
This is a fairly intrusive change, but outside of the moving of opal/event to opal/mca/event, the only changes involved (a) changing all calls to opal_event functions to reflect the new framework instead, and (b) ensuring that all opal_event_t objects are properly constructed since they are now true opal_objects. Note: Shiqing has just returned from vacation and has not yet had a chance to complete the Windows integration. Thus, this commit almost certainly breaks Windows support on the trunk. However, I want this to have a chance to soak for as long as possible before I become less available a week from today (going to be at a class for 5 days, and thus will only be sparingly available) so we can find and fix any problems. Biggest change is moving the libevent code from opal/event to a new opal/mca/event framework. This was done to make it much easier to update libevent in the future. New versions can be inserted as a new component and tested in parallel with the current version until validated, then we can remove the earlier version if we so choose. This is a statically built framework ala installdirs, so only one component will build at a time. There is no selection logic - the sole compiled component simply loads its function pointers into the opal_event struct. I have gone thru the code base and converted all the libevent calls I could find. However, I cannot compile nor test every environment. It is therefore quite likely that errors remain in the system. Please keep an eye open for two things: 1. compile-time errors: these will be obvious as calls to the old functions (e.g., opal_evtimer_new) must be replaced by the new framework APIs (e.g., opal_event.evtimer_new) 2. run-time errors: these will likely show up as segfaults due to missing constructors on opal_event_t objects. It appears that it became a typical practice for people to "init" an opal_event_t by simply using memset to zero it out. This will no longer work - you must either OBJ_NEW or OBJ_CONSTRUCT an opal_event_t. I tried to catch these cases, but may have missed some. Believe me, you'll know when you hit it. There is also the issue of the new libevent "no recursion" behavior. As I described on a recent email, we will have to discuss this and figure out what, if anything, we need to do. This commit was SVN r23925.
415 строки
10 KiB
C
415 строки
10 KiB
C
/* $OpenBSD: kqueue.c,v 1.5 2002/07/10 14:41:31 art Exp $ */
|
|
|
|
/*
|
|
* Copyright 2000-2007 Niels Provos <provos@citi.umich.edu>
|
|
* Copyright 2007-2010 Niels Provos and Nick Mathewson
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
#include "event2/event-config.h"
|
|
|
|
#define _GNU_SOURCE
|
|
|
|
#include <sys/types.h>
|
|
#ifdef _EVENT_HAVE_SYS_TIME_H
|
|
#include <sys/time.h>
|
|
#endif
|
|
#include <sys/queue.h>
|
|
#include <sys/event.h>
|
|
#include <signal.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <errno.h>
|
|
#ifdef _EVENT_HAVE_INTTYPES_H
|
|
#include <inttypes.h>
|
|
#endif
|
|
|
|
/* Some platforms apparently define the udata field of struct kevent as
|
|
* intptr_t, whereas others define it as void*. There doesn't seem to be an
|
|
* easy way to tell them apart via autoconf, so we need to use OS macros. */
