1
1
openmpi/opal/mca/btl/sm/btl_sm.c
Gilles Gouaillardet aeee48357a btl/sm: correctly handle nodes with zero NUMA hwloc object
the hwloc topology might not contain a NUMA object with hwloc < v2
if the node is not NUMA, so force the NUMA object count to one
in order to correctly allocate mca_btl_sm_component.sm_mpools.

Signed-off-by: Gilles Gouaillardet <gilles@rist.or.jp>
2017-01-12 11:45:29 +09:00

1369 строки
49 KiB
C

/* -*- Mode: C; c-basic-offset:4 ; indent-tabs-mode:nil -*- */
/*
* Copyright (c) 2004-2011 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2014 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2007 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2006-2007 Voltaire. All rights reserved.
* Copyright (c) 2009-2012 Cisco Systems, Inc. All rights reserved.
* Copyright (c) 2010-2015 Los Alamos National Security, LLC.
* All rights reserved.
* Copyright (c) 2010-2012 IBM Corporation. All rights reserved.
* Copyright (c) 2012 Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2013-2016 Intel, Inc. All rights reserved.
* Copyright (c) 2014-2017 Research Organization for Information Science
* and Technology (RIST). All rights reserved.
* Copyright (c) 2016 ARM, Inc. All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "opal_config.h"
#include <sys/types.h>
#include <sys/stat.h>
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_FCNTL_H
#include <fcntl.h>
#endif /* HAVE_FCNTL_H */
#include <errno.h>
#ifdef HAVE_SYS_MMAN_H
#include <sys/mman.h>
#endif /* HAVE_SYS_MMAN_H */
#if OPAL_BTL_SM_HAVE_CMA && OPAL_CMA_NEED_SYSCALL_DEFS
#include "opal/sys/cma.h"
#endif /* OPAL_CMA_NEED_SYSCALL_DEFS */
#include "opal/sys/atomic.h"
#include "opal/class/opal_bitmap.h"
#include "opal/util/output.h"
#include "opal/util/show_help.h"
#include "opal/util/printf.h"
#include "opal/mca/hwloc/base/base.h"
#include "opal/mca/pmix/base/base.h"
#include "opal/mca/shmem/base/base.h"
#include "opal/mca/shmem/shmem.h"
#include "opal/datatype/opal_convertor.h"
#include "opal/mca/btl/btl.h"
#include "opal/align.h"
#include "opal/util/sys_limits.h"
#if OPAL_ENABLE_FT_CR == 1
#include "opal/util/basename.h"
#include "opal/mca/crs/base/base.h"
#include "opal/util/basename.h"
#include "orte/mca/sstore/sstore.h"
#include "opal/runtime/opal_cr.h"
#endif
#include "btl_sm.h"
#include "btl_sm_endpoint.h"
#include "btl_sm_frag.h"
#include "btl_sm_fifo.h"
#include "opal/util/proc.h"
mca_btl_sm_t mca_btl_sm = {
.super = {
.btl_component = &mca_btl_sm_component.super,
.btl_add_procs = mca_btl_sm_add_procs,
.btl_del_procs = mca_btl_sm_del_procs,
.btl_finalize = mca_btl_sm_finalize,
.btl_alloc = mca_btl_sm_alloc,
.btl_free = mca_btl_sm_free,
.btl_prepare_src = mca_btl_sm_prepare_src,
.btl_send = mca_btl_sm_send,
.btl_sendi = mca_btl_sm_sendi,
.btl_dump = mca_btl_sm_dump,
.btl_register_error = mca_btl_sm_register_error_cb, /* register error */
.btl_ft_event = mca_btl_sm_ft_event
}
};
/*
* calculate offset of an address from the beginning of a shared memory segment
*/
#define ADDR2OFFSET(ADDR, BASE) ((char*)(ADDR) - (char*)(BASE))
/*
* calculate an absolute address in a local address space given an offset and
* a base address of a shared memory segment
*/
#define OFFSET2ADDR(OFFSET, BASE) ((ptrdiff_t)(OFFSET) + (char*)(BASE))
static void *mpool_calloc(size_t nmemb, size_t size)
{
void *buf;
size_t bsize = nmemb * size;
mca_mpool_base_module_t *mpool = mca_btl_sm_component.sm_mpool;
buf = mpool->mpool_alloc(mpool, bsize, opal_cache_line_size, 0);
if (NULL == buf)
return NULL;
memset(buf, 0, bsize);
return buf;
}
static int
setup_mpool_base_resources(mca_btl_sm_component_t *comp_ptr,
mca_common_sm_mpool_resources_t *out_res)
{
int rc = OPAL_SUCCESS;
int fd = -1;
ssize_t bread = 0;
/* Wait for the file to be created */
while (0 != access(comp_ptr->sm_rndv_file_name, R_OK)) {
opal_progress();
}
if (-1 == (fd = open(comp_ptr->sm_mpool_rndv_file_name, O_RDONLY))) {
int err = errno;
opal_show_help("help-mpi-btl-sm.txt", "sys call fail", true,
"open(2)", strerror(err), err);
rc = OPAL_ERR_IN_ERRNO;
goto out;
}
if ((ssize_t)sizeof(opal_shmem_ds_t) != (bread =
read(fd, &out_res->bs_meta_buf, sizeof(opal_shmem_ds_t)))) {
opal_output(0, "setup_mpool_base_resources: "
"Read inconsistency -- read: %lu, but expected: %lu!\n",
(unsigned long)bread,
(unsigned long)sizeof(opal_shmem_ds_t));
rc = OPAL_ERROR;
goto out;
}
if ((ssize_t)sizeof(out_res->size) != (bread =
read(fd, &out_res->size, sizeof(size_t)))) {
opal_output(0, "setup_mpool_base_resources: "
"Read inconsistency -- read: %lu, but expected: %lu!\n",
(unsigned long)bread,
(unsigned long)sizeof(opal_shmem_ds_t));
rc = OPAL_ERROR;
goto out;
}
out:
if (-1 != fd) {
(void)close(fd);
}
return rc;
}
static int
sm_segment_attach(mca_btl_sm_component_t *comp_ptr)
{
int rc = OPAL_SUCCESS;
int fd = -1;
ssize_t bread = 0;
opal_shmem_ds_t *tmp_shmem_ds = calloc(1, sizeof(*tmp_shmem_ds));
if (NULL == tmp_shmem_ds) {
return OPAL_ERR_OUT_OF_RESOURCE;
}
if (-1 == (fd = open(comp_ptr->sm_rndv_file_name, O_RDONLY))) {
int err = errno;
opal_show_help("help-mpi-btl-sm.txt", "sys call fail", true,
"open(2)", strerror(err), err);
rc = OPAL_ERR_IN_ERRNO;
goto out;
}
if ((ssize_t)sizeof(opal_shmem_ds_t) != (bread =
read(fd, tmp_shmem_ds, sizeof(opal_shmem_ds_t)))) {
