1
1
openmpi/opal/util/arch.h
Rainer Keller 221fb9dbca ... Delayed due to notifier commits earlier this day ...
- Delete unnecessary header files using
   contrib/check_unnecessary_headers.sh after applying
   patches, that include headers, being "lost" due to
   inclusion in one of the now deleted headers...

   In total 817 files are touched.
   In ompi/mpi/c/ header files are moved up into the actual c-file,
   where necessary (these are the only additional #include),
   otherwise it is only deletions of #include (apart from the above
   additions required due to notifier...)

 - To get different MCAs (OpenIB, TM, ALPS), an earlier version was
   successfully compiled (yesterday) on:
   Linux locally using intel-11, gcc-4.3.2 and gcc-SVN + warnings enabled
   Smoky cluster (x86-64 running Linux) using PGI-8.0.2 + warnings enabled
   Lens cluster (x86-64 running Linux) using Pathscale-3.2 + warnings enabled

This commit was SVN r21096.
2009-04-29 01:32:14 +00:00

294 строки
9.9 KiB
C

/* -*- Mode: C; c-basic-offset:4 ; -*- */
/*
* Copyright (c) 2004-2006 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2006 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2006 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2006 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2008 Cisco Systems, Inc. All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#ifndef OPAL_ARCH_H_HAS_BEEN_INCLUDED
#define OPAL_ARCH_H_HAS_BEEN_INCLUDED
#include "opal_config.h"
#include <float.h>
#include <assert.h>
/***************************************************
** This file tries to classify the most relevant
** platforms regarding their data representation.
** Three aspects are important:
** - byte ordering (little or big endian)
** - integer representation
** - floating point representation.
** In addition, don't forget about the C/Fortran problems.
**
*****************************************************/
/*****************************************************************
** Part 1: Integer representation.
**
** The following data types are considered relevant:
**
** short
** int
** long
** long long
** integer (fortran)
**
** The fortran integer is dismissed here, since there is no
** platform known to me, were fortran and C-integer do not match
**
** The following abbriviations are introduced:
**
** a) il32 (int long are 32 bits) (e.g. IA32 LINUX, SGI n32, SUN)
**
** short: 16 (else it would appear in the name)
** int: 32
** long: 32
** long long: 64
**
** b) il64 ( int long are 64 bits) (e.g. Cray T3E )
** short: 32
** int: 64
** long: 64
** long long: 64
**
** c) l64 (long are 64 bits) (e.g. SGI 64 IRIX, NEC SX5)
**
** short: 16
** int: 32
** long: 64
** long long: 64
**
***********************************************************************/
/*********************************************************************
** Part 2: Floating point representation
**
** The following datatypes are considered relevant
**
** float
** double
** long double
** real
** double precision
**
** Unfortunatly, here we have to take care, whether float and real,
** respectively double and double precision do match...
**
** a) fr32 (float and real are 32 bits) (e.g. SGI n32 and 64, SUN, NEC SX5,...)
** float: 32
** double: 64
** long double: 128
** real: 32
** double prec.:64
**
** a1) fr32ld96 (float and real 32, long double 96) (e.g. IA32 LINUX gcc/icc)
** see a), except long double is 96
**
** a2) fr32ld64 (e.g. IBM )
** see a), except long double is 64
**
** b) cray ( e.g. Cray T3E)
** float: 32
** double: 64
** long double: 64
** real: 64
** double prec.:64
**
**
** Problem: long double is really treated differently on every machine. Therefore,
** we are storing besides the length of the long double also the length of the mantisee,
** and the number of *relevant* bits in the exponent. Here are the values:
**
** Architecture sizeof(long double) mantisee relevant bits for exp.
**
** SGIn32/64: 128 107 10
** SUN(sparc): 128 113 14
** IA64: 128 64 14
** IA32: 96 64 14
** Alpha: 128 113 14
** 64 53 10 (gcc)
** IBM: 64 53 10
** (128 106 10) (special flags required).
** SX5: 128 105 22
**
** We will not implement all of these routiens, but we consider them
** now when defining the header-settings
**
***********************************************************************/
/********************************************************************
**
** Classification of machines:
**
** IA32 LINUX: il32, fr32ld96, little endian
** SUN: il32, fr32, big endian
** SGI n32: il32, fr32, big endian
** SGI 64: l64, fr32, big endian
** NEC SX5: l64, fr32 big endian
** Cray T3E: il64, cray, big endian
** Cray X1: i32(+), fr32, big endian
** IBM: il32, fr32ld64, big endian
** ALPHA: l64, fr32, little endian
** ITANIUM: l64, fr32, little endian
**
**
** + sizeof ( long long ) not known
** ? alpha supports both, big and little endian
***********************************************************************/
/* Current conclusions:
