1
1
openmpi/ompi/mca/common/cuda/common_cuda.c
Rolf vandeVaart d4f12148c4 Fix several issues reported in ticket #4245.
This commit was SVN r30767.
2014-02-18 17:44:08 +00:00

1844 строки
74 KiB
C

/*
* Copyright (c) 2004-2006 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2005 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2006 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2011-2014 NVIDIA Corporation. All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
/**
* This file contains various support functions for doing CUDA
* operations. Some of the features are only available in CUDA 4.1
* and later, so some code is conditionalized around the
* OPAL_CUDA_SUPPORT_41 macro.
*/
#include "ompi_config.h"
#include <errno.h>
#include <unistd.h>
#include <cuda.h>
#include "opal/align.h"
#include "opal/datatype/opal_convertor.h"
#include "opal/datatype/opal_datatype_cuda.h"
#include "opal/util/output.h"
#include "opal/util/lt_interface.h"
#include "opal/util/show_help.h"
#include "ompi/mca/mpool/base/base.h"
#include "ompi/mca/rte/rte.h"
#include "ompi/runtime/params.h"
#include "common_cuda.h"
/**
* Since function names can get redefined in cuda.h file, we need to do this
* stringifying to get the latest function name from the header file. For
* example, cuda.h may have something like this:
* #define cuMemFree cuMemFree_v2
* We want to make sure we find cuMemFree_v2, not cuMemFree.
*/
#define STRINGIFY2(x) #x
#define STRINGIFY(x) STRINGIFY2(x)
#define OMPI_CUDA_DLSYM(libhandle, funcName) \
do { \
*(void **)(&cuFunc.funcName) = opal_lt_dlsym(libhandle, STRINGIFY(funcName)); \
if (NULL == cuFunc.funcName) { \
opal_show_help("help-mpi-common-cuda.txt", "dlsym failed", true, \
STRINGIFY(funcName), opal_lt_dlerror()); \
return 1; \
} else { \
opal_output_verbose(15, mca_common_cuda_output, \
"CUDA: successful dlsym of %s", \
STRINGIFY(funcName)); \
} \
} while (0)
/* Structure to hold CUDA function pointers that get dynamically loaded. */
struct cudaFunctionTable {
int (*cuPointerGetAttribute)(void *, CUpointer_attribute, CUdeviceptr);
int (*cuMemcpyAsync)(CUdeviceptr, CUdeviceptr, size_t, CUstream);
int (*cuMemcpy)(CUdeviceptr, CUdeviceptr, size_t);
int (*cuMemAlloc)(CUdeviceptr *, unsigned int);
int (*cuMemFree)(CUdeviceptr buf);
int (*cuCtxGetCurrent)(void *cuContext);
int (*cuStreamCreate)(CUstream *, int);
int (*cuEventCreate)(CUevent *, int);
int (*cuEventRecord)(CUevent, CUstream);
int (*cuMemHostRegister)(void *, size_t, unsigned int);
int (*cuMemHostUnregister)(void *);
int (*cuEventQuery)(CUevent);
int (*cuEventDestroy)(CUevent);
int (*cuStreamWaitEvent)(CUstream, CUevent, unsigned int);
int (*cuMemGetAddressRange)(CUdeviceptr*, size_t*, CUdeviceptr);
#if OPAL_CUDA_SUPPORT_41
int (*cuIpcGetEventHandle)(CUipcEventHandle*, CUevent);
int (*cuIpcOpenEventHandle)(CUevent*, CUipcEventHandle);
int (*cuIpcOpenMemHandle)(CUdeviceptr*, CUipcMemHandle, unsigned int);
int (*cuIpcCloseMemHandle)(CUdeviceptr);
int (*cuIpcGetMemHandle)(CUipcMemHandle*, CUdeviceptr);
#endif /* OPAL_CUDA_SUPPORT_41 */
int (*cuCtxGetDevice)(CUdevice *);
int (*cuDeviceCanAccessPeer)(int *, CUdevice, CUdevice);
int (*cuDeviceGet)(CUdevice *, int);
#if OPAL_CUDA_GDR_SUPPORT
int (*cuPointerSetAttribute)(const void *, CUpointer_attribute, CUdeviceptr);
#endif /* OPAL_CUDA_GDR_SUPPORT */
int (*cuCtxSetCurrent)(CUcontext);
int (*cuEventSynchronize)(CUevent);
} cudaFunctionTable;
typedef struct cudaFunctionTable cudaFunctionTable_t;
cudaFunctionTable_t cuFunc;
static bool stage_one_init_complete = false;
static bool stage_three_init_complete = false;
static bool common_cuda_initialized = false;
