1
1
openmpi/ompi/mca/coll/tuned/coll_tuned_reduce.c
Ralph Castain 9613b3176c Effectively revert the orte_output system and return to direct use of opal_output at all levels. Retain the orte_show_help subsystem to allow aggregation of show_help messages at the HNP.
After much work by Jeff and myself, and quite a lot of discussion, it has become clear that we simply cannot resolve the infinite loops caused by RML-involved subsystems calling orte_output. The original rationale for the change to orte_output has also been reduced by shifting the output of XML-formatted vs human readable messages to an alternative approach.

I have globally replaced the orte_output/ORTE_OUTPUT calls in the code base, as well as the corresponding .h file name. I have test compiled and run this on the various environments within my reach, so hopefully this will prove minimally disruptive.

This commit was SVN r18619.
2008-06-09 14:53:58 +00:00

865 строки
38 KiB
C

/*
* Copyright (c) 2004-2005 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2006 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "ompi_config.h"
#include "mpi.h"
#include "ompi/constants.h"
#include "ompi/datatype/datatype.h"
#include "ompi/communicator/communicator.h"
#include "ompi/mca/coll/coll.h"
#include "ompi/mca/coll/base/coll_tags.h"
#include "ompi/mca/pml/pml.h"
#include "ompi/op/op.h"
#include "coll_tuned.h"
#include "coll_tuned_topo.h"
/**
* This is a generic implementation of the reduce protocol. It used the tree
* provided as an argument and execute all operations using a segment of
* count times a datatype.
* For the last communication it will update the count in order to limit
* the number of datatype to the original count (original_count)
*
* Note that for non-commutative operations we cannot save memory copy
* for the first block: thus we must copy sendbuf to accumbuf on intermediate
* to keep the optimized loop happy.
*/
int ompi_coll_tuned_reduce_generic( void* sendbuf, void* recvbuf, int original_count,
ompi_datatype_t* datatype, ompi_op_t* op,
int root, ompi_communicator_t* comm,
struct mca_coll_base_module_1_1_0_t *module,
ompi_coll_tree_t* tree, int count_by_segment,
int max_outstanding_reqs )
{
char *inbuf[2] = {NULL, NULL}, *inbuf_free[2] = {NULL, NULL};
char *accumbuf = NULL, *accumbuf_free = NULL;
char *local_op_buffer = NULL, *sendtmpbuf = NULL;
ptrdiff_t extent, lower_bound, segment_increment;
size_t typelng;
ompi_request_t* reqs[2] = {MPI_REQUEST_NULL, MPI_REQUEST_NULL};
int num_segments, line, ret, segindex, i, rank;
int recvcount, prevcount, inbi;
/**
* Determine number of segments and number of elements
* sent per operation
*/
ompi_ddt_get_extent( datatype, &lower_bound, &extent );
ompi_ddt_type_size( datatype, &typelng );
num_segments = (original_count + count_by_segment - 1) / count_by_segment;
segment_increment = count_by_segment * extent;
sendtmpbuf = (char*) sendbuf;
if( sendbuf == MPI_IN_PLACE ) {
sendtmpbuf = (char *)recvbuf;
}
OPAL_OUTPUT((ompi_coll_tuned_stream, "coll:tuned:reduce_generic count %d, msg size %ld, segsize %ld, max_requests %d", original_count, (unsigned long)(num_segments * segment_increment), (unsigned long)segment_increment, max_outstanding_reqs));
rank = ompi_comm_rank(comm);
/* non-leaf nodes - wait for children to send me data & forward up
(if needed) */
if( tree->tree_nextsize > 0 ) {
ptrdiff_t true_lower_bound, true_extent, real_segment_size;
ompi_ddt_get_true_extent( datatype, &true_lower_bound,
&true_extent );
/* handle non existant recv buffer (i.e. its NULL) and
protect the recv buffer on non-root nodes */
accumbuf = (char*)recvbuf;
if( (NULL == accumbuf) || (root != rank) ) {
/* Allocate temporary accumulator buffer. */