opal_output(0, "sm_segment_attach: "
"Read inconsistency -- read: %lu, but expected: %lu!\n",
(unsigned long)bread,
(unsigned long)sizeof(opal_shmem_ds_t));
rc = OPAL_ERROR;
goto out;
}
if (NULL == (comp_ptr->sm_seg =
mca_common_sm_module_attach(tmp_shmem_ds,
sizeof(mca_common_sm_seg_header_t),
opal_cache_line_size))) {
/* don't have to detach here, because module_attach cleans up after
* itself on failure. */
opal_output(0, "sm_segment_attach: "
"mca_common_sm_module_attach failure!\n");
rc = OPAL_ERROR;
}
out:
if (-1 != fd) {
(void)close(fd);
}
if (tmp_shmem_ds) {
free(tmp_shmem_ds);
}
return rc;
}
static int
sm_btl_first_time_init(mca_btl_sm_t *sm_btl,
int32_t my_smp_rank,
int n)
{
size_t length, length_payload;
sm_fifo_t *my_fifos;
int my_mem_node, num_mem_nodes, i, rc;
mca_common_sm_mpool_resources_t *res = NULL;
mca_btl_sm_component_t* m = &mca_btl_sm_component;
char *loc, *mynuma;
opal_process_name_t wildcard_rank;
/* Assume we don't have hwloc support and fill in dummy info */
mca_btl_sm_component.mem_node = my_mem_node = 0;
mca_btl_sm_component.num_mem_nodes = num_mem_nodes = 1;
/* see if we were given a topology signature */
wildcard_rank.jobid = OPAL_PROC_MY_NAME.jobid;
wildcard_rank.vpid = OPAL_VPID_WILDCARD;
OPAL_MODEX_RECV_VALUE_OPTIONAL(rc, OPAL_PMIX_TOPOLOGY_SIGNATURE,
&wildcard_rank, &loc, OPAL_STRING);
if (OPAL_SUCCESS == rc) {
/* the number of NUMA nodes is right at the front */
num_mem_nodes = strtoul(loc, NULL, 10);
free(loc);
} else {
/* If we have hwloc support, then get accurate information */
if (OPAL_SUCCESS == opal_hwloc_base_get_topology()) {
i = opal_hwloc_base_get_nbobjs_by_type(opal_hwloc_topology,
HWLOC_OBJ_NODE, 0,
OPAL_HWLOC_AVAILABLE);
/* JMS This tells me how many numa nodes are *available*,
but it's not how many are being used *by this job*.
Note that this is the value we've previously used (from
the previous carto-based implementation), but it really
should be improved to be how many NUMA nodes are being
used *in this job*. */
num_mem_nodes = i;
}
}
if (0 == num_mem_nodes) {
/* the topology might not contain a NUMA object with hwloc < v2
* if the node is not NUMA, so force it to one in this case */
num_mem_nodes = 1;
}
mca_btl_sm_component.num_mem_nodes = num_mem_nodes;
/* see if we were given our location */
loc = NULL;
OPAL_MODEX_RECV_VALUE_OPTIONAL(rc, OPAL_PMIX_LOCALITY_STRING,
&OPAL_PROC_MY_NAME, &loc, OPAL_STRING);
if (OPAL_SUCCESS == rc) {
if (NULL == loc) {
mca_btl_sm_component.mem_node = my_mem_node = -1;
} else {
/* get our NUMA location */
mynuma = opal_hwloc_base_get_location(loc, HWLOC_OBJ_NODE, 0);
if (NULL == mynuma ||
NULL != strchr(mynuma, ',') ||
NULL != strchr(mynuma, '-')) {
/* we either have no idea what NUMA we are on, or we
* are on multiple NUMA nodes */
mca_btl_sm_component.mem_node = my_mem_node = -1;
} else {
/* we are bound to a single NUMA node */
my_mem_node = strtoul(mynuma, NULL, 10);
mca_btl_sm_component.mem_node = my_mem_node;
}
if (NULL != mynuma) {
free(mynuma);
}
free(loc);
}
} else {
/* If we have hwloc support, then get accurate information */
if (OPAL_SUCCESS == opal_hwloc_base_get_topology() && num_mem_nodes > 0) {
int numa=0, w;
unsigned n_bound=0;
hwloc_cpuset_t avail;
hwloc_obj_t obj;
/* count the number of NUMA nodes to which we are bound */
for (w=0; w < i; w++) {
if (NULL == (obj = opal_hwloc_base_get_obj_by_type(opal_hwloc_topology,
HWLOC_OBJ_NODE, 0, w,
OPAL_HWLOC_AVAILABLE))) {
continue;
}
/* get that NUMA node's available cpus */
avail = opal_hwloc_base_get_available_cpus(opal_hwloc_topology, obj);
/* see if we intersect */
if (hwloc_bitmap_intersects(avail, opal_hwloc_my_cpuset)) {
n_bound++;
numa = w;
}
}
/* if we are located on more than one NUMA, or we didn't find
* a NUMA we are on, then not much we can do
*/
if (1 == n_bound) {
mca_btl_sm_component.mem_node = my_mem_node = numa;
} else {
mca_btl_sm_component.mem_node = my_mem_node = -1;
}
}
}
if (NULL == (res = calloc(1, sizeof(*res)))) {
return OPAL_ERR_OUT_OF_RESOURCE;
}
/* lookup shared memory pool */
mca_btl_sm_component.sm_mpools =
(mca_mpool_base_module_t **)calloc(num_mem_nodes,
sizeof(mca_mpool_base_module_t *));
/* Disable memory binding, because each MPI process will claim pages in the
* mpool for their local NUMA node */
res->mem_node = -1;
res->allocator = mca_btl_sm_component.allocator;
if (OPAL_SUCCESS != (rc = setup_mpool_base_resources(m, res))) {
free(res);
return rc;
}
/* now that res is fully populated, create the thing */
mca_btl_sm_component.sm_mpools[0] = common_sm_mpool_create (res);
/* Sanity check to ensure that we found it */
if (NULL == mca_btl_sm_component.sm_mpools[0]) {
free(res);
return OPAL_ERR_OUT_OF_RESOURCE;
}
mca_btl_sm_component.sm_mpool = mca_btl_sm_component.sm_mpools[0];
mca_btl_sm_component.sm_mpool_base =
mca_btl_sm_component.sm_mpools[0]->mpool_base(mca_btl_sm_component.sm_mpools[0]);
/* create a list of peers */
mca_btl_sm_component.sm_peers = (struct mca_btl_base_endpoint_t**)
calloc(n, sizeof(struct mca_btl_base_endpoint_t*));
if (NULL == mca_btl_sm_component.sm_peers) {
free(res);
return OPAL_ERR_OUT_OF_RESOURCE;
}
/* remember that node rank zero is already attached */
if (0 != my_smp_rank) {
if (OPAL_SUCCESS != (rc = sm_segment_attach(m))) {
free(res);
return rc;
}
}