static int mca_common_cuda_verbose;
static int mca_common_cuda_output = 0;
bool mca_common_cuda_enabled = false;
static bool mca_common_cuda_register_memory = true;
static bool mca_common_cuda_warning = false;
static opal_list_t common_cuda_memory_registrations;
static CUstream ipcStream;
static CUstream dtohStream;
static CUstream htodStream;
static CUstream memcpyStream;
static CUevent memcpyEvent;
/* Functions called by opal layer - plugged into opal function table */
static int mca_common_cuda_is_gpu_buffer(const void*);
static int mca_common_cuda_memmove(void*, void*, size_t);
static int mca_common_cuda_cu_memcpy_async(void*, const void*, size_t, opal_convertor_t*);
static int mca_common_cuda_cu_memcpy(void*, const void*, size_t);
/* Structure to hold memory registrations that are delayed until first
* call to send or receive a GPU pointer */
struct common_cuda_mem_regs_t {
opal_list_item_t super;
void *ptr;
size_t amount;
char *msg;
};
typedef struct common_cuda_mem_regs_t common_cuda_mem_regs_t;
OBJ_CLASS_DECLARATION(common_cuda_mem_regs_t);
OBJ_CLASS_INSTANCE(common_cuda_mem_regs_t,
opal_list_item_t,
NULL,
NULL);
#if OPAL_CUDA_SUPPORT_41
static int mca_common_cuda_async = 1;
static int mca_common_cuda_cumemcpy_async;
#if OPAL_ENABLE_DEBUG
static int mca_common_cuda_cumemcpy_timing;
#endif /* OPAL_ENABLE_DEBUG */
/* Array of CUDA events to be queried for IPC stream, sending side and
* receiving side. */
CUevent *cuda_event_ipc_array;
CUevent *cuda_event_dtoh_array;
CUevent *cuda_event_htod_array;
/* Array of fragments currently being moved by cuda async non-blocking
* operations */
struct mca_btl_base_descriptor_t **cuda_event_ipc_frag_array;
struct mca_btl_base_descriptor_t **cuda_event_dtoh_frag_array;
struct mca_btl_base_descriptor_t **cuda_event_htod_frag_array;
/* First free/available location in cuda_event_status_array */
int cuda_event_ipc_first_avail, cuda_event_dtoh_first_avail, cuda_event_htod_first_avail;
/* First currently-being used location in the cuda_event_status_array */
int cuda_event_ipc_first_used, cuda_event_dtoh_first_used, cuda_event_htod_first_used;
/* Number of status items currently in use */
int cuda_event_ipc_num_used, cuda_event_dtoh_num_used, cuda_event_htod_num_used;
/* Size of array holding events */
int cuda_event_max = 400;
static int cuda_event_ipc_most = 0;
static int cuda_event_dtoh_most = 0;
static int cuda_event_htod_most = 0;
/* Handle to libcuda.so */
opal_lt_dlhandle libcuda_handle;
#define CUDA_COMMON_TIMING 0
#if OPAL_ENABLE_DEBUG
/* Some timing support structures. Enable this to help analyze
* internal performance issues. */
static struct timespec ts_start;
static struct timespec ts_end;
static double accum;
#define THOUSAND 1000L
#define MILLION 1000000L
static float mydifftime(struct timespec ts_start, struct timespec ts_end);
#endif /* OPAL_ENABLE_DEBUG */
/* These functions are typically unused in the optimized builds. */
static void cuda_dump_evthandle(int, void *, char *) __opal_attribute_unused__ ;
static void cuda_dump_memhandle(int, void *, char *) __opal_attribute_unused__ ;
#if OPAL_ENABLE_DEBUG
#define CUDA_DUMP_MEMHANDLE(a) cuda_dump_memhandle a
#define CUDA_DUMP_EVTHANDLE(a) cuda_dump_evthandle a
#else
#define CUDA_DUMP_MEMHANDLE(a)
#define CUDA_DUMP_EVTHANDLE(a)
#endif /* OPAL_ENABLE_DEBUG */
#endif /* OPAL_CUDA_SUPPORT_41 */
/**
* This function is registered with the OPAL CUDA support. In that way,
* these function pointers will be loaded into the OPAL CUDA code when
* the first convertor is initialized. This does not trigger any CUDA
* specific initialization as this may just be a host buffer that is
* triggering this call.
