1
1
openmpi/opal/class/opal_rb_tree.c
Nathan Hjelm 5f1254d710 Update code base to use the new opal_free_list_t
Use of the old ompi_free_list_t and ompi_free_list_item_t is
deprecated. These classes will be removed in a future commit.

This commit updates the entire code base to use opal_free_list_t and
opal_free_list_item_t.

Notes:

OMPI_FREE_LIST_*_MT -> opal_free_list_* (uses opal_using_threads ())

Signed-off-by: Nathan Hjelm <hjelmn@lanl.gov>
2015-02-24 10:05:45 -07:00

574 строки
16 KiB
C

/* -*- Mode: C; c-basic-offset:4 ; indent-tabs-mode:nil -*- */
/*
* Copyright (c) 2004-2005 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2013 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2015 Los Alamos National Security, LLC. All rights
* reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
/*
* @file
*/
#include "opal_config.h"
#include "opal/class/opal_rb_tree.h"
/* Private functions */
static void btree_insert(opal_rb_tree_t *tree, opal_rb_tree_node_t * node);
static void btree_delete_fixup(opal_rb_tree_t *tree, opal_rb_tree_node_t * x);
static opal_rb_tree_node_t * btree_successor(opal_rb_tree_t * tree,
opal_rb_tree_node_t * node);
static opal_rb_tree_node_t * opal_rb_tree_find_node(opal_rb_tree_t *tree, void *key);
static void left_rotate(opal_rb_tree_t *tree, opal_rb_tree_node_t * x);
static void right_rotate(opal_rb_tree_t *tree, opal_rb_tree_node_t * x);
static void inorder_destroy(opal_rb_tree_t *tree, opal_rb_tree_node_t * node);
static void inorder_traversal(opal_rb_tree_t *tree,
opal_rb_tree_condition_fn_t cond,
opal_rb_tree_action_fn_t action,
opal_rb_tree_node_t * node);
/**
* the constructor function. creates the free list to get the nodes from
*
* @param object the tree that is to be used
*
* @retval NONE
*/
static void opal_rb_tree_construct(opal_object_t * object)
{
opal_rb_tree_t * tree = (opal_rb_tree_t *) object;
tree->root_ptr = NULL;
OBJ_CONSTRUCT(&(tree->free_list), opal_free_list_t);
opal_free_list_init (&(tree->free_list), sizeof(opal_rb_tree_node_t),
opal_cache_line_size, OBJ_CLASS(opal_rb_tree_node_t),
0,opal_cache_line_size, 0, -1 , 128, NULL, 0, NULL, NULL, NULL);
}
/**
* the destructor function. Free the tree and destroys the free list.
*
* @param object the tree object
*/
static void opal_rb_tree_destruct(opal_object_t * object)
{
if(NULL != ((opal_rb_tree_t *)object)->root_ptr) {
opal_rb_tree_destroy((opal_rb_tree_t *) object);
}
OBJ_DESTRUCT(&(((opal_rb_tree_t *)object)->free_list));
return;
}
/* declare the instance of the classes */
OBJ_CLASS_INSTANCE(opal_rb_tree_node_t, opal_free_list_item_t, NULL, NULL);
OBJ_CLASS_INSTANCE(opal_rb_tree_t, opal_object_t, opal_rb_tree_construct,
opal_rb_tree_destruct);
/* Create the tree */
int opal_rb_tree_init(opal_rb_tree_t * tree,
opal_rb_tree_comp_fn_t comp)
{
opal_free_list_item_t * node;
/* we need to get memory for the root pointer from the free list */
node = opal_free_list_get (&(tree->free_list));
tree->root_ptr = (opal_rb_tree_node_t *) node;
if (NULL == node) {
return OPAL_ERR_OUT_OF_RESOURCE;
}
node = opal_free_list_get (&(tree->free_list));
if (NULL == node) {
opal_free_list_return (&tree->free_list, (opal_free_list_item_t*)tree->root_ptr);
return OPAL_ERR_OUT_OF_RESOURCE;
}
tree->nill = (opal_rb_tree_node_t *) node;
/* initialize tree->nill */
tree->nill->color = BLACK;
tree->nill->left = tree->nill;
tree->nill->right = tree->nill;
tree->nill->parent = tree->nill;
/* initialize the 'root' pointer */