/* it is now safe to free the mpool resources */
free(res);
/* check to make sure number of local procs is within the
* specified limits */
if(mca_btl_sm_component.sm_max_procs > 0 &&
mca_btl_sm_component.num_smp_procs + n >
mca_btl_sm_component.sm_max_procs) {
return OPAL_ERROR;
}
mca_btl_sm_component.shm_fifo = (volatile sm_fifo_t **)mca_btl_sm_component.sm_seg->module_data_addr;
mca_btl_sm_component.shm_bases = (char**)(mca_btl_sm_component.shm_fifo + n);
mca_btl_sm_component.shm_mem_nodes = (uint16_t*)(mca_btl_sm_component.shm_bases + n);
/* set the base of the shared memory segment */
mca_btl_sm_component.shm_bases[mca_btl_sm_component.my_smp_rank] =
(char*)mca_btl_sm_component.sm_mpool_base;
mca_btl_sm_component.shm_mem_nodes[mca_btl_sm_component.my_smp_rank] =
(uint16_t)my_mem_node;
/* initialize the array of fifo's "owned" by this process */
if(NULL == (my_fifos = (sm_fifo_t*)mpool_calloc(FIFO_MAP_NUM(n), sizeof(sm_fifo_t))))
return OPAL_ERR_OUT_OF_RESOURCE;
mca_btl_sm_component.shm_fifo[mca_btl_sm_component.my_smp_rank] = my_fifos;
/* cache the pointer to the 2d fifo array. These addresses
* are valid in the current process space */
mca_btl_sm_component.fifo = (sm_fifo_t**)malloc(sizeof(sm_fifo_t*) * n);
if(NULL == mca_btl_sm_component.fifo)
return OPAL_ERR_OUT_OF_RESOURCE;
mca_btl_sm_component.fifo[mca_btl_sm_component.my_smp_rank] = my_fifos;
mca_btl_sm_component.mem_nodes = (uint16_t *) malloc(sizeof(uint16_t) * n);
if(NULL == mca_btl_sm_component.mem_nodes)
return OPAL_ERR_OUT_OF_RESOURCE;
/* initialize fragment descriptor free lists */
/* allocation will be for the fragment descriptor and payload buffer */
length = sizeof(mca_btl_sm_frag1_t);
length_payload =
sizeof(mca_btl_sm_hdr_t) + mca_btl_sm_component.eager_limit;
i = opal_free_list_init (&mca_btl_sm_component.sm_frags_eager, length,
opal_cache_line_size, OBJ_CLASS(mca_btl_sm_frag1_t),
length_payload, opal_cache_line_size,
mca_btl_sm_component.sm_free_list_num,
mca_btl_sm_component.sm_free_list_max,
mca_btl_sm_component.sm_free_list_inc,
mca_btl_sm_component.sm_mpool, 0, NULL, NULL, NULL);
if ( OPAL_SUCCESS != i )
return i;
length = sizeof(mca_btl_sm_frag2_t);
length_payload =
sizeof(mca_btl_sm_hdr_t) + mca_btl_sm_component.max_frag_size;
i = opal_free_list_init (&mca_btl_sm_component.sm_frags_max, length,
opal_cache_line_size, OBJ_CLASS(mca_btl_sm_frag2_t),
length_payload, opal_cache_line_size,
mca_btl_sm_component.sm_free_list_num,
mca_btl_sm_component.sm_free_list_max,
mca_btl_sm_component.sm_free_list_inc,
mca_btl_sm_component.sm_mpool, 0, NULL, NULL, NULL);
if ( OPAL_SUCCESS != i )
return i;
i = opal_free_list_init (&mca_btl_sm_component.sm_frags_user,
sizeof(mca_btl_sm_user_t),
opal_cache_line_size, OBJ_CLASS(mca_btl_sm_user_t),
sizeof(mca_btl_sm_hdr_t), opal_cache_line_size,
mca_btl_sm_component.sm_free_list_num,
mca_btl_sm_component.sm_free_list_max,
mca_btl_sm_component.sm_free_list_inc,
mca_btl_sm_component.sm_mpool, 0, NULL, NULL, NULL);
if ( OPAL_SUCCESS != i )
return i;
mca_btl_sm_component.num_outstanding_frags = 0;
mca_btl_sm_component.num_pending_sends = 0;
i = opal_free_list_init(&mca_btl_sm_component.pending_send_fl,
sizeof(btl_sm_pending_send_item_t), 8,
OBJ_CLASS(opal_free_list_item_t),
0, 0, 16, -1, 32, NULL, 0, NULL, NULL,
NULL);
if ( OPAL_SUCCESS != i )
return i;
/* set flag indicating btl has been inited */
sm_btl->btl_inited = true;
return OPAL_SUCCESS;
}
static struct mca_btl_base_endpoint_t *
create_sm_endpoint(int local_proc, struct opal_proc_t *proc)
{
struct mca_btl_base_endpoint_t *ep;
#if OPAL_ENABLE_PROGRESS_THREADS == 1
char path[PATH_MAX];
#endif
ep = (struct mca_btl_base_endpoint_t*)
malloc(sizeof(struct mca_btl_base_endpoint_t));
if(NULL == ep)
return NULL;
ep->peer_smp_rank = local_proc + mca_btl_sm_component.num_smp_procs;
OBJ_CONSTRUCT(&ep->pending_sends, opal_list_t);
OBJ_CONSTRUCT(&ep->endpoint_lock, opal_mutex_t);
#if OPAL_ENABLE_PROGRESS_THREADS == 1
sprintf(path, "%s"OPAL_PATH_SEP"sm_fifo.%lu",
opal_process_info.job_session_dir,
(unsigned long)proc->proc_name);
ep->fifo_fd = open(path, O_WRONLY);
if(ep->fifo_fd < 0) {
opal_output(0, "mca_btl_sm_add_procs: open(%s) failed with errno=%d\n",
path, errno);
free(ep);
return NULL;
}
#endif
return ep;
}
int mca_btl_sm_add_procs(
struct mca_btl_base_module_t* btl,
size_t nprocs,
struct opal_proc_t **procs,
struct mca_btl_base_endpoint_t **peers,
opal_bitmap_t* reachability)
{
int return_code = OPAL_SUCCESS;
int32_t n_local_procs = 0, proc, j, my_smp_rank = -1;
const opal_proc_t* my_proc; /* pointer to caller's proc structure */
mca_btl_sm_t *sm_btl;
bool have_connected_peer = false;
char **bases;
/* for easy access to the mpool_sm_module */
mca_common_sm_mpool_module_t *sm_mpool_modp = NULL;
/* initializion */
sm_btl = (mca_btl_sm_t *)btl;
/* get pointer to my proc structure */
if( NULL == (my_proc = opal_proc_local_get()) )
return OPAL_ERR_OUT_OF_RESOURCE;
/* Get unique host identifier for each process in the list,
* and idetify procs that are on this host. Add procs on this
* host to shared memory reachbility list. Also, get number
* of local procs in the procs list. */
for (proc = 0; proc < (int32_t)nprocs; proc++) {
/* check to see if this proc can be reached via shmem (i.e.,
if they're on my local host and in my job) */