|
|
#if defined(_EVENT_HAVE_INTTYPES_H) && !defined(__OpenBSD__) && !defined(__FreeBSD__) && !defined(__darwin__) && !defined(__APPLE__)
|
|
#define PTR_TO_UDATA(x) ((intptr_t)(x))
|
|
#else
|
|
#define PTR_TO_UDATA(x) (x)
|
|
#endif
|
|
|
|
#include "event-internal.h"
|
|
#include "log-internal.h"
|
|
#include "evmap-internal.h"
|
|
#include "event2/thread.h"
|
|
#include "evthread-internal.h"
|
|
#include "changelist-internal.h"
|
|
|
|
#define NEVENT 64
|
|
|
|
struct kqop {
|
|
struct kevent *changes;
|
|
int changes_size;
|
|
|
|
struct kevent *events;
|
|
int events_size;
|
|
int kq;
|
|
pid_t pid;
|
|
};
|
|
|
|
static void kqop_free(struct kqop *kqop);
|
|
|
|
static void *kq_init(struct event_base *);
|
|
static int kq_sig_add(struct event_base *, int, short, short, void *);
|
|
static int kq_sig_del(struct event_base *, int, short, short, void *);
|
|
static int kq_dispatch(struct event_base *, struct timeval *);
|
|
static void kq_dealloc(struct event_base *);
|
|
|
|
const struct eventop kqops = {
|
|
"kqueue",
|
|
kq_init,
|
|
event_changelist_add,
|
|
event_changelist_del,
|
|
kq_dispatch,
|
|
kq_dealloc,
|
|
1 /* need reinit */,
|
|
EV_FEATURE_ET|EV_FEATURE_O1|EV_FEATURE_FDS,
|
|
EVENT_CHANGELIST_FDINFO_SIZE
|
|
};
|
|
|
|
static const struct eventop kqsigops = {
|
|
"kqueue_signal",
|
|
NULL,
|
|
kq_sig_add,
|
|
kq_sig_del,
|
|
NULL,
|
|
NULL,
|
|
1 /* need reinit */,
|
|
0,
|
|
0
|
|
};
|
|
|
|
static void *
|
|
kq_init(struct event_base *base)
|
|
{
|
|
int kq = -1;
|
|
struct kqop *kqueueop = NULL;
|
|
|
|
if (!(kqueueop = mm_calloc(1, sizeof(struct kqop))))
|
|
return (NULL);
|
|
|
|
/* Initialize the kernel queue */
|
|
|
|
if ((kq = kqueue()) == -1) {
|
|
event_warn("kqueue");
|
|
goto err;
|
|
}
|
|
|
|
kqueueop->kq = kq;
|
|
|
|
kqueueop->pid = getpid();
|
|
|
|
/* Initialize fields */
|
|
kqueueop->changes = mm_calloc(NEVENT, sizeof(struct kevent));
|
|
if (kqueueop->changes == NULL)
|
|
goto err;
|
|
kqueueop->events = mm_calloc(NEVENT, sizeof(struct kevent));
|
|
if (kqueueop->events == NULL)
|
|
goto err;
|
|
kqueueop->events_size = kqueueop->changes_size = NEVENT;
|
|
|
|
/* Check for Mac OS X kqueue bug. */
|
|
memset(&kqueueop->changes[0], 0, sizeof kqueueop->changes[0]);
|
|
kqueueop->changes[0].ident = -1;
|
|
kqueueop->changes[0].filter = EVFILT_READ;
|
|
kqueueop->changes[0].flags = EV_ADD;
|
|
/*
|
|
* If kqueue works, then kevent will succeed, and it will
|
|
* stick an error in events[0]. If kqueue is broken, then
|
|
* kevent will fail.
|
|
*/
|
|
if (kevent(kq,
|
|
kqueueop->changes, 1, kqueueop->events, NEVENT, NULL) != 1 ||
|
|
kqueueop->events[0].ident != -1 ||
|
|
kqueueop->events[0].flags != EV_ERROR) {
|
|
event_warn("%s: detected broken kqueue; not using.", __func__);
|
|
goto err;
|
|
}
|
|
|
|
base->evsigsel = &kqsigops;
|
|
base->evsigbase = kqueueop;
|
|
|
|
return (kqueueop);
|
|
err:
|
|
if (kqueueop)
|
|
kqop_free(kqueueop);
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
static void
|
|
kq_sighandler(int sig)
|
|
{
|
|
/* Do nothing here */
|
|
}
|
|
|
|
static void
|
|
kq_setup_kevent(struct kevent *out, evutil_socket_t fd, int filter, short change)
|
|
{
|
|