*/
static int mca_common_cuda_init(opal_common_cuda_function_table_t *ftable)
{
if (OPAL_UNLIKELY(!ompi_mpi_cuda_support)) {
return OMPI_ERROR;
}
ftable->gpu_is_gpu_buffer = &mca_common_cuda_is_gpu_buffer;
ftable->gpu_cu_memcpy_async = &mca_common_cuda_cu_memcpy_async;
ftable->gpu_cu_memcpy = &mca_common_cuda_cu_memcpy;
ftable->gpu_memmove = &mca_common_cuda_memmove;
opal_output_verbose(30, mca_common_cuda_output,
"CUDA: support functions initialized");
return OMPI_SUCCESS;
}
/**
* This is the first stage of initialization. This function is
* triggered when there are memory registration requests from various
* BTLs. This function will register some mca variables and then open
* and load the symbols needed from the CUDA driver library. Look for
* the SONAME of the library which is libcuda.so.1. In most cases,
* this will result in the library found. However, there are some
* setups that require the extra steps for searching. Any failure
* will result in this initialization failing and status will be set
* showing that.
*/
int mca_common_cuda_stage_one_init(void)
{
opal_lt_dladvise advise;
int retval, i, j;
int advise_support = 1;
char *cudalibs[] = {"libcuda.so.1", NULL};
char *searchpaths[] = {"", "/usr/lib64", NULL};
char **errmsgs = NULL;
char *errmsg = NULL;
int errsize;
bool stage_one_init_passed = false;
if (true == stage_one_init_complete) {
return 0;
}
stage_one_init_complete = true;
/* Set different levels of verbosity in the cuda related code. */
mca_common_cuda_verbose = 0;
(void) mca_base_var_register("ompi", "mpi", "common_cuda", "verbose",
"Set level of common cuda verbosity",
MCA_BASE_VAR_TYPE_INT, NULL, 0, 0,
OPAL_INFO_LVL_9,
MCA_BASE_VAR_SCOPE_READONLY,
&mca_common_cuda_verbose);
/* Control whether system buffers get CUDA pinned or not. Allows for
* performance analysis. */
mca_common_cuda_register_memory = true;
(void) mca_base_var_register("ompi", "mpi", "common_cuda", "register_memory",
"Whether to cuMemHostRegister preallocated BTL buffers",
MCA_BASE_VAR_TYPE_BOOL, NULL, 0, 0,
OPAL_INFO_LVL_9,
MCA_BASE_VAR_SCOPE_READONLY,
&mca_common_cuda_register_memory);
/* Control whether we see warnings when CUDA memory registration fails. This is
* useful when CUDA support is configured in, but we are running a regular MPI
* application without CUDA. */
mca_common_cuda_warning = true;
(void) mca_base_var_register("ompi", "mpi", "common_cuda", "warning",
"Whether to print warnings when CUDA registration fails",
MCA_BASE_VAR_TYPE_BOOL, NULL, 0, 0,
OPAL_INFO_LVL_9,
MCA_BASE_VAR_SCOPE_READONLY,
&mca_common_cuda_warning);
#if OPAL_CUDA_SUPPORT_41
/* Use this flag to test async vs sync copies */
mca_common_cuda_async = 1;
