_bsend_init() failed";
goto error;
}
if (OMPI_SUCCESS !=
(ret = mca_coll_base_find_available(OPAL_ENABLE_PROGRESS_THREADS,
ompi_mpi_thread_multiple))) {
error = "mca_coll_base_find_available() failed";
goto error;
}
if (OMPI_SUCCESS !=
(ret = ompi_osc_base_find_available(OPAL_ENABLE_PROGRESS_THREADS,
ompi_mpi_thread_multiple))) {
error = "ompi_osc_base_find_available() failed";
goto error;
}
#if OPAL_ENABLE_FT_CR == 1
if (OMPI_SUCCESS != (ret = ompi_crcp_base_select() ) ) {
error = "ompi_crcp_base_select() failed";
goto error;
}
#endif
/* io and topo components are not selected here -- see comment
above about the io and topo frameworks being loaded lazily */
/* Initialize each MPI handle subsystem */
/* initialize requests */
if (OMPI_SUCCESS != (ret = ompi_request_init())) {
error = "ompi_request_init() failed";
goto error;
}
if (OMPI_SUCCESS != (ret = ompi_message_init())) {
error = "ompi_message_init() failed";
goto error;
}
/* initialize info */
if (OMPI_SUCCESS != (ret = ompi_info_init())) {
error = "ompi_info_init() failed";
goto error;
}
/* initialize error handlers */
if (OMPI_SUCCESS != (ret = ompi_errhandler_init())) {
error = "ompi_errhandler_init() failed";
goto error;
}
/* initialize error codes */
if (OMPI_SUCCESS != (ret = ompi_mpi_errcode_init())) {
error = "ompi_mpi_errcode_init() failed";
goto error;
}
/* initialize internal error codes */
if (OMPI_SUCCESS != (ret = ompi_errcode_intern_init())) {
error = "ompi_errcode_intern_init() failed";
goto error;
}
/* initialize groups */
if (OMPI_SUCCESS != (ret = ompi_group_init())) {
error = "ompi_group_init() failed";
goto error;
}
/* initialize communicators */
if (OMPI_SUCCESS != (ret = ompi_comm_init())) {
error = "ompi_comm_init() failed";
goto error;
}
/* initialize file handles */
if (OMPI_SUCCESS != (ret = ompi_file_init())) {
error = "ompi_file_init() failed";
goto error;
}
/* initialize windows */
if (OMPI_SUCCESS != (ret = ompi_win_init())) {
error = "ompi_win_init() failed";
goto error;
}
/* initialize attribute meta-data structure for comm/win/dtype */
if (OMPI_SUCCESS != (ret = ompi_attr_init())) {
error = "ompi_attr_init() failed";
goto error;
}
/* identify the architectures of remote procs and setup
* their datatype convertors, if required
*/
if (OMPI_SUCCESS != (ret = ompi_proc_complete_init())) {
error = "ompi_proc_complete_init failed";
goto error;
}
/* start PML/BTL's */
ret = MCA_PML_CALL(enable(true));
if( OMPI_SUCCESS != ret ) {
error = "PML control failed";
goto error;
}
/* some btls/mtls require we call add_procs with all procs in the job.
* since the btls/mtls have no visibility here it is up to the pml to
* convey this requirement */
if (mca_pml_base_requires_world ()) {
if (NULL == (procs = ompi_proc_world (&nprocs))) {
error = "ompi_proc_get_allocated () failed";
goto error;
}
} else {
/* add all allocated ompi_proc_t's to PML (below the add_procs limit this
* behaves identically to ompi_proc_world ()) */
if (NULL == (procs = ompi_proc_get_allocated (&nprocs))) {
error = "ompi_proc_get_allocated () failed";
goto error;
}
}
ret = MCA_PML_CALL(add_procs(procs, nprocs));
free(procs);
/* If we got "unreachable", then print a specific error message.
Otherwise, if we got some other failure, fall through to print
a generic message. */
if (OMPI_ERR_UNREACH == ret) {
opal_show_help("help-mpi-runtime.txt",
"mpi_init:startup:pml-add-procs-fail", true);
error = NULL;
goto error;
} else if (OMPI_SUCCESS != ret) {
error = "PML add procs failed";
goto error;
}
MCA_PML_CALL(add_comm(&ompi_mpi_comm_world.comm));
MCA_PML_CALL(add_comm(&ompi_mpi_comm_self.comm));
/*
* Dump all MCA parameters if requested
*/
if (ompi_mpi_show_mca_params) {
ompi_show_all_mca_params(ompi_mpi_comm_world.comm.c_my_rank,
nprocs,
ompi_process_info.nodename);
}
/* Do we need to wait for a debugger? */
ompi_rte_wait_for_debugger();
/* Next timing measurement */
OMPI_TIMING_NEXT("modex-barrier");
/* wait for everyone to reach this point - this is a hard
* barrier requirement at this time, though we hope to relax
* it at a later point */
if (!ompi_async_mpi_init) {
/* if we executed the above fence in the background, then
* we have to wait here for it to complete. However, there
* is no reason to do two barriers! */
if (opal_pmix_base_async_modex && opal_pmix_collect_all_data) {
OMPI_LAZY_WAIT_FOR_COMPLETION(active);
} else {
active = true;
if (NULL != opal_pmix.fence_nb) {
opal_pmix.fence_nb(NULL, false,
fence_release, (void*)&active);
OMPI_LAZY_WAIT_FOR_COMPLETION(active);
} else {
opal_pmix.fence(NULL, false);
}
}
}
/* check for timing request - get stop time and report elapsed
time if so, then start the clock again */
OMPI_TIMING_NEXT("barrier");