if (procs[proc]->proc_name.jobid != my_proc->proc_name.jobid ||
!OPAL_PROC_ON_LOCAL_NODE(procs[proc]->proc_flags)) {
peers[proc] = NULL;
continue;
}
/* check to see if this is me */
if(my_proc == procs[proc]) {
my_smp_rank = mca_btl_sm_component.my_smp_rank = n_local_procs++;
continue;
}
/* sm doesn't support heterogeneous yet... */
if (procs[proc]->proc_arch != my_proc->proc_arch) {
continue;
}
/* we have someone to talk to */
have_connected_peer = true;
if(!(peers[proc] = create_sm_endpoint(n_local_procs, procs[proc]))) {
return_code = OPAL_ERROR;
goto CLEANUP;
}
n_local_procs++;
/* add this proc to shared memory accessibility list */
return_code = opal_bitmap_set_bit(reachability, proc);
if(OPAL_SUCCESS != return_code)
goto CLEANUP;
}
/* jump out if there's not someone we can talk to */
if (!have_connected_peer)
goto CLEANUP;
/* make sure that my_smp_rank has been defined */
if (-1 == my_smp_rank) {
return_code = OPAL_ERROR;
goto CLEANUP;
}
if (!sm_btl->btl_inited) {
return_code =
sm_btl_first_time_init(sm_btl, my_smp_rank,
mca_btl_sm_component.sm_max_procs);
if (return_code != OPAL_SUCCESS) {
goto CLEANUP;
}
}
/* set local proc's smp rank in the peers structure for
* rapid access and calculate reachability */
for(proc = 0; proc < (int32_t)nprocs; proc++) {
if(NULL == peers[proc])
continue;
mca_btl_sm_component.sm_peers[peers[proc]->peer_smp_rank] = peers[proc];
peers[proc]->my_smp_rank = my_smp_rank;
}
bases = mca_btl_sm_component.shm_bases;
sm_mpool_modp = (mca_common_sm_mpool_module_t *)mca_btl_sm_component.sm_mpool;
/* initialize own FIFOs */
/*
* The receiver initializes all its FIFOs. All components will
* be allocated near the receiver. Nothing will be local to
* "the sender" since there will be many senders.
*/
for(j = mca_btl_sm_component.num_smp_procs;
j < mca_btl_sm_component.num_smp_procs + FIFO_MAP_NUM(n_local_procs); j++) {
return_code = sm_fifo_init( mca_btl_sm_component.fifo_size,
mca_btl_sm_component.sm_mpool,
&mca_btl_sm_component.fifo[my_smp_rank][j],
mca_btl_sm_component.fifo_lazy_free);
if(return_code != OPAL_SUCCESS)
goto CLEANUP;
}
opal_atomic_wmb();
/* Sync with other local procs. Force the FIFO initialization to always
* happens before the readers access it.
*/
(void)opal_atomic_add_32(&mca_btl_sm_component.sm_seg->module_seg->seg_inited, 1);
while( n_local_procs >
mca_btl_sm_component.sm_seg->module_seg->seg_inited) {
opal_progress();
opal_atomic_rmb();
}
/* it is now safe to unlink the shared memory segment. only one process
* needs to do this, so just let smp rank zero take care of it. */
if (0 == my_smp_rank) {
if (OPAL_SUCCESS !=
mca_common_sm_module_unlink(mca_btl_sm_component.sm_seg)) {
/* it is "okay" if this fails at this point. we have gone this far,
* so just warn about the failure and continue. this is probably
* only triggered by a programming error. */
opal_output(0, "WARNING: common_sm_module_unlink failed.\n");
}
/* SKG - another abstraction violation here, but I don't want to add
* extra code in the sm mpool for further synchronization. */
/* at this point, all processes have attached to the mpool segment. so
* it is safe to unlink it here. */
if (OPAL_SUCCESS !=
mca_common_sm_module_unlink(sm_mpool_modp->sm_common_module)) {
opal_output(0, "WARNING: common_sm_module_unlink failed.\n");
}
if (-1 == unlink(mca_btl_sm_component.sm_mpool_rndv_file_name)) {
opal_output(0, "WARNING: %s unlink failed.\n",
mca_btl_sm_component.sm_mpool_rndv_file_name);
}
if (-1 == unlink(mca_btl_sm_component.sm_rndv_file_name)) {
opal_output(0, "WARNING: %s unlink failed.\n",
mca_btl_sm_component.sm_rndv_file_name);
}
}
/* free up some space used by the name buffers */
free(mca_btl_sm_component.sm_mpool_ctl_file_name);
free(mca_btl_sm_component.sm_mpool_rndv_file_name);
free(mca_btl_sm_component.sm_ctl_file_name);
free(mca_btl_sm_component.sm_rndv_file_name);
/* coordinate with other processes */
for(j = mca_btl_sm_component.num_smp_procs;
j < mca_btl_sm_component.num_smp_procs + n_local_procs; j++) {
ptrdiff_t diff;
/* spin until this element is allocated */
/* doesn't really wait for that process... FIFO might be allocated, but not initialized */
opal_atomic_rmb();
while(NULL == mca_btl_sm_component.shm_fifo[j]) {
opal_progress();
opal_atomic_rmb();
}
/* Calculate the difference as (my_base - their_base) */
diff = ADDR2OFFSET(bases[my_smp_rank], bases[j]);
/* store local address of remote fifos */
mca_btl_sm_component.fifo[j] =
(sm_fifo_t*)OFFSET2ADDR(diff, mca_btl_sm_component.shm_fifo[j]);
/* cache local copy of peer memory node number */
mca_btl_sm_component.mem_nodes[j] = mca_btl_sm_component.shm_mem_nodes[j];
}
/* update the local smp process count */
mca_btl_sm_component.num_smp_procs += n_local_procs;
/* make sure we have enough eager fragmnents for each process */
return_code = opal_free_list_resize_mt (&mca_btl_sm_component.sm_frags_eager,
mca_btl_sm_component.num_smp_procs * 2);
if (OPAL_SUCCESS != return_code)
goto CLEANUP;
CLEANUP:
return return_code;
}
int mca_btl_sm_del_procs(
struct mca_btl_base_module_t* btl,
size_t nprocs,
struct opal_proc_t **procs,
struct mca_btl_base_endpoint_t **peers)
{
return OPAL_SUCCESS;
}
/**
* MCA->BTL Clean up any resources held by BTL module
* before the module is unloaded.