accumbuf_free = (char*)malloc(true_extent +
(original_count - 1) * extent);
if (accumbuf_free == NULL) {
line = __LINE__; ret = -1; goto error_hndl;
}
accumbuf = accumbuf_free - lower_bound;
}
/* If this is a non-commutative operation we must copy
sendbuf to the accumbuf, in order to simplfy the loops */
if (!ompi_op_is_commute(op)) {
ompi_ddt_copy_content_same_ddt(datatype, original_count,
(char*)accumbuf,
(char*)sendtmpbuf);
}
/* Allocate two buffers for incoming segments */
real_segment_size = true_extent + (count_by_segment - 1) * extent;
inbuf_free[0] = (char*) malloc(real_segment_size);
if( inbuf_free[0] == NULL ) {
line = __LINE__; ret = -1; goto error_hndl;
}
inbuf[0] = inbuf_free[0] - lower_bound;
/* if there is chance to overlap communication -
allocate second buffer */
if( (num_segments > 1) || (tree->tree_nextsize > 1) ) {
inbuf_free[1] = (char*) malloc(real_segment_size);
if( inbuf_free[1] == NULL ) {
line = __LINE__; ret = -1; goto error_hndl;
}
inbuf[1] = inbuf_free[1] - lower_bound;
}
/* reset input buffer index and receive count */
inbi = 0;
recvcount = 0;
/* for each segment */
for( segindex = 0; segindex <= num_segments; segindex++ ) {
prevcount = recvcount;
/* recvcount - number of elements in current segment */
recvcount = count_by_segment;
if( segindex == (num_segments-1) )
recvcount = original_count - count_by_segment * segindex;
/* for each child */
for( i = 0; i < tree->tree_nextsize; i++ ) {
/**
* We try to overlap communication:
* either with next segment or with the next child
*/
/* post irecv for current segindex on current child */
if( segindex < num_segments ) {
void* local_recvbuf = inbuf[inbi];
if( 0 == i ) {
/* for the first step (1st child per segment) and
* commutative operations we might be able to irecv
* directly into the accumulate buffer so that we can
* reduce(op) this with our sendbuf in one step as
* ompi_op_reduce only has two buffer pointers,
* this avoids an extra memory copy.
*
* BUT if the operation is non-commutative or
* we are root and are USING MPI_IN_PLACE this is wrong!
*/
if( (ompi_op_is_commute(op)) &&
!((MPI_IN_PLACE == sendbuf) && (rank == tree->tree_root)) ) {
local_recvbuf = accumbuf + segindex * segment_increment;
}
}
ret = MCA_PML_CALL(irecv(local_recvbuf, recvcount, datatype,
tree->tree_next[i],
MCA_COLL_BASE_TAG_REDUCE, comm,
&reqs[inbi]));
if (ret != MPI_SUCCESS) { line = __LINE__; goto error_hndl;}
}
/* wait for previous req to complete, if any.
if there are no requests reqs[inbi ^1] will be
MPI_REQUEST_NULL. */
/* wait on data from last child for previous segment */
ret = ompi_request_wait_all( 1, &reqs[inbi ^ 1],
MPI_STATUSES_IGNORE );
if (ret != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }
local_op_buffer = inbuf[inbi ^ 1];
if( i > 0 ) {
/* our first operation is to combine our own [sendbuf] data
* with the data we recvd from down stream (but only
* the operation is commutative and if we are not root and
* not using MPI_IN_PLACE)
*/
if( 1 == i ) {
if( (ompi_op_is_commute(op)) &&
!((MPI_IN_PLACE == sendbuf) && (rank == tree->tree_root)) ) {
local_op_buffer = sendtmpbuf + segindex * segment_increment;
}
}
/* apply operation */
ompi_op_reduce(op, local_op_buffer,
accumbuf + segindex * segment_increment,
recvcount, datatype );
} else if ( segindex > 0 ) {
void* accumulator = accumbuf + (segindex-1) * segment_increment;
if( tree->tree_nextsize <= 1 ) {
if( (ompi_op_is_commute(op)) &&
!((MPI_IN_PLACE == sendbuf) && (rank == tree->tree_root)) ) {
local_op_buffer = sendtmpbuf + (segindex-1) * segment_increment;
}
}
ompi_op_reduce(op, local_op_buffer, accumulator, prevcount,
datatype );
/* all reduced on available data this step (i) complete,
* pass to the next process unless you are the root.