(void) mca_base_var_register("ompi", "mpi", "common_cuda", "memcpy_async",
"Set to 0 to force CUDA sync copy instead of async",
MCA_BASE_VAR_TYPE_INT, NULL, 0, 0,
OPAL_INFO_LVL_9,
MCA_BASE_VAR_SCOPE_READONLY,
&mca_common_cuda_async);
/* Use this parameter to increase the number of outstanding events allows */
(void) mca_base_var_register("ompi", "mpi", "common_cuda", "event_max",
"Set number of oustanding CUDA events",
MCA_BASE_VAR_TYPE_INT, NULL, 0, 0,
OPAL_INFO_LVL_9,
MCA_BASE_VAR_SCOPE_READONLY,
&cuda_event_max);
#endif /* OPAL_CUDA_SUPPORT_41 */
/* Use this flag to test cuMemcpyAsync vs cuMemcpy */
mca_common_cuda_cumemcpy_async = 0;
(void) mca_base_var_register("ompi", "mpi", "common_cuda", "cumemcpy_async",
"Set to 0 to force CUDA cuMemcpy instead of cuMemcpyAsync/cuEventRecord/cuEventSynchronize",
MCA_BASE_VAR_TYPE_INT, NULL, 0, 0,
OPAL_INFO_LVL_5,
MCA_BASE_VAR_SCOPE_READONLY,
&mca_common_cuda_cumemcpy_async);
#if OPAL_ENABLE_DEBUG
/* Use this flag to dump out timing of cumempcy sync and async */
mca_common_cuda_cumemcpy_timing = 0;
(void) mca_base_var_register("ompi", "mpi", "common_cuda", "cumemcpy_timing",
"Set to 1 to dump timing of eager copies",
MCA_BASE_VAR_TYPE_INT, NULL, 0, 0,
OPAL_INFO_LVL_5,
MCA_BASE_VAR_SCOPE_READONLY,
&mca_common_cuda_cumemcpy_timing);
#endif /* OPAL_ENABLE_DEBUG */
mca_common_cuda_output = opal_output_open(NULL);
opal_output_set_verbosity(mca_common_cuda_output, mca_common_cuda_verbose);
/* First check if the support is enabled. In the case that the user has
* turned it off, we do not need to continue with any CUDA specific
* initialization. Do this after MCA parameter registration. */
if (!ompi_mpi_cuda_support) {
return 1;
}
if (0 != (retval = opal_lt_dlinit())) {
if (OPAL_ERR_NOT_SUPPORTED == retval) {
opal_show_help("help-mpi-common-cuda.txt", "dlopen disabled", true);
} else {
opal_show_help("help-mpi-common-cuda.txt", "unknown ltdl error", true,
"opal_lt_dlinit", retval, opal_lt_dlerror());
}
return 1;
}
/* Initialize the lt_dladvise structure. If this does not work, we can
* proceed without the support. Things should still work. */
if (0 != (retval = opal_lt_dladvise_init(&advise))) {
if (OPAL_ERR_NOT_SUPPORTED == retval) {
advise_support = 0;
} else {
opal_show_help("help-mpi-common-cuda.txt", "unknown ltdl error", true,
"opal_lt_dladvise_init", retval, opal_lt_dlerror());
return 1;
}
}
/* Now walk through all the potential names libcuda and find one
* that works. If it does, all is good. If not, print out all
* the messages about why things failed. This code was careful
* to try and save away all error messages if the loading ultimately
* failed to help with debugging.