tree->root_ptr->left = tree->nill;
tree->root_ptr->right = tree->nill;
tree->root_ptr->parent = tree->nill;
tree->root_ptr->color = BLACK;
tree->comp = comp;
/* set the tree size to zero */
tree->tree_size = 0;
return OPAL_SUCCESS;
}
/* This inserts a node into the tree based on the passed values. */
int opal_rb_tree_insert(opal_rb_tree_t *tree, void * key, void * value)
{
opal_rb_tree_node_t * y;
opal_rb_tree_node_t * node;
opal_free_list_item_t * item;
/* get the memory for a node */
item = opal_free_list_get (&tree->free_list);
if (NULL == item) {
return OPAL_ERR_OUT_OF_RESOURCE;
}
node = (opal_rb_tree_node_t *) item;
/* insert the data into the node */
node->key = key;
node->value = value;
/* insert the node into the tree */
btree_insert(tree, node);
/*do the rotations */
/* usually one would have to check for NULL, but because of the sentinal,
* we don't have to */
while (node->parent->color == RED) {
if (node->parent == node->parent->parent->left) {
y = node->parent->parent->right;
if (y->color == RED) {
node->parent->color = BLACK;
y->color = BLACK;
node->parent->parent->color = RED;
node = node->parent->parent;
} else {
if (node == node->parent->right) {
node = node->parent;
left_rotate(tree, node);
}
node->parent->color = BLACK;
node->parent->parent->color = RED;
right_rotate(tree, node->parent->parent);
}
} else {
y = node->parent->parent->left;
if (y->color == RED) {
node->parent->color = BLACK;
y->color = BLACK;
node->parent->parent->color = RED;
node = node->parent->parent;
} else {
if (node == node->parent->left) {
node = node->parent;
right_rotate(tree, node);
}
node->parent->color = BLACK;
node->parent->parent->color = RED;
left_rotate(tree, node->parent->parent);
}
}
}
/* after the rotations the root is black */
tree->root_ptr->left->color = BLACK;
return OPAL_SUCCESS;
}
/* Finds the node in the tree based on the key */
void * opal_rb_tree_find_with(opal_rb_tree_t *tree, void *key,
opal_rb_tree_comp_fn_t compfn)
{
opal_rb_tree_node_t * node;
int compvalue;
node = tree->root_ptr->left;
while (node != tree->nill) {
compvalue = compfn(key, node->key);
/* if the result of the comparison function is 0, we found it */
if (compvalue == 0) {
return node->value;
}
/* else if it is less than 0, go left, else right */
node = ((compvalue < 0) ? node->left : node->right);
}
/* if we didn't find anything, return NULL */
return NULL;
}
/* Finds the node in the tree based on the key and returns a pointer
* to the node. This is a bit a code duplication, but this has to be fast
* so we go ahead with the duplication */
static opal_rb_tree_node_t * opal_rb_tree_find_node(opal_rb_tree_t *tree, void *key)
{
opal_rb_tree_node_t * node;
int compvalue;
node = tree->root_ptr->left;
while (node != tree->nill) {
compvalue = tree->comp(key, node->key);
/* if the result of the comparison function is 0, we found it */
if (compvalue == 0) {
return node;
}
/* else if it is less than 0, go left, else right */
node = ((compvalue < 0) ? node->left : node->right);
}
/* if we didn't find anything, return NULL */
return NULL;
}
/* Delete a node from the tree based on the key */
int opal_rb_tree_delete(opal_rb_tree_t *tree, void *key)
{
opal_rb_tree_node_t * p;
opal_rb_tree_node_t * todelete;
opal_rb_tree_node_t * y;
opal_free_list_item_t * item;
p = opal_rb_tree_find_node(tree, key);
if (NULL == p) {
return OPAL_ERR_NOT_FOUND;
}
if ((p->left == tree->nill) || (p->right == tree->nill)) {