*
* @param btl (IN) BTL module.
*
* Prior to unloading a BTL module, the MCA framework will call
* the BTL finalize method of the module. Any resources held by
* the BTL should be released and if required the memory corresponding
* to the BTL module freed.
*
*/
int mca_btl_sm_finalize(struct mca_btl_base_module_t* btl)
{
return OPAL_SUCCESS;
}
/*
* Register callback function for error handling..
*/
int mca_btl_sm_register_error_cb(
struct mca_btl_base_module_t* btl,
mca_btl_base_module_error_cb_fn_t cbfunc)
{
mca_btl_sm_t *sm_btl = (mca_btl_sm_t *)btl;
sm_btl->error_cb = cbfunc;
return OPAL_SUCCESS;
}
/**
* Allocate a segment.
*
* @param btl (IN) BTL module
* @param size (IN) Request segment size.
*/
extern mca_btl_base_descriptor_t* mca_btl_sm_alloc(
struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
uint8_t order,
size_t size,
uint32_t flags)
{
mca_btl_sm_frag_t* frag = NULL;
if(size <= mca_btl_sm_component.eager_limit) {
MCA_BTL_SM_FRAG_ALLOC_EAGER(frag);
} else if (size <= mca_btl_sm_component.max_frag_size) {
MCA_BTL_SM_FRAG_ALLOC_MAX(frag);
}
if (OPAL_LIKELY(frag != NULL)) {
frag->segment.base.seg_len = size;
frag->base.des_flags = flags;
}
return (mca_btl_base_descriptor_t*)frag;
}
/**
* Return a segment allocated by this BTL.
*
* @param btl (IN) BTL module
* @param segment (IN) Allocated segment.
*/
extern int mca_btl_sm_free(
struct mca_btl_base_module_t* btl,
mca_btl_base_descriptor_t* des)
{
mca_btl_sm_frag_t* frag = (mca_btl_sm_frag_t*)des;
MCA_BTL_SM_FRAG_RETURN(frag);
return OPAL_SUCCESS;
}
/**
* Pack data
*
* @param btl (IN) BTL module
*/
struct mca_btl_base_descriptor_t* mca_btl_sm_prepare_src(
struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
struct opal_convertor_t* convertor,
uint8_t order,
size_t reserve,
size_t* size,
uint32_t flags)
{
mca_btl_sm_frag_t* frag;
struct iovec iov;
uint32_t iov_count = 1;
size_t max_data = *size;
int rc;
#if OPAL_BTL_SM_HAVE_KNEM || OPAL_BTL_SM_HAVE_CMA
mca_btl_sm_t* sm_btl = (mca_btl_sm_t*)btl; (void)sm_btl;
if( (0 != reserve) || ( OPAL_UNLIKELY(!mca_btl_sm_component.use_knem)
&& OPAL_UNLIKELY(!mca_btl_sm_component.use_cma)) ) {
#endif /* OPAL_BTL_SM_HAVE_KNEM || OPAL_BTL_SM_HAVE_CMA */
if ( reserve + max_data <= mca_btl_sm_component.eager_limit ) {
MCA_BTL_SM_FRAG_ALLOC_EAGER(frag);
} else {
MCA_BTL_SM_FRAG_ALLOC_MAX(frag);
}
if( OPAL_UNLIKELY(NULL == frag) ) {
return NULL;
}
if( OPAL_UNLIKELY(reserve + max_data > frag->size) ) {
max_data = frag->size - reserve;
}
iov.iov_len = max_data;
iov.iov_base =
(IOVBASE_TYPE*)(((unsigned char*)(frag->segment.base.seg_addr.pval)) + reserve);
rc = opal_convertor_pack(convertor, &iov, &iov_count, &max_data );
if( OPAL_UNLIKELY(rc < 0) ) {
MCA_BTL_SM_FRAG_RETURN(frag);
return NULL;
}
frag->segment.base.seg_len = reserve + max_data;
#if OPAL_BTL_SM_HAVE_KNEM || OPAL_BTL_SM_HAVE_CMA
} else {
#if OPAL_BTL_SM_HAVE_KNEM
struct knem_cmd_create_region knem_cr;
struct knem_cmd_param_iovec knem_iov;
#endif /* OPAL_BTL_SM_HAVE_KNEM */
MCA_BTL_SM_FRAG_ALLOC_USER(frag);
if( OPAL_UNLIKELY(NULL == frag) ) {
return NULL;
}
iov.iov_len = max_data;
iov.iov_base = NULL;
rc = opal_convertor_pack(convertor, &iov, &iov_count, &max_data);
if( OPAL_UNLIKELY(rc < 0) ) {
MCA_BTL_SM_FRAG_RETURN(frag);
return NULL;
}
frag->segment.base.seg_addr.lval = (uint64_t)(uintptr_t) iov.iov_base;
frag->segment.base.seg_len = max_data;
#if OPAL_BTL_SM_HAVE_KNEM
if (OPAL_LIKELY(mca_btl_sm_component.use_knem)) {
knem_iov.base = (uintptr_t)iov.iov_base;
knem_iov.len = max_data;
knem_cr.iovec_array = (uintptr_t)&knem_iov;
knem_cr.iovec_nr = iov_count;
knem_cr.protection = PROT_READ;
knem_cr.flags = KNEM_FLAG_SINGLEUSE;
if (OPAL_UNLIKELY(ioctl(sm_btl->knem_fd, KNEM_CMD_CREATE_REGION, &knem_cr) < 0)) {
return NULL;
}
frag->segment.key = knem_cr.cookie;
}
#endif /* OPAL_BTL_SM_HAVE_KNEM */
#if OPAL_BTL_SM_HAVE_CMA
if (OPAL_LIKELY(mca_btl_sm_component.use_cma)) {
/* Encode the pid as the key */
frag->segment.key = getpid();
}
#endif /* OPAL_BTL_SM_HAVE_CMA */
}
#endif /* OPAL_BTL_SM_HAVE_KNEM || OPAL_BTL_SM_HAVE_CMA */
frag->base.des_segments = &(frag->segment.base);
frag->base.des_segment_count = 1;
frag->base.order = MCA_BTL_NO_ORDER;
frag->base.des_flags = flags;
*size = max_data;
return &frag->base;
}
#if 0
#define MCA_BTL_SM_TOUCH_DATA_TILL_CACHELINE_BOUNDARY(sm_frag) \
do { \
char* _memory = (char*)(sm_frag)->segment.base.seg_addr.pval + \
(sm_frag)->segment.base.seg_len; \
int* _intmem; \
size_t align = (intptr_t)_memory & 0xFUL; \
switch( align & 0x3 ) { \
case 3: *_memory = 0; _memory++; \
case 2: *_memory = 0; _memory++; \
case 1: *_memory = 0; _memory++; \
} \
align >>= 2; \
_intmem = (int*)_memory; \
switch( align ) { \
case 3: *_intmem = 0; _intmem++; \
case 2: *_intmem = 0; _intmem++; \
case 1: *_intmem = 0; _intmem++; \
} \
} while(0)
#else
#define MCA_BTL_SM_TOUCH_DATA_TILL_CACHELINE_BOUNDARY(sm_frag)
#endif
#if 0
if( OPAL_LIKELY(align > 0) ) { \
align = 0xFUL - align; \
memset( _memory, 0, align ); \
} \
#endif
/**
* Initiate an inline send to the peer. If failure then return a descriptor.