*/
if (rank != tree->tree_root) {
/* send combined/accumulated data to parent */
ret = MCA_PML_CALL( send( accumulator, prevcount,
datatype, tree->tree_prev,
MCA_COLL_BASE_TAG_REDUCE,
MCA_PML_BASE_SEND_STANDARD,
comm) );
if (ret != MPI_SUCCESS) {
line = __LINE__; goto error_hndl;
}
}
/* we stop when segindex = number of segments
(i.e. we do num_segment+1 steps for pipelining */
if (segindex == num_segments) break;
}
/* update input buffer index */
inbi = inbi ^ 1;
} /* end of for each child */
} /* end of for each segment */
/* clean up */
if( inbuf_free[0] != NULL) free(inbuf_free[0]);
if( inbuf_free[1] != NULL) free(inbuf_free[1]);
if( accumbuf_free != NULL ) free(accumbuf_free);
}
/* leaf nodes
Depending on the value of max_outstanding_reqs and
the number of segments we have two options:
- send all segments using blocking send to the parent, or
- avoid overflooding the parent nodes by limiting the number of
outstanding requests to max_oustanding_reqs.
TODO/POSSIBLE IMPROVEMENT: If there is a way to determine the eager size
for the current communication, synchronization should be used only
when the message/segment size is smaller than the eager size.
*/
else {
/* If the number of segments is less than a maximum number of oustanding
requests or there is no limit on the maximum number of outstanding
requests, we send data to the parent using blocking send */
if ((0 == max_outstanding_reqs) ||
(num_segments <= max_outstanding_reqs)) {
segindex = 0;
while ( original_count > 0) {
if (original_count < count_by_segment) {
count_by_segment = original_count;
}
ret = MCA_PML_CALL( send((char*)sendbuf +
segindex * segment_increment,
count_by_segment, datatype,
tree->tree_prev,
MCA_COLL_BASE_TAG_REDUCE,
MCA_PML_BASE_SEND_STANDARD,
comm) );
if (ret != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }
segindex++;
original_count -= count_by_segment;
}
}
/* Otherwise, introduce flow control:
- post max_outstanding_reqs non-blocking synchronous send,
- for remaining segments
- wait for a ssend to complete, and post the next one.
- wait for all outstanding sends to complete.
*/
else {
int creq = 0;
ompi_request_t **sreq = NULL;
sreq = (ompi_request_t**) calloc( max_outstanding_reqs,
sizeof(ompi_request_t*) );
if (NULL == sreq) { line = __LINE__; ret = -1; goto error_hndl; }
/* post first group of requests */
for (segindex = 0; segindex < max_outstanding_reqs; segindex++) {
ret = MCA_PML_CALL( isend((char*)sendbuf +
segindex * segment_increment,
count_by_segment, datatype,
tree->tree_prev,
MCA_COLL_BASE_TAG_REDUCE,
MCA_PML_BASE_SEND_SYNCHRONOUS, comm,
&sreq[segindex]) );
if (ret != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }
original_count -= count_by_segment;
}
creq = 0;
while ( original_count > 0 ) {
/* wait on a posted request to complete */
ret = ompi_request_wait(&sreq[creq], MPI_STATUS_IGNORE);
if (ret != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }
sreq[creq] = MPI_REQUEST_NULL;
if( original_count < count_by_segment ) {
count_by_segment = original_count;
}
ret = MCA_PML_CALL( isend((char*)sendbuf +
segindex * segment_increment,
count_by_segment, datatype,
tree->tree_prev,
MCA_COLL_BASE_TAG_REDUCE,
MCA_PML_BASE_SEND_SYNCHRONOUS, comm,
&sreq[creq]) );
if (ret != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }
creq = (creq + 1) % max_outstanding_reqs;
segindex++;
original_count -= count_by_segment;
}
/* Wait on the remaining request to complete */
ret = ompi_request_wait_all( max_outstanding_reqs, sreq,
MPI_STATUSES_IGNORE );
if (ret != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }
/* free requests */
free(sreq);
}
}
return OMPI_SUCCESS;
error_hndl: /* error handler */
OPAL_OUTPUT (( ompi_coll_tuned_stream,
"ERROR_HNDL: node %d file %s line %d error %d\n",
rank, __FILE__, line, ret ));
if( inbuf_free[0] != NULL ) free(inbuf_free[0]);
if( inbuf_free[1] != NULL ) free(inbuf_free[1]);
if( accumbuf_free != NULL ) free(accumbuf);
return ret;
}
/* Attention: this version of the reduce operations does not
work for:
- non-commutative operations
- segment sizes which are not multiplies of the extent of the datatype
meaning that at least one datatype must fit in the segment !