memset(out, 0, sizeof(out));
|
|
out->ident = fd;
|
|
out->filter = filter;
|
|
|
|
if (change & EV_CHANGE_ADD) {
|
|
out->flags = EV_ADD;
|
|
if (change & EV_ET)
|
|
out->flags |= EV_CLEAR;
|
|
#ifdef NOTE_EOF
|
|
/* Make it behave like select() and poll() */
|
|
if (filter == EVFILT_READ)
|
|
out->fflags = NOTE_EOF;
|
|
#endif
|
|
} else {
|
|
EVUTIL_ASSERT(change & EV_CHANGE_DEL);
|
|
out->flags = EV_DELETE;
|
|
}
|
|
}
|
|
|
|
static int
|
|
kq_build_changes_list(const struct event_changelist *changelist,
|
|
struct kqop *kqop)
|
|
{
|
|
int i;
|
|
int n_changes = 0;
|
|
|
|
for (i = 0; i < changelist->n_changes; ++i) {
|
|
struct event_change *in_ch = &changelist->changes[i];
|
|
struct kevent *out_ch;
|
|
if (n_changes >= kqop->changes_size - 1) {
|
|
int newsize = kqop->changes_size * 2;
|
|
struct kevent *newchanges;
|
|
|
|
newchanges = mm_realloc(kqop->changes,
|
|
newsize * sizeof(struct kevent));
|
|
if (newchanges == NULL) {
|
|
event_warn("%s: realloc", __func__);
|
|
return (-1);
|
|
}
|
|
kqop->changes = newchanges;
|
|
kqop->changes_size = newsize;
|
|
}
|
|
if (in_ch->read_change) {
|
|
out_ch = &kqop->changes[n_changes++];
|
|
kq_setup_kevent(out_ch, in_ch->fd, EVFILT_READ,
|
|
in_ch->read_change);
|
|
}
|
|
if (in_ch->write_change) {
|
|
out_ch = &kqop->changes[n_changes++];
|
|
kq_setup_kevent(out_ch, in_ch->fd, EVFILT_WRITE,
|
|
in_ch->write_change);
|
|
}
|
|
}
|
|
return n_changes;
|
|
}
|
|
|
|
static int
|
|
kq_dispatch(struct event_base *base, struct timeval *tv)
|
|
{
|
|
struct kqop *kqop = base->evbase;
|
|
struct kevent *events = kqop->events;
|
|
struct kevent *changes;
|
|
struct timespec ts, *ts_p = NULL;
|
|
int i, n_changes, res;
|
|
|
|
if (tv != NULL) {
|
|
TIMEVAL_TO_TIMESPEC(tv, &ts);
|
|
ts_p = &ts;
|
|
}
|
|
|
|
/* Build "changes" from "base->changes" */
|
|
EVUTIL_ASSERT(kqop->changes);
|
|
n_changes = kq_build_changes_list(&base->changelist, kqop);
|
|
if (n_changes < 0)
|
|
return -1;
|
|
|
|
event_changelist_remove_all(&base->changelist, base);
|
|
|
|
/* steal the changes array in case some broken code tries to call
|
|
* dispatch twice at once. */
|
|
changes = kqop->changes;
|
|
kqop->changes = NULL;
|
|
|
|
EVBASE_RELEASE_LOCK(base, th_base_lock);
|
|
|
|
res = kevent(kqop->kq, changes, n_changes,
|
|
events, kqop->events_size, ts_p);
|
|
|
|
EVBASE_ACQUIRE_LOCK(base, th_base_lock);
|
|
|
|
EVUTIL_ASSERT(kqop->changes == NULL);
|
|
kqop->changes = changes;
|
|
|
|
if (res == -1) {
|
|
if (errno != EINTR) {
|
|
event_warn("kevent");
|
|
return (-1);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
event_debug(("%s: kevent reports %d", __func__, res));
|
|
|
|
for (i = 0; i < res; i++) {
|
|
int which = 0;
|
|
|
|
if (events[i].flags & EV_ERROR) {
|
|
/*
|
|
* Error messages that can happen, when a delete fails.
|
|
* EBADF happens when the file descriptor has been
|
|
* closed,
|
|
* ENOENT when the file descriptor was closed and
|
|
* then reopened.
|
|
* EINVAL for some reasons not understood; EINVAL
|
|
* should not be returned ever; but FreeBSD does :-\
|
|
* An error is also indicated when a callback deletes
|
|
* an event we are still processing. In that case
|
|
* the data field is set to ENOENT.