*
* @param btl (IN) BTL module
* @param peer (IN) BTL peer addressing
*/
int mca_btl_sm_sendi( struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
struct opal_convertor_t* convertor,
void* header,
size_t header_size,
size_t payload_size,
uint8_t order,
uint32_t flags,
mca_btl_base_tag_t tag,
mca_btl_base_descriptor_t** descriptor )
{
size_t length = (header_size + payload_size);
mca_btl_sm_frag_t* frag;
int rc;
if ( mca_btl_sm_component.num_outstanding_frags * 2 > (int) mca_btl_sm_component.fifo_size ) {
mca_btl_sm_component_progress();
}
/* this check should be unnecessary... turn into an assertion? */
if( length < mca_btl_sm_component.eager_limit ) {
/* allocate a fragment, giving up if we can't get one */
/* note that frag==NULL is equivalent to rc returning an error code */
MCA_BTL_SM_FRAG_ALLOC_EAGER(frag);
if( OPAL_UNLIKELY(NULL == frag) ) {
if (NULL != descriptor) {
*descriptor = NULL;
}
return OPAL_ERR_OUT_OF_RESOURCE;
}
/* fill in fragment fields */
frag->segment.base.seg_len = length;
frag->hdr->len = length;
assert( 0 == (flags & MCA_BTL_DES_SEND_ALWAYS_CALLBACK) );
frag->base.des_flags = flags | MCA_BTL_DES_FLAGS_BTL_OWNERSHIP; /* why do any flags matter here other than OWNERSHIP? */
frag->hdr->tag = tag;
frag->endpoint = endpoint;
/* write the match header (with MPI comm/tag/etc. info) */
memcpy( frag->segment.base.seg_addr.pval, header, header_size );
/* write the message data if there is any */
/*
We can add MEMCHECKER calls before and after the packing.
*/
if( payload_size ) {
size_t max_data;
struct iovec iov;
uint32_t iov_count;
/* pack the data into the supplied buffer */
iov.iov_base = (IOVBASE_TYPE*)((unsigned char*)frag->segment.base.seg_addr.pval + header_size);
iov.iov_len = max_data = payload_size;
iov_count = 1;
(void)opal_convertor_pack( convertor, &iov, &iov_count, &max_data);
assert(max_data == payload_size);
}
MCA_BTL_SM_TOUCH_DATA_TILL_CACHELINE_BOUNDARY(frag);
/* write the fragment pointer to the FIFO */
/*
* Note that we don't care what the FIFO-write return code is. Even if
* the return code indicates failure, the write has still "completed" from
* our point of view: it has been posted to a "pending send" queue.
*/
OPAL_THREAD_ADD32(&mca_btl_sm_component.num_outstanding_frags, +1);
MCA_BTL_SM_FIFO_WRITE(endpoint, endpoint->my_smp_rank,
endpoint->peer_smp_rank, (void *) VIRTUAL2RELATIVE(frag->hdr), false, true, rc);
(void)rc; /* this is safe to ignore as the message is requeued till success */
return OPAL_SUCCESS;
}
if (NULL != descriptor) {
/* presumably, this code path will never get executed */
*descriptor = mca_btl_sm_alloc( btl, endpoint, order,
payload_size + header_size, flags);
}
return OPAL_ERR_RESOURCE_BUSY;
}
/**
* Initiate a send to the peer.
*
* @param btl (IN) BTL module
* @param peer (IN) BTL peer addressing
*/
int mca_btl_sm_send( struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
struct mca_btl_base_descriptor_t* descriptor,
mca_btl_base_tag_t tag )
{
mca_btl_sm_frag_t* frag = (mca_btl_sm_frag_t*)descriptor;
int rc;
if ( mca_btl_sm_component.num_outstanding_frags * 2 > (int) mca_btl_sm_component.fifo_size ) {
mca_btl_sm_component_progress();
}
/* available header space */
frag->hdr->len = frag->segment.base.seg_len;
/* type of message, pt-2-pt, one-sided, etc */
frag->hdr->tag = tag;
MCA_BTL_SM_TOUCH_DATA_TILL_CACHELINE_BOUNDARY(frag);
frag->endpoint = endpoint;
/*
* post the descriptor in the queue - post with the relative
* address
*/
OPAL_THREAD_ADD32(&mca_btl_sm_component.num_outstanding_frags, +1);
MCA_BTL_SM_FIFO_WRITE(endpoint, endpoint->my_smp_rank,
endpoint->peer_smp_rank, (void *) VIRTUAL2RELATIVE(frag->hdr), false, true, rc);
if( OPAL_LIKELY(0 == rc) ) {
return 1; /* the data is completely gone */
}
frag->base.des_flags |= MCA_BTL_DES_SEND_ALWAYS_CALLBACK;
/* not yet gone, but pending. Let the upper level knows that
* the callback will be triggered when the data will be sent.