*/
int ompi_coll_tuned_reduce_intra_chain( void *sendbuf, void *recvbuf, int count,
ompi_datatype_t* datatype,
ompi_op_t* op, int root,
ompi_communicator_t* comm,
struct mca_coll_base_module_1_1_0_t *module,
uint32_t segsize, int fanout,
int max_outstanding_reqs )
{
int segcount = count;
size_t typelng;
mca_coll_tuned_module_t *tuned_module = (mca_coll_tuned_module_t*) module;
mca_coll_tuned_comm_t *data = tuned_module->tuned_data;
OPAL_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:reduce_intra_chain rank %d fo %d ss %5d", ompi_comm_rank(comm), fanout, segsize));
COLL_TUNED_UPDATE_CHAIN( comm, tuned_module, root, fanout );
/**
* Determine number of segments and number of elements
* sent per operation
*/
ompi_ddt_type_size( datatype, &typelng );
COLL_TUNED_COMPUTED_SEGCOUNT( segsize, typelng, segcount );
return ompi_coll_tuned_reduce_generic( sendbuf, recvbuf, count, datatype,
op, root, comm, module,
data->cached_chain,
segcount, max_outstanding_reqs );
}
int ompi_coll_tuned_reduce_intra_pipeline( void *sendbuf, void *recvbuf,
int count, ompi_datatype_t* datatype,
ompi_op_t* op, int root,
ompi_communicator_t* comm,
struct mca_coll_base_module_1_1_0_t *module,
uint32_t segsize,
int max_outstanding_reqs )
{
int segcount = count;
size_t typelng;
mca_coll_tuned_module_t *tuned_module = (mca_coll_tuned_module_t*) module;
mca_coll_tuned_comm_t *data = tuned_module->tuned_data;
OPAL_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:reduce_intra_pipeline rank %d ss %5d",
ompi_comm_rank(comm), segsize));
COLL_TUNED_UPDATE_PIPELINE( comm, tuned_module, root );
/**
* Determine number of segments and number of elements
* sent per operation
*/
ompi_ddt_type_size( datatype, &typelng );
COLL_TUNED_COMPUTED_SEGCOUNT( segsize, typelng, segcount );
return ompi_coll_tuned_reduce_generic( sendbuf, recvbuf, count, datatype,
op, root, comm, module,
data->cached_pipeline,
segcount, max_outstanding_reqs );
}
int ompi_coll_tuned_reduce_intra_binary( void *sendbuf, void *recvbuf,
int count, ompi_datatype_t* datatype,
ompi_op_t* op, int root,
ompi_communicator_t* comm,
struct mca_coll_base_module_1_1_0_t *module,
uint32_t segsize,
int max_outstanding_reqs )
{
int segcount = count;
size_t typelng;
mca_coll_tuned_module_t *tuned_module = (mca_coll_tuned_module_t*) module;
mca_coll_tuned_comm_t *data = tuned_module->tuned_data;
OPAL_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:reduce_intra_binary rank %d ss %5d",
ompi_comm_rank(comm), segsize));
COLL_TUNED_UPDATE_BINTREE( comm, tuned_module, root );
/**
* Determine number of segments and number of elements
* sent per operation
*/
ompi_ddt_type_size( datatype, &typelng );
COLL_TUNED_COMPUTED_SEGCOUNT( segsize, typelng, segcount );
return ompi_coll_tuned_reduce_generic( sendbuf, recvbuf, count, datatype,
op, root, comm, module,
data->cached_bintree,
segcount, max_outstanding_reqs );
}
int ompi_coll_tuned_reduce_intra_binomial( void *sendbuf, void *recvbuf,
int count, ompi_datatype_t* datatype,
ompi_op_t* op, int root,
ompi_communicator_t* comm,
struct mca_coll_base_module_1_1_0_t *module,
uint32_t segsize,
int max_outstanding_reqs )
{
int segcount = count;
size_t typelng;
mca_coll_tuned_module_t *tuned_module = (mca_coll_tuned_module_t*) module;
mca_coll_tuned_comm_t *data = tuned_module->tuned_data;
OPAL_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:reduce_intra_binomial rank %d ss %5d",
ompi_comm_rank(comm), segsize));
COLL_TUNED_UPDATE_IN_ORDER_BMTREE( comm, tuned_module, root );
/**
* Determine number of segments and number of elements
* sent per operation
*/
ompi_ddt_type_size( datatype, &typelng );
COLL_TUNED_COMPUTED_SEGCOUNT( segsize, typelng, segcount );
return ompi_coll_tuned_reduce_generic( sendbuf, recvbuf, count, datatype,
op, root, comm, module,
data->cached_in_order_bmtree,
segcount, max_outstanding_reqs );
}
/*
* reduce_intra_in_order_binary
*
* Function: Logarithmic reduce operation for non-commutative operations.