* NOTE: On the first loop we just utilize the default loading
* paths from the system. For the second loop, set /usr/lib64 to
* the search path and try again. This is done to handle the case
* where we have both 32 and 64 bit libcuda.so libraries installed.
* Even when running in 64-bit mode, the /usr/lib direcotry
* is searched first and we may find a 32-bit libcuda.so.1 library.
* Loading of this library will fail as libtool does not handle having
* the wrong ABI in the search path (unlike ld or ld.so). Note that
* we only set this search path after the original search. This is
* so that LD_LIBRARY_PATH and run path settings are respected.
* Setting this search path overrides them (rather then being appended). */
if (advise_support) {
if (0 != (retval = opal_lt_dladvise_global(&advise))) {
opal_show_help("help-mpi-common-cuda.txt", "unknown ltdl error", true,
"opal_lt_dladvise_global", retval, opal_lt_dlerror());
opal_lt_dladvise_destroy(&advise);
return 1;
}
j = 0;
while (searchpaths[j] != NULL) {
/* Set explicit search path if entry is not empty string */
if (strcmp("", searchpaths[j])) {
opal_lt_dlsetsearchpath(searchpaths[j]);
}
i = 0;
while (cudalibs[i] != NULL) {
const char *str;
libcuda_handle = opal_lt_dlopenadvise(cudalibs[i], advise);
if (NULL == libcuda_handle) {
str = opal_lt_dlerror();
if (NULL != str) {
opal_argv_append(&errsize, &errmsgs, str);
} else {
opal_argv_append(&errsize, &errmsgs, "lt_dlerror() returned NULL.");
}
opal_output_verbose(10, mca_common_cuda_output,
"CUDA: Library open error: %s",
errmsgs[errsize-1]);
} else {
opal_output_verbose(10, mca_common_cuda_output,
"CUDA: Library successfully opened %s",
cudalibs[i]);
stage_one_init_passed = true;
break;
}
i++;
}
if (true == stage_one_init_passed) break; /* Break out of outer loop */
j++;
}
opal_lt_dladvise_destroy(&advise);
} else {
j = 0;
/* No lt_dladvise support. This should rarely happen. */
while (searchpaths[j] != NULL) {
/* Set explicit search path if entry is not empty string */
if (strcmp("", searchpaths[j])) {
opal_lt_dlsetsearchpath(searchpaths[j]);
}
i = 0;
while (cudalibs[i] != NULL) {
const char *str;
libcuda_handle = opal_lt_dlopen(cudalibs[i]);
if (NULL == libcuda_handle) {
str = opal_lt_dlerror();
if (NULL != str) {
opal_argv_append(&errsize, &errmsgs, str);
} else {
opal_argv_append(&errsize, &errmsgs, "lt_dlerror() returned NULL.");
}
opal_output_verbose(10, mca_common_cuda_output,
"CUDA: Library open error: %s",
errmsgs[errsize-1]);
} else {
opal_output_verbose(10, mca_common_cuda_output,
"CUDA: Library successfully opened %s",
cudalibs[i]);
stage_one_init_passed = true;
break;
}
i++;
}
if (true == stage_one_init_passed) break; /* Break out of outer loop */
j++;
}
}
if (true != stage_one_init_passed) {
errmsg = opal_argv_join(errmsgs, '\n');
opal_show_help("help-mpi-common-cuda.txt", "dlopen failed", true,
errmsg);
}
opal_argv_free(errmsgs);
free(errmsg);
if (true != stage_one_init_passed) {
return 1;
}
opal_cuda_add_initialization_function(&mca_common_cuda_init);