** we need at the moment three settings:
** - big/little endian ?
** - is long 32 or 64 bits ?
** - is long double 64, 96 or 128 bits ?
** - no. of rel. bits in the exponent of a long double ( 10 or 14 )
** - no. of bits of the mantiss of a long double ( 53, 64, 105, 106, 107, 113 )
**
** To store this in a 32 bit integer, we use the following definition:
**
** 1 2 3 4
** 12345678 12345678 12345678 12345678
**
** 1. Byte:
** bits 1 & 2: 00 (header) (to recognize the correct end)
** bits 3 & 4: encoding: 00 = little, 01 = big
** bits 5 & 6: reserved for later use. currently set to 00
** bits 7 & 8: reserved for later use. currently set to 00
** 2. Byte:
** bits 1 & 2: length of long: 00 = 32, 01 = 64
** bits 3 & 4: lenght of long long (not used currently, set to 00).
** bits 5 & 6: length of C/C++ bool (00 = 8, 01 = 16, 10 = 32)
** bits 7 & 8: length of Fortran Logical (00 = 8, 01 = 16, 10 = 32)
** 3. Byte:
** bits 1 & 2: length of long double: 00=64, 01=96,10 = 128
** bits 3 & 4: no. of rel. bits in the exponent: 00 = 10, 01 = 14)
** bits 5 - 7: no. of bits of mantisse ( 000 = 53, 001 = 64, 010 = 105,
** 011 = 106, 100 = 107,101 = 113 )
** bit 8: intel or sparc representation of mantisse (0 = sparc,
** 1 = intel )
** 4. Byte:
** bits 1 & 2: 11 (header) (to recognize the correct end)
** bits 3 & 4: reserved for later use. currently set to 11
** bits 5 & 6: reserved for later use. currently set to 11
** bits 7 & 8: reserved for later use. currently set to 11
*/
/* These masks implement the specification above above */
#define OPAL_ARCH_HEADERMASK 0x03000000 /* set the fields for the header */
#define OPAL_ARCH_HEADERMASK2 0x00000003 /* other end, needed for checks */
#define OPAL_ARCH_UNUSEDMASK 0xfc000000 /* mark the unused fields */
/* BYTE 1 */
#define OPAL_ARCH_ISBIGENDIAN 0x00000008
/* BYTE 2 */
#define OPAL_ARCH_LONGISxx 0x0000c000 /* mask for sizeof long */
#define OPAL_ARCH_LONGIS64 0x00001000
#define OPAL_ARCH_LONGLONGISxx 0x00003000 /* mask for sizeof long long */
#define OPAL_ARCH_BOOLISxx 0x00000c00 /* mask for sizeof bool */
#define OPAL_ARCH_BOOLIS8 0x00000000 /* bool is 8 bits */
#define OPAL_ARCH_BOOLIS16 0x00000400 /* bool is 16 bits */
#define OPAL_ARCH_BOOLIS32 0x00000800 /* bool is 32 bits */
#define OPAL_ARCH_LOGICALISxx 0x00000300 /* mask for sizeof Fortran logical */
#define OPAL_ARCH_LOGICALIS8 0x00000000 /* logical is 8 bits */
#define OPAL_ARCH_LOGICALIS16 0x00000100 /* logical is 16 bits */
#define OPAL_ARCH_LOGICALIS32 0x00000200 /* logical is 32 bits */
/* BYTE 3 */
#define OPAL_ARCH_LONGDOUBLEIS96 0x00020000
#define OPAL_ARCH_LONGDOUBLEIS128 0x00010000
#define OPAL_ARCH_LDEXPSIZEIS15 0x00080000
#define OPAL_ARCH_LDMANTDIGIS64 0x00400000
#define OPAL_ARCH_LDMANTDIGIS105 0x00200000
#define OPAL_ARCH_LDMANTDIGIS106 0x00600000
#define OPAL_ARCH_LDMANTDIGIS107 0x00100000
#define OPAL_ARCH_LDMANTDIGIS113 0x00500000
#define OPAL_ARCH_LDISINTEL 0x00800000
BEGIN_C_DECLS
OPAL_DECLSPEC int32_t opal_arch_compute_local_id( uint32_t *var);
OPAL_DECLSPEC int32_t opal_arch_checkmask ( uint32_t *var, uint32_t mask );
static inline int32_t opal_arch_isbigendian ( void )
{
const uint32_t value = 0x12345678;
const char *ptr = (char*)&value;
int x = 0;
/* if( sizeof(int) == 8 ) x = 4; */
if( ptr[x] == 0x12) return 1; /* big endian, true */
if( ptr[x] == 0x78 ) return 0; /* little endian, false */
assert( 0 ); /* unknown architecture not little nor big endian */
return -1;
}
/* we must find which representation of long double is used
* intel or sparc. Both of them represent the long doubles using a close to
* IEEE representation (seeeeeee..emmm...m) where the mantissa look like
* 1.????. For the intel representaion the 1 is explicit, and for the sparc
* the first one is implicit. If we take the number 2.0 the exponent is 1
* and the mantissa is 1.0 (the sign of course should be 0). So if we check
* for the first one in the binary representation of the number, we will
* find the bit from the exponent, so the next one should be the begining
* of the mantissa. If it's 1 then we have an intel representaion, if not
* we have a sparc one. QED
*/
static inline int32_t opal_arch_ldisintel( void )
{
long double ld = 2.0;
int i, j;
uint32_t* pui = (uint32_t*)(void*)&ld;
j = LDBL_MANT_DIG / 32;
i = (LDBL_MANT_DIG % 32) - 1;
if( opal_arch_isbigendian() ) { /* big endian */
j = (sizeof(long double) / sizeof(unsigned int)) - j;
if( i < 0 ) {
i = 31;
j = j+1;
}
} else {
if( i < 0 ) {
i = 31;
j = j-1;
}
}
return (pui[j] & (1 << i) ? 1 : 0);
}
static inline void opal_arch_setmask ( uint32_t *var, uint32_t mask)
{
*var |= mask;
}
END_C_DECLS
#endif /* OPAL_ARCH_H_HAS_BEEN_INCLUDED */