* Acecpts: same as MPI_Reduce()
* Returns: MPI_SUCCESS or error code
*/
int ompi_coll_tuned_reduce_intra_in_order_binary( void *sendbuf, void *recvbuf,
int count,
ompi_datatype_t* datatype,
ompi_op_t* op, int root,
ompi_communicator_t* comm,
struct mca_coll_base_module_1_1_0_t *module,
uint32_t segsize,
int max_outstanding_reqs )
{
int ret;
int rank, size, io_root;
int segcount = count;
void *use_this_sendbuf = NULL, *use_this_recvbuf = NULL;
size_t typelng;
mca_coll_tuned_module_t *tuned_module = (mca_coll_tuned_module_t*) module;
mca_coll_tuned_comm_t *data = tuned_module->tuned_data;
rank = ompi_comm_rank(comm);
size = ompi_comm_size(comm);
OPAL_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:reduce_intra_in_order_binary rank %d ss %5d",
rank, segsize));
COLL_TUNED_UPDATE_IN_ORDER_BINTREE( comm, tuned_module );
/**
* Determine number of segments and number of elements
* sent per operation
*/
ompi_ddt_type_size( datatype, &typelng );
COLL_TUNED_COMPUTED_SEGCOUNT( segsize, typelng, segcount );
/* An in-order binary tree must use root (size-1) to preserve the order of
operations. Thus, if root is not rank (size - 1), then we must handle
1. MPI_IN_PLACE option on real root, and
2. we must allocate temporary recvbuf on rank (size - 1).
Note that generic function must be careful not to switch order of
operations for non-commutative ops.
*/
io_root = size - 1;
use_this_sendbuf = sendbuf;
use_this_recvbuf = recvbuf;
if (io_root != root) {
ptrdiff_t tlb, text, lb, ext;
char *tmpbuf = NULL;
ompi_ddt_get_extent(datatype, &lb, &ext);
ompi_ddt_get_true_extent(datatype, &tlb, &text);
if ((root == rank) && (MPI_IN_PLACE == sendbuf)) {
tmpbuf = (char *) malloc(text + (count - 1) * ext);
if (NULL == tmpbuf) {
return MPI_ERR_INTERN;
}
ompi_ddt_copy_content_same_ddt(datatype, count,
(char*)tmpbuf,
(char*)recvbuf);
use_this_sendbuf = tmpbuf;
} else if (io_root == rank) {
tmpbuf = (char *) malloc(text + (count - 1) * ext);
if (NULL == tmpbuf) {
return MPI_ERR_INTERN;
}
use_this_recvbuf = tmpbuf;
}
}
/* Use generic reduce with in-order binary tree topology and io_root */
ret = ompi_coll_tuned_reduce_generic( use_this_sendbuf, use_this_recvbuf, count, datatype,
op, io_root, comm, module,
data->cached_in_order_bintree,
segcount, max_outstanding_reqs );
if (MPI_SUCCESS != ret) { return ret; }
/* Clean up */
if (io_root != root) {
if (root == rank) {
/* Receive result from rank io_root to recvbuf */
ret = MCA_PML_CALL(recv(recvbuf, count, datatype, io_root,
MCA_COLL_BASE_TAG_REDUCE, comm,
MPI_STATUS_IGNORE));
if (MPI_SUCCESS != ret) { return ret; }
if (MPI_IN_PLACE == sendbuf) {
free(use_this_sendbuf);
}
} else if (io_root == rank) {
/* Send result from use_this_recvbuf to root */
ret = MCA_PML_CALL(send(use_this_recvbuf, count, datatype, root,
MCA_COLL_BASE_TAG_REDUCE,
MCA_PML_BASE_SEND_STANDARD, comm));
if (MPI_SUCCESS != ret) { return ret; }
free(use_this_recvbuf);
}
}
return MPI_SUCCESS;
}
/*
* Linear functions are copied from the BASIC coll module
* they do not segment the message and are simple implementations
* but for some small number of nodes and/or small data sizes they
* are just as fast as tuned/tree based segmenting operations
* and as such may be selected by the decision functions