|
|
*/
|
|
if (events[i].data == EBADF ||
|
|
events[i].data == EINVAL ||
|
|
events[i].data == ENOENT)
|
|
continue;
|
|
errno = events[i].data;
|
|
return (-1);
|
|
}
|
|
|
|
if (events[i].filter == EVFILT_READ) {
|
|
which |= EV_READ;
|
|
} else if (events[i].filter == EVFILT_WRITE) {
|
|
which |= EV_WRITE;
|
|
} else if (events[i].filter == EVFILT_SIGNAL) {
|
|
which |= EV_SIGNAL;
|
|
}
|
|
|
|
if (!which)
|
|
continue;
|
|
|
|
if (events[i].filter == EVFILT_SIGNAL) {
|
|
evmap_signal_active(base, events[i].ident, 1);
|
|
} else {
|
|
evmap_io_active(base, events[i].ident, which | EV_ET);
|
|
}
|
|
}
|
|
|
|
if (res == kqop->events_size) {
|
|
struct kevent *newresult;
|
|
int size = kqop->events_size;
|
|
/* We used all the events space that we have. Maybe we should
|
|
make it bigger. */
|
|
size *= 2;
|
|
newresult = mm_realloc(kqop->events,
|
|
size * sizeof(struct kevent));
|
|
if (newresult) {
|
|
kqop->events = newresult;
|
|
kqop->events_size = size;
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
kqop_free(struct kqop *kqop)
|
|
{
|
|
if (kqop->changes)
|
|
mm_free(kqop->changes);
|
|
if (kqop->events)
|
|
mm_free(kqop->events);
|
|
if (kqop->kq >= 0 && kqop->pid == getpid())
|
|
close(kqop->kq);
|
|
memset(kqop, 0, sizeof(struct kqop));
|
|
mm_free(kqop);
|
|
}
|
|
|
|
static void
|
|
kq_dealloc(struct event_base *base)
|
|
{
|
|
struct kqop *kqop = base->evbase;
|
|
evsig_dealloc(base);
|
|
kqop_free(kqop);
|
|
}
|
|
|
|
/* signal handling */
|
|
static int
|
|
kq_sig_add(struct event_base *base, int nsignal, short old, short events, void *p)
|
|
{
|
|
struct kqop *kqop = base->evbase;
|
|
struct kevent kev;
|
|
struct timespec timeout = { 0, 0 };
|
|
(void)p;
|
|
|
|
EVUTIL_ASSERT(nsignal >= 0 && nsignal < NSIG);
|
|
|
|
memset(&kev, 0, sizeof(kev));
|
|
kev.ident = nsignal;
|
|
kev.filter = EVFILT_SIGNAL;
|
|
kev.flags = EV_ADD;
|
|
|
|
/* Be ready for the signal if it is sent any
|
|
* time between now and the next call to
|
|
* kq_dispatch. */
|
|
if (kevent(kqop->kq, &kev, 1, NULL, 0, &timeout) == -1)
|
|
return (-1);
|
|
|
|
if (_evsig_set_handler(base, nsignal, kq_sighandler) == -1)
|
|
return (-1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
kq_sig_del(struct event_base *base, int nsignal, short old, short events, void *p)
|
|
{
|
|
struct kqop *kqop = base->evbase;
|
|
struct kevent kev;
|
|
|
|
struct timespec timeout = { 0, 0 };
|
|
(void)p;
|
|
|
|
EVUTIL_ASSERT(nsignal >= 0 && nsignal < NSIG);
|
|
|
|
memset(&kev, 0, sizeof(kev));
|
|
kev.ident = nsignal;
|
|
kev.filter = EVFILT_SIGNAL;
|
|
kev.flags = EV_DELETE;
|
|
|
|
/* Because we insert signal events
|
|
* immediately, we need to delete them
|
|
* immediately, too */
|
|
if (kevent(kqop->kq, &kev, 1, NULL, 0, &timeout) == -1)
|
|
return (-1);
|
|
|
|
if (_evsig_restore_handler(base, nsignal) == -1)
|
|
return (-1);
|
|
|
|
return (0);
|
|
}
|