#if OPAL_ENABLE_PROGRESS_THREADS == 0
/* Start setting up the event engine for MPI operations. Don't
block in the event library, so that communications don't take
forever between procs in the dynamic code. This will increase
CPU utilization for the remainder of MPI_INIT when we are
blocking on RTE-level events, but may greatly reduce non-TCP
latency. */
opal_progress_set_event_flag(OPAL_EVLOOP_NONBLOCK);
#endif
/* wire up the mpi interface, if requested. Do this after the
non-block switch for non-TCP performance. Do before the
polling change as anyone with a complex wire-up is going to be
using the oob. */
if (OMPI_SUCCESS != (ret = ompi_init_preconnect_mpi())) {
error = "ompi_mpi_do_preconnect_all() failed";
goto error;
}
/* Setup the dynamic process management (DPM) subsystem */
if (OMPI_SUCCESS != (ret = ompi_dpm_init())) {
error = "ompi_dpm_init() failed";
goto error;
}
/* Determine the overall threadlevel support of all processes
in MPI_COMM_WORLD. This has to be done before calling
coll_base_comm_select, since some of the collective components
e.g. hierarch, might create subcommunicators. The threadlevel
requested by all processes is required in order to know
which cid allocation algorithm can be used. */
if (OMPI_SUCCESS != ( ret = ompi_comm_cid_init ())) {
error = "ompi_mpi_init: ompi_comm_cid_init failed";
goto error;
}
/* Init coll for the comms. This has to be after dpm_base_select,
(since dpm.mark_dyncomm is not set in the communicator creation
function else), but before dpm.dyncom_init, since this function
might require collective for the CID allocation. */
if (OMPI_SUCCESS !=
(ret = mca_coll_base_comm_select(MPI_COMM_WORLD))) {
error = "mca_coll_base_comm_select(MPI_COMM_WORLD) failed";
goto error;
}
if (OMPI_SUCCESS !=
(ret = mca_coll_base_comm_select(MPI_COMM_SELF))) {
error = "mca_coll_base_comm_select(MPI_COMM_SELF) failed";
goto error;
}
/* Check whether we have been spawned or not. We introduce that
at the very end, since we need collectives, datatypes, ptls
etc. up and running here.... */
if (OMPI_SUCCESS != (ret = ompi_dpm_dyn_init())) {
error = "ompi_dpm_dyn_init() failed";
goto error;
}
/*
* Startup the Checkpoint/Restart Mech.
* Note: Always do this so tools don't hang when
* in a non-checkpointable build
*/
if (OMPI_SUCCESS != (ret = ompi_cr_init())) {
error = "ompi_cr_init";
goto error;
}
/* Undo OPAL calling opal_progress_event_users_increment() during
opal_init, to get better latency when not using TCP. Do
this *after* dyn_init, as dyn init uses lots of RTE
communication and we don't want to hinder the performance of
that code. */
opal_progress_event_users_decrement();
/* see if yield_when_idle was specified - if so, use it */
opal_progress_set_yield_when_idle(ompi_mpi_yield_when_idle);
/* negative value means use default - just don't do anything */
if (ompi_mpi_event_tick_rate >= 0) {
opal_progress_set_event_poll_rate(ompi_mpi_event_tick_rate);
}
/* At this point, we are fully configured and in MPI mode. Any
communication calls here will work exactly like they would in
the user's code. Setup the connections between procs and warm
them up with simple sends, if requested */
if (OMPI_SUCCESS != (ret = ompi_mpiext_init())) {
error = "ompi_mpiext_init";
goto error;
}
/* Fall through */
error:
if (ret != OMPI_SUCCESS) {
/* Only print a message if one was not already printed */
if (NULL != error) {
const char *err_msg = opal_strerror(ret);
opal_show_help("help-mpi-runtime.txt",
"mpi_init:startup:internal-failure", true,
"MPI_INIT", "MPI_INIT", error, err_msg, ret);
}
opal_mutex_unlock(&ompi_mpi_bootstrap_mutex);
ompi_hook_base_mpi_init_error(argc, argv, requested, provided);
OMPI_TIMING_FINALIZE;
return ret;
}
/* Initialize the registered datarep list to be empty */
OBJ_CONSTRUCT(&ompi_registered_datareps, opal_list_t);
/* Initialize the arrays used to store the F90 types returned by the
* MPI_Type_create_f90_XXX functions.
*/
OBJ_CONSTRUCT( &ompi_mpi_f90_integer_hashtable, opal_hash_table_t);
opal_hash_table_init(&ompi_mpi_f90_integer_hashtable, 16 /* why not? */);
OBJ_CONSTRUCT( &ompi_mpi_f90_real_hashtable, opal_hash_table_t);
opal_hash_table_init(&ompi_mpi_f90_real_hashtable, FLT_MAX_10_EXP);
OBJ_CONSTRUCT( &ompi_mpi_f90_complex_hashtable, opal_hash_table_t);
opal_hash_table_init(&ompi_mpi_f90_complex_hashtable, FLT_MAX_10_EXP);
/* All done. Wasn't that simple? */
ompi_mpi_initialized = true;
/* Finish last measurement, output results
* and clear timing structure */
OMPI_TIMING_NEXT("barrier-finish");
OMPI_TIMING_OUT;
OMPI_TIMING_FINALIZE;
opal_mutex_unlock(&ompi_mpi_bootstrap_mutex);
ompi_hook_base_mpi_init_bottom(argc, argv, requested, provided);
return MPI_SUCCESS;
}