* These are copied into this module due to the way we select modules
* in V1. i.e. in V2 we will handle this differently and so will not
* have to duplicate code.
* GEF Oct05 after asking Jeff.
*/
/* copied function (with appropriate renaming) starts here */
/*
* reduce_lin_intra
*
* Function: - reduction using O(N) algorithm
* Accepts: - same as MPI_Reduce()
* Returns: - MPI_SUCCESS or error code
*/
int
ompi_coll_tuned_reduce_intra_basic_linear(void *sbuf, void *rbuf, int count,
struct ompi_datatype_t *dtype,
struct ompi_op_t *op,
int root,
struct ompi_communicator_t *comm,
struct mca_coll_base_module_1_1_0_t *module)
{
int i, rank, err, size;
ptrdiff_t true_lb, true_extent, lb, extent;
char *free_buffer = NULL;
char *pml_buffer = NULL;
char *inplace_temp = NULL;
char *inbuf;
/* Initialize */
rank = ompi_comm_rank(comm);
size = ompi_comm_size(comm);
OPAL_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:reduce_intra_basic_linear rank %d", rank));
/* If not root, send data to the root. */
if (rank != root) {
err = MCA_PML_CALL(send(sbuf, count, dtype, root,
MCA_COLL_BASE_TAG_REDUCE,
MCA_PML_BASE_SEND_STANDARD, comm));
return err;
}
/* see discussion in ompi_coll_basic_reduce_lin_intra about
extent and true extent */
/* for reducing buffer allocation lengths.... */
ompi_ddt_get_extent(dtype, &lb, &extent);
ompi_ddt_get_true_extent(dtype, &true_lb, &true_extent);
if (MPI_IN_PLACE == sbuf) {
sbuf = rbuf;
inplace_temp = (char*)malloc(true_extent + (count - 1) * extent);
if (NULL == inplace_temp) {
return OMPI_ERR_OUT_OF_RESOURCE;
}
rbuf = inplace_temp - lb;
}
if (size > 1) {
free_buffer = (char*)malloc(true_extent + (count - 1) * extent);
if (NULL == free_buffer) {
return OMPI_ERR_OUT_OF_RESOURCE;
}
pml_buffer = free_buffer - lb;
}
/* Initialize the receive buffer. */
if (rank == (size - 1)) {
err = ompi_ddt_copy_content_same_ddt(dtype, count, (char*)rbuf,
(char*)sbuf);
} else {
err = MCA_PML_CALL(recv(rbuf, count, dtype, size - 1,
MCA_COLL_BASE_TAG_REDUCE, comm,
MPI_STATUS_IGNORE));
}
if (MPI_SUCCESS != err) {
if (NULL != free_buffer) {
free(free_buffer);
}
return err;
}
/* Loop receiving and calling reduction function (C or Fortran). */
for (i = size - 2; i >= 0; --i) {
if (rank == i) {
inbuf = (char*)sbuf;
} else {
err = MCA_PML_CALL(recv(pml_buffer, count, dtype, i,
MCA_COLL_BASE_TAG_REDUCE, comm,
MPI_STATUS_IGNORE));
if (MPI_SUCCESS != err) {
if (NULL != free_buffer) {
free(free_buffer);
}
return err;
}
inbuf = pml_buffer;
}
/* Perform the reduction */
ompi_op_reduce(op, inbuf, rbuf, count, dtype);
}
if (NULL != inplace_temp) {
err = ompi_ddt_copy_content_same_ddt(dtype, count, (char*)sbuf,
inplace_temp);
free(inplace_temp);
}
if (NULL != free_buffer) {
free(free_buffer);
}
/* All done */
return MPI_SUCCESS;
}
/* copied function (with appropriate renaming) ends here */
/**
* The following are used by dynamic and forced rules
*
* publish details of each algorithm and if its forced/fixed/locked in
* as you add methods/algorithms you must update this and the query/map routines
*
* this routine is called by the component only
* this makes sure that the mca parameters are set to their initial values and
* perms module does not call this they call the forced_getvalues routine
* instead.