todelete = p;
} else {
todelete = btree_successor(tree, p);
}
if (todelete->left == tree->nill) {
y = todelete->right;
} else {
y = todelete->left;
}
y->parent = todelete->parent;
if (y->parent == tree->root_ptr) {
tree->root_ptr->left = y;
} else {
if (todelete == todelete->parent->left) {
todelete->parent->left = y;
} else {
todelete->parent->right = y;
}
}
if (todelete != p) {
p->key = todelete->key;
p->value = todelete->value;
}
if (todelete->color == BLACK) {
btree_delete_fixup(tree, y);
}
item = (opal_free_list_item_t *) todelete;
opal_free_list_return (&(tree->free_list), item);
--tree->tree_size;
return OPAL_SUCCESS;
}
/* Destroy the hashmap */
int opal_rb_tree_destroy(opal_rb_tree_t *tree)
{
opal_free_list_item_t * item;
/* Recursive inorder traversal for delete */
inorder_destroy(tree, tree->root_ptr);
/* Now free the root -- root does not get free'd in the above
* inorder destroy */
item = (opal_free_list_item_t *) tree->root_ptr;
opal_free_list_return(&(tree->free_list), item);
/* free the tree->nill node */
item = (opal_free_list_item_t *) tree->nill;
opal_free_list_return (&(tree->free_list), item);
return OPAL_SUCCESS;
}
/* Find the next inorder successor of a node */
static opal_rb_tree_node_t * btree_successor(opal_rb_tree_t * tree, opal_rb_tree_node_t * node)
{
opal_rb_tree_node_t * p;
if (node->right == tree->nill) {
p = node->parent;
while (node == p->right) {
node = p;
p = p->parent;
}
if(p == tree->root_ptr) {
return tree->nill;
}
return p;
}
p = node->right;
while(p->left != tree->nill) {
p = p->left;
}
return p;
}
/* Insert an element in the normal binary search tree fashion */
/* this function goes through the tree and finds the leaf where
* the node will be inserted */
static void btree_insert(opal_rb_tree_t *tree, opal_rb_tree_node_t * node)
{
opal_rb_tree_node_t * parent = tree->root_ptr;
opal_rb_tree_node_t * n = parent->left; /* the real root of the tree */
/* set up initial values for the node */
node->color = RED;
node->parent = NULL;
node->left = tree->nill;
node->right = tree->nill;
/* find the leaf where we will insert the node */
while (n != tree->nill) {
parent = n;
n = ((tree->comp(node->key, n->key) <= 0) ? n->left : n->right);
}
/* place it on either the left or the right */
if((parent == tree->root_ptr) || (tree->comp(node->key, parent->key) <= 0)) {
parent->left = node;
} else {
parent->right = node;
}
/* set its parent and children */
node->parent = parent;
node->left = tree->nill;
node->right = tree->nill;
++(tree->tree_size);
return;
}
/* Fixup the balance of the btree after deletion */
static void btree_delete_fixup(opal_rb_tree_t *tree, opal_rb_tree_node_t * x)
{
opal_rb_tree_node_t * w;
opal_rb_tree_node_t * root = tree->root_ptr->left;
while ((x != root) && (x->color == BLACK)) {
if (x == x->parent->left) {
w = x->parent->right;
if (w->color == RED) {
w->color = BLACK;
x->parent->color = RED;
left_rotate(tree, x->parent);
w = x->parent->right;
}
if ((w->left->color == BLACK) && (w->right->color == BLACK)) {
w->color = RED;
x = x->parent;
} else {
if (w->right->color == BLACK) {
w->left->color = BLACK;
w->color = RED;
right_rotate(tree, w);
w = x->parent->right;
}
w->color = x->parent->color;
x->parent->color = BLACK;
w->right->color = BLACK;
left_rotate(tree, x->parent);
x = root;
}
} else { /* right */
w = x->parent->left;
if (w->color == RED) {
w->color = BLACK;
x->parent->color = RED;
right_rotate(tree, x->parent);
w = x->parent->left;