*/
return 0;
}
#if OPAL_BTL_SM_HAVE_KNEM || OPAL_BTL_SM_HAVE_CMA
mca_btl_base_registration_handle_t *mca_btl_sm_register_mem (struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
void *base, size_t size, uint32_t flags)
{
mca_btl_sm_registration_handle_t *handle;
opal_free_list_item_t *item = NULL;
item = opal_free_list_get (&mca_btl_sm_component.registration_handles);
if (OPAL_UNLIKELY(NULL == item)) {
return NULL;
}
handle = (mca_btl_sm_registration_handle_t *) item;
#if OPAL_BTL_SM_HAVE_KNEM
if (OPAL_LIKELY(mca_btl_sm_component.use_knem)) {
struct knem_cmd_create_region knem_cr;
struct knem_cmd_param_iovec knem_iov;
knem_iov.base = (uintptr_t)base & ~(opal_getpagesize() - 1);
knem_iov.len = OPAL_ALIGN(size + ((intptr_t) base - knem_iov.base), opal_getpagesize(), intptr_t);
knem_cr.iovec_array = (uintptr_t)&knem_iov;
knem_cr.iovec_nr = 1;
knem_cr.flags = 0;
knem_cr.protection = 0;
if (flags & MCA_BTL_REG_FLAG_REMOTE_READ) {
knem_cr.protection |= PROT_READ;
}
if (flags & MCA_BTL_REG_FLAG_REMOTE_WRITE) {
knem_cr.protection |= PROT_WRITE;
}
if (OPAL_UNLIKELY(ioctl(((mca_btl_sm_t*)btl)->knem_fd, KNEM_CMD_CREATE_REGION, &knem_cr) < 0)) {
opal_free_list_return (&mca_btl_sm_component.registration_handles, item);
return NULL;
}
handle->btl_handle.data.knem.cookie = knem_cr.cookie;
handle->btl_handle.data.knem.base_addr = knem_iov.base;
} else
#endif
{
/* the pid could be included in a modex but this will work until btl/sm is
* deleted */
handle->btl_handle.data.pid = getpid ();
}
/* return the public part of the handle */
return &handle->btl_handle;
}
int mca_btl_sm_deregister_mem (struct mca_btl_base_module_t* btl, mca_btl_base_registration_handle_t *handle)
{
mca_btl_sm_registration_handle_t *sm_handle =
(mca_btl_sm_registration_handle_t *)((intptr_t) handle - offsetof (mca_btl_sm_registration_handle_t, btl_handle));
#if OPAL_BTL_SM_HAVE_KNEM
if (OPAL_LIKELY(mca_btl_sm_component.use_knem)) {
(void) ioctl(((mca_btl_sm_t*)btl)->knem_fd, KNEM_CMD_DESTROY_REGION, &handle->data.knem.cookie);
}
#endif
opal_free_list_return (&mca_btl_sm_component.registration_handles, &sm_handle->super);
return OPAL_SUCCESS;
}
#endif /* OPAL_BTL_SM_HAVE_KNEM */
#if OPAL_BTL_SM_HAVE_KNEM || OPAL_BTL_SM_HAVE_CMA
/**
* Initiate an synchronous get.
*/
int mca_btl_sm_get_sync (mca_btl_base_module_t *btl, struct mca_btl_base_endpoint_t *endpoint, void *local_address,
uint64_t remote_address, mca_btl_base_registration_handle_t *local_handle,
mca_btl_base_registration_handle_t *remote_handle, size_t size, int flags,
int order, mca_btl_base_rdma_completion_fn_t cbfunc, void *cbcontext, void *cbdata)
{
#if OPAL_BTL_SM_HAVE_KNEM
mca_btl_sm_t* sm_btl = (mca_btl_sm_t*) btl;
if (OPAL_LIKELY(mca_btl_sm_component.use_knem)) {
struct knem_cmd_inline_copy icopy;
struct knem_cmd_param_iovec recv_iovec;
/* Fill in the ioctl data fields. There's no async completion, so
we don't need to worry about getting a slot, etc. */
recv_iovec.base = (uintptr_t) local_address;
recv_iovec.len = size;
icopy.local_iovec_array = (uintptr_t)&recv_iovec;
icopy.local_iovec_nr = 1;
icopy.remote_cookie = remote_handle->data.knem.cookie;
icopy.remote_offset = remote_address - remote_handle->data.knem.base_addr;
icopy.write = 0;
/* Use the DMA flag if knem supports it *and* the segment length
is greater than the cutoff. Note that if the knem_dma_min
value is 0 (i.e., the MCA param was set to 0), the segment size
will never be larger than it, so DMA will never be used. */
icopy.flags = 0;
if (mca_btl_sm_component.knem_dma_min <= size) {
icopy.flags = mca_btl_sm_component.knem_dma_flag;
}
/* synchronous flags only, no need to specify icopy.async_status_index */
/* When the ioctl returns, the transfer is done and we can invoke
the btl callback and return the frag */
if (OPAL_UNLIKELY(0 != ioctl(sm_btl->knem_fd,
KNEM_CMD_INLINE_COPY, &icopy))) {
return OPAL_ERROR;
}
/* FIXME: what if icopy.current_status == KNEM_STATUS_FAILED? */
}
#endif /* OPAL_BTL_SM_HAVE_KNEM */
#if OPAL_BTL_SM_HAVE_CMA
if (OPAL_LIKELY(mca_btl_sm_component.use_cma)) {
struct iovec local, remote;
pid_t remote_pid;
ssize_t val;
remote_pid = remote_handle->data.pid;
remote.iov_base = (void *) (intptr_t) remote_address;
remote.iov_len = size;
local.iov_base = local_address;
local.iov_len = size;
val = process_vm_readv(remote_pid, &local, 1, &remote, 1, 0);
if (val != (ssize_t)size) {
if (val < 0) {
opal_output(0, "mca_btl_sm_get_sync: process_vm_readv failed: %i",
errno);
} else {
/* Should never get a short read from process_vm_readv */
opal_output(0, "mca_btl_sm_get_sync: process_vm_readv short read: %i",
(int)val);
}
return OPAL_ERROR;
}
}
#endif /* OPAL_BTL_SM_HAVE_CMA */
cbfunc (btl, endpoint, local_address, local_handle, cbcontext, cbdata, OPAL_SUCCESS);
return OPAL_SUCCESS;
}
#endif /* OPAL_BTL_SM_HAVE_KNEM || OPAL_BTL_SM_HAVE_CMA */
#if OPAL_BTL_SM_HAVE_KNEM
/* No support async_get for CMA yet */
/**
* Initiate an asynchronous get.