*/
int ompi_coll_tuned_reduce_intra_check_forced_init (coll_tuned_force_algorithm_mca_param_indices_t *mca_param_indices)
{
int rc, requested_alg, max_alg = 6, max_requests;
ompi_coll_tuned_forced_max_algorithms[REDUCE] = max_alg;
rc = mca_base_param_reg_int (&mca_coll_tuned_component.super.collm_version,
"reduce_algorithm_count",
"Number of reduce algorithms available",
false, true, max_alg, NULL);
mca_param_indices->algorithm_param_index
= mca_base_param_reg_int(&mca_coll_tuned_component.super.collm_version,
"reduce_algorithm",
"Which reduce algorithm is used. Can be locked down to choice of: 0 ignore, 1 linear, 2 chain, 3 pipeline, 4 binary, 5 binomial, 6 in-order binary",
false, false, 0, NULL);
mca_base_param_lookup_int(mca_param_indices->algorithm_param_index, &(requested_alg));
if( requested_alg > max_alg ) {
if( 0 == ompi_comm_rank( MPI_COMM_WORLD ) ) {
opal_output( 0, "Reduce algorithm #%d is not available (range [0..%d]). Switching back to ignore(0)\n",
requested_alg, max_alg );
}
mca_base_param_set_int( mca_param_indices->algorithm_param_index, 0);
}
mca_param_indices->segsize_param_index
= mca_base_param_reg_int(&mca_coll_tuned_component.super.collm_version,
"reduce_algorithm_segmentsize",
"Segment size in bytes used by default for reduce algorithms. Only has meaning if algorithm is forced and supports segmenting. 0 bytes means no segmentation.",
false, false, 0, NULL);
mca_param_indices->tree_fanout_param_index
= mca_base_param_reg_int(&mca_coll_tuned_component.super.collm_version,
"reduce_algorithm_tree_fanout",
"Fanout for n-tree used for reduce algorithms. Only has meaning if algorithm is forced and supports n-tree topo based operation.",
false, false,
ompi_coll_tuned_init_tree_fanout, /* get system wide default */
NULL);
mca_param_indices->chain_fanout_param_index
= mca_base_param_reg_int(&mca_coll_tuned_component.super.collm_version,
"reduce_algorithm_chain_fanout",
"Fanout for chains used for reduce algorithms. Only has meaning if algorithm is forced and supports chain topo based operation.",
false, false,
ompi_coll_tuned_init_chain_fanout, /* get system wide default */
NULL);
mca_param_indices->max_requests_param_index
= mca_base_param_reg_int(&mca_coll_tuned_component.super.collm_version,
"reduce_algorithm_max_requests",
"Maximum number of outstanding send requests on leaf nodes. 0 means no limit.",
false, false, 0, /* no limit for reduce by default */
NULL);
mca_base_param_lookup_int(mca_param_indices->max_requests_param_index, &(max_requests));
if( max_requests < 0 ) {
if( 0 == ompi_comm_rank( MPI_COMM_WORLD ) ) {
opal_output( 0, "Maximum outstanding requests must be positive number or 0. Initializing to 0 (no limit).\n" );
}
mca_base_param_set_int( mca_param_indices->max_requests_param_index, 0);
}
return (MPI_SUCCESS);
}
int ompi_coll_tuned_reduce_intra_do_forced(void *sbuf, void* rbuf, int count,
struct ompi_datatype_t *dtype,
struct ompi_op_t *op, int root,
struct ompi_communicator_t *comm,
struct mca_coll_base_module_1_1_0_t *module)
{
mca_coll_tuned_module_t *tuned_module = (mca_coll_tuned_module_t*) module;
mca_coll_tuned_comm_t *data = tuned_module->tuned_data;