}
if ((w->right->color == BLACK) && (w->left->color == BLACK)) {
w->color = RED;
x = x->parent;
} else {
if (w->left->color == BLACK) {
w->right->color = BLACK;
w->color = RED;
left_rotate(tree, w);
w = x->parent->left;
}
w->color = x->parent->color;
x->parent->color = BLACK;
w->left->color = BLACK;
right_rotate(tree, x->parent);
x = root;
}
}
}
x->color = BLACK;
return;
}
/* Free the nodes in inorder fashion */
static void
inorder_destroy(opal_rb_tree_t *tree, opal_rb_tree_node_t * node)
{
opal_free_list_item_t * item;
if (node == tree->nill) {
return;
}
inorder_destroy(tree, node->left);
if (node->left != tree->nill) {
item = (opal_free_list_item_t *) node->left;
--tree->tree_size;
opal_free_list_return (&tree->free_list, item);
}
inorder_destroy(tree, node->right);
if (node->right != tree->nill) {
item = (opal_free_list_item_t *) node->right;
--tree->tree_size;
opal_free_list_return (&tree->free_list, item);
}
}
/* Try to access all the elements of the hashmap conditionally */
int opal_rb_tree_traverse(opal_rb_tree_t *tree,
opal_rb_tree_condition_fn_t cond,
opal_rb_tree_action_fn_t action)
{
if ((cond == NULL) || (action == NULL)) {
return OPAL_ERROR;
}
inorder_traversal(tree, cond, action, tree->root_ptr->left);
return OPAL_SUCCESS;
}
static void inorder_traversal(opal_rb_tree_t *tree,
opal_rb_tree_condition_fn_t cond,
opal_rb_tree_action_fn_t action,
opal_rb_tree_node_t * node)
{
if (node == tree->nill) {
return;
}
inorder_traversal(tree, cond, action, node->left);
if (cond(node->value)) {
action(node->key, node->value);
}
inorder_traversal(tree, cond, action, node->right);
}
/* Left rotate the tree */
/* basically what we want to do is to make x be the left child
* of its right child */
static void left_rotate(opal_rb_tree_t *tree, opal_rb_tree_node_t * x)
{
opal_rb_tree_node_t * y;
y = x->right;
/* make the left child of y's parent be x if it is not the sentinal node*/
if (y->left != tree->nill) {
y->left->parent=x;
}
/* normlly we would have to check to see if we are at the root.
* however, the root sentinal takes care of it for us */
if (x == x->parent->left) {
x->parent->left = y;
} else {
x->parent->right = y;
}
/* the old parent of x is now y's parent */
y->parent = x->parent;
/* x's parent is y */
x->parent = y;
x->right = y->left;
y->left = x;
return;
}
/* Right rotate the tree */
/* basically what we want to do is to make x be the right child
* of its left child */
static void right_rotate(opal_rb_tree_t *tree, opal_rb_tree_node_t * x)
{
opal_rb_tree_node_t * y;
y = x->left;
if(y->right != tree->nill) {
y->right->parent = x;
}
if (x == x->parent->left) {
x->parent->left = y;
} else {
x->parent->right = y;
}
y->parent = x->parent;
x->parent = y;
x->left = y->right;
y->right = x;
return;
}
/* returns the size of the tree */
int opal_rb_tree_size(opal_rb_tree_t *tree)
{
return tree->tree_size;
}
/* below are a couple of debugging functions */
#if 0
#include <stdio.h>
static void inorder(opal_rb_tree_t * tree, opal_rb_tree_node_t * node);
static void print_inorder(opal_rb_tree_t * tree);
void inorder(opal_rb_tree_t * tree, opal_rb_tree_node_t * node)
{
static int level = 0;
if (node == tree->nill) {
printf("nill\n");
return;
}
level++;
inorder(tree, node->left);
level--;
printf("%d, level: %d\n", *((int *)node->value), level);
level++;
inorder(tree, node->right);
level--;
}
void print_inorder(opal_rb_tree_t *tree)
{
inorder(tree, tree->root_ptr->left);
}
#endif