*/
int mca_btl_sm_get_async (mca_btl_base_module_t *btl, struct mca_btl_base_endpoint_t *endpoint, void *local_address,
uint64_t remote_address, mca_btl_base_registration_handle_t *local_handle,
mca_btl_base_registration_handle_t *remote_handle, size_t size, int flags,
int order, mca_btl_base_rdma_completion_fn_t cbfunc, void *cbcontext, void *cbdata)
{
mca_btl_sm_t* sm_btl = (mca_btl_sm_t*) btl;
mca_btl_sm_frag_t* frag;
struct knem_cmd_inline_copy icopy;
struct knem_cmd_param_iovec recv_iovec;
/* If we have no knem slots available, fall back to synchronous */
if (sm_btl->knem_status_num_used >=
mca_btl_sm_component.knem_max_simultaneous) {
return mca_btl_sm_get_sync (btl, endpoint, local_address, remote_address, local_handle,
remote_handle, size, flags, order, cbfunc, cbcontext, cbdata);
}
/* allocate a fragment to keep track of this transaction */
MCA_BTL_SM_FRAG_ALLOC_USER(frag);
if (OPAL_UNLIKELY(NULL == frag)) {
return mca_btl_sm_get_sync (btl, endpoint, local_address, remote_address, local_handle,
remote_handle, size, flags, order, cbfunc, cbcontext, cbdata);
}
/* fill in callback data */
frag->cb.func = cbfunc;
frag->cb.context = cbcontext;
frag->cb.data = cbdata;
frag->cb.local_address = local_address;
frag->cb.local_handle = local_handle;
/* We have a slot, so fill in the data fields. Bump the
first_avail and num_used counters. */
recv_iovec.base = (uintptr_t) local_address;
recv_iovec.len = size;
icopy.local_iovec_array = (uintptr_t)&recv_iovec;
icopy.local_iovec_nr = 1;
icopy.write = 0;
icopy.async_status_index = sm_btl->knem_status_first_avail++;
if (sm_btl->knem_status_first_avail >=
mca_btl_sm_component.knem_max_simultaneous) {
sm_btl->knem_status_first_avail = 0;
}
++sm_btl->knem_status_num_used;
icopy.remote_cookie = remote_handle->data.knem.cookie;
icopy.remote_offset = remote_address - remote_handle->data.knem.base_addr;
/* Use the DMA flag if knem supports it *and* the segment length
is greater than the cutoff */
icopy.flags = KNEM_FLAG_ASYNCDMACOMPLETE;
if (mca_btl_sm_component.knem_dma_min <= size) {
icopy.flags = mca_btl_sm_component.knem_dma_flag;
}
sm_btl->knem_frag_array[icopy.async_status_index] = frag;
if (OPAL_LIKELY(0 == ioctl(sm_btl->knem_fd,
KNEM_CMD_INLINE_COPY, &icopy))) {
if (icopy.current_status != KNEM_STATUS_PENDING) {
MCA_BTL_SM_FRAG_RETURN(frag);
/* request completed synchronously */
/* FIXME: what if icopy.current_status == KNEM_STATUS_FAILED? */
cbfunc (btl, endpoint, local_address, local_handle, cbcontext, cbdata, OPAL_SUCCESS);
--sm_btl->knem_status_num_used;
++sm_btl->knem_status_first_used;
if (sm_btl->knem_status_first_used >=
mca_btl_sm_component.knem_max_simultaneous) {
sm_btl->knem_status_first_used = 0;
}
}
return OPAL_SUCCESS;
} else {
return OPAL_ERROR;
}
}
#endif /* OPAL_BTL_SM_HAVE_KNEM */
/**
*
*/
void mca_btl_sm_dump(struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
int verbose)
{
opal_list_item_t *item;
mca_btl_sm_frag_t* frag;
if( NULL != endpoint ) {
mca_btl_base_err("BTL SM %p endpoint %p [smp_rank %d] [peer_rank %d]\n",
(void*) btl, (void*) endpoint,
endpoint->my_smp_rank, endpoint->peer_smp_rank);
for(item = opal_list_get_first(&endpoint->pending_sends);
item != opal_list_get_end(&endpoint->pending_sends);
item = opal_list_get_next(item)) {
frag = (mca_btl_sm_frag_t*)item;
mca_btl_base_err(" | frag %p size %lu (hdr frag %p len %lu rank %d tag %d)\n",
(void*) frag, frag->size, (void*) frag->hdr->frag,
frag->hdr->len, frag->hdr->my_smp_rank,
frag->hdr->tag);
}
}
}
#if OPAL_ENABLE_FT_CR == 0
int mca_btl_sm_ft_event(int state) {
return OPAL_SUCCESS;
}
#else
int mca_btl_sm_ft_event(int state) {
/* Notify mpool */
if( NULL != mca_btl_sm_component.sm_mpool &&
NULL != mca_btl_sm_component.sm_mpool->mpool_ft_event) {
mca_btl_sm_component.sm_mpool->mpool_ft_event(state);
}
if(OPAL_CRS_CHECKPOINT == state) {
if( NULL != mca_btl_sm_component.sm_seg ) {
/* On restart we need the old file names to exist (not necessarily
* contain content) so the CRS component does not fail when searching
* for these old file handles. The restart procedure will make sure
* these files get cleaned up appropriately.
*/
/* Disabled to get FT code compiled again
* TODO: FIXIT soon
orte_sstore.set_attr(orte_sstore_handle_current,
SSTORE_METADATA_LOCAL_TOUCH,
mca_btl_sm_component.sm_seg->shmem_ds.seg_name);
*/
}
}
else if(OPAL_CRS_CONTINUE == state) {
if (opal_cr_continue_like_restart) {
if( NULL != mca_btl_sm_component.sm_seg ) {
/* Add shared memory file */
opal_crs_base_cleanup_append(mca_btl_sm_component.sm_seg->shmem_ds.seg_name, false);
}
/* Clear this so we force the module to re-init the sm files */
mca_btl_sm_component.sm_mpool = NULL;
}
}
else if(OPAL_CRS_RESTART == state ||
OPAL_CRS_RESTART_PRE == state) {
if( NULL != mca_btl_sm_component.sm_seg ) {
/* Add shared memory file */
opal_crs_base_cleanup_append(mca_btl_sm_component.sm_seg->shmem_ds.seg_name, false);
}
/* Clear this so we force the module to re-init the sm files */
mca_btl_sm_component.sm_mpool = NULL;
}
else if(OPAL_CRS_TERM == state ) {
;
}
else {
;
}
return OPAL_SUCCESS;
}
#endif /* OPAL_ENABLE_FT_CR */