const int segsize = data->user_forced[REDUCE].segsize;
const int chain_fanout = data->user_forced[REDUCE].chain_fanout;
const int max_requests = data->user_forced[REDUCE].max_requests;
OPAL_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:reduce_intra_do_forced selected algorithm %d",
data->user_forced[REDUCE].algorithm));
switch (data->user_forced[REDUCE].algorithm) {
case (0): return ompi_coll_tuned_reduce_intra_dec_fixed (sbuf, rbuf, count, dtype,
op, root, comm, module);
case (1): return ompi_coll_tuned_reduce_intra_basic_linear (sbuf, rbuf, count, dtype,
op, root, comm, module);
case (2): return ompi_coll_tuned_reduce_intra_chain (sbuf, rbuf, count, dtype,
op, root, comm, module,
segsize, chain_fanout, max_requests);
case (3): return ompi_coll_tuned_reduce_intra_pipeline (sbuf, rbuf, count, dtype,
op, root, comm, module,
segsize, max_requests);
case (4): return ompi_coll_tuned_reduce_intra_binary (sbuf, rbuf, count, dtype,
op, root, comm, module,
segsize, max_requests);
case (5): return ompi_coll_tuned_reduce_intra_binomial (sbuf, rbuf, count, dtype,
op, root, comm, module,
segsize, max_requests);
case (6): return ompi_coll_tuned_reduce_intra_in_order_binary(sbuf, rbuf, count, dtype,
op, root, comm, module,
segsize, max_requests);
default:
OPAL_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:reduce_intra_do_forced attempt to select algorithm %d when only 0-%d is valid?",
data->user_forced[REDUCE].algorithm, ompi_coll_tuned_forced_max_algorithms[REDUCE]));
return (MPI_ERR_ARG);
} /* switch */
}
int ompi_coll_tuned_reduce_intra_do_this(void *sbuf, void* rbuf, int count,
struct ompi_datatype_t *dtype,
struct ompi_op_t *op, int root,
struct ompi_communicator_t *comm,
struct mca_coll_base_module_1_1_0_t *module,
int algorithm, int faninout,
int segsize, int max_requests )
{
OPAL_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:reduce_intra_do_this selected algorithm %d topo faninout %d segsize %d",
algorithm, faninout, segsize));
switch (algorithm) {
case (0): return ompi_coll_tuned_reduce_intra_dec_fixed (sbuf, rbuf, count, dtype,
op, root, comm, module);
case (1): return ompi_coll_tuned_reduce_intra_basic_linear (sbuf, rbuf, count, dtype,
op, root, comm, module);
case (2): return ompi_coll_tuned_reduce_intra_chain (sbuf, rbuf, count, dtype,
op, root, comm, module,
segsize, faninout, max_requests);
case (3): return ompi_coll_tuned_reduce_intra_pipeline (sbuf, rbuf, count, dtype,
op, root, comm, module,
segsize, max_requests);
case (4): return ompi_coll_tuned_reduce_intra_binary (sbuf, rbuf, count, dtype,
op, root, comm, module,
segsize, max_requests);
case (5): return ompi_coll_tuned_reduce_intra_binomial (sbuf, rbuf, count, dtype,
op, root, comm, module,
segsize, max_requests);
case (6): return ompi_coll_tuned_reduce_intra_in_order_binary(sbuf, rbuf, count, dtype,
op, root, comm, module,
segsize, max_requests);
default:
OPAL_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:reduce_intra_do_this attempt to select algorithm %d when only 0-%d is valid?",
algorithm, ompi_coll_tuned_forced_max_algorithms[REDUCE]));
return (MPI_ERR_ARG);
} /* switch */
}