OBJ_CONSTRUCT(&common_cuda_memory_registrations, opal_list_t);
/* Map in the functions that we need. Note that if there is an error
* the macro OMPI_CUDA_DLSYM will print an error and call return. */
OMPI_CUDA_DLSYM(libcuda_handle, cuStreamCreate);
OMPI_CUDA_DLSYM(libcuda_handle, cuCtxGetCurrent);
OMPI_CUDA_DLSYM(libcuda_handle, cuEventCreate);
OMPI_CUDA_DLSYM(libcuda_handle, cuEventRecord);
OMPI_CUDA_DLSYM(libcuda_handle, cuMemHostRegister);
OMPI_CUDA_DLSYM(libcuda_handle, cuMemHostUnregister);
OMPI_CUDA_DLSYM(libcuda_handle, cuPointerGetAttribute);
OMPI_CUDA_DLSYM(libcuda_handle, cuEventQuery);
OMPI_CUDA_DLSYM(libcuda_handle, cuEventDestroy);
OMPI_CUDA_DLSYM(libcuda_handle, cuStreamWaitEvent);
OMPI_CUDA_DLSYM(libcuda_handle, cuMemcpyAsync);
OMPI_CUDA_DLSYM(libcuda_handle, cuMemcpy);
OMPI_CUDA_DLSYM(libcuda_handle, cuMemFree);
OMPI_CUDA_DLSYM(libcuda_handle, cuMemAlloc);
OMPI_CUDA_DLSYM(libcuda_handle, cuMemGetAddressRange);
#if OPAL_CUDA_SUPPORT_41
OMPI_CUDA_DLSYM(libcuda_handle, cuIpcGetEventHandle);
OMPI_CUDA_DLSYM(libcuda_handle, cuIpcOpenEventHandle);
OMPI_CUDA_DLSYM(libcuda_handle, cuIpcOpenMemHandle);
OMPI_CUDA_DLSYM(libcuda_handle, cuIpcCloseMemHandle);
OMPI_CUDA_DLSYM(libcuda_handle, cuIpcGetMemHandle);
#endif /* OPAL_CUDA_SUPPORT_41 */
OMPI_CUDA_DLSYM(libcuda_handle, cuCtxGetDevice);
OMPI_CUDA_DLSYM(libcuda_handle, cuDeviceCanAccessPeer);
OMPI_CUDA_DLSYM(libcuda_handle, cuDeviceGet);
#if OPAL_CUDA_GDR_SUPPORT
OMPI_CUDA_DLSYM(libcuda_handle, cuPointerSetAttribute);
#endif /* OPAL_CUDA_GDR_SUPPORT */
OMPI_CUDA_DLSYM(libcuda_handle, cuCtxSetCurrent);
OMPI_CUDA_DLSYM(libcuda_handle, cuEventSynchronize);
return 0;
}
/**
* This is the last phase of initialization. This is triggered when we examine
* a buffer pointer and determine it is a GPU buffer. We then assume the user
* has selected their GPU and we can go ahead with all the CUDA related
* initializations.
*/
static int mca_common_cuda_stage_three_init(void)
{
int i, s;
CUresult res;
CUcontext cuContext;
common_cuda_mem_regs_t *mem_reg;
stage_three_init_complete = true;
opal_output_verbose(20, mca_common_cuda_output,
"CUDA: entering stage three init");
if (OPAL_UNLIKELY(!ompi_mpi_cuda_support)) {
opal_output_verbose(20, mca_common_cuda_output,
"CUDA: No mpi cuda support, exiting stage three init");
return OMPI_ERROR;
}
if (OPAL_LIKELY(common_cuda_initialized)) {
opal_output_verbose(20, mca_common_cuda_output,
"CUDA: Stage three already complete, exiting stage three init");
return OMPI_SUCCESS;
}
/* Check to see if this process is running in a CUDA context. If
* so, all is good. If not, then disable registration of memory. */
res = cuFunc.cuCtxGetCurrent(&cuContext);
if (CUDA_SUCCESS != res) {
if (mca_common_cuda_warning) {
/* Check for the not initialized error since we can make suggestions to
* user for this error. */
if (CUDA_ERROR_NOT_INITIALIZED == res) {
opal_show_help("help-mpi-common-cuda.txt", "cuCtxGetCurrent failed not initialized",
true);
} else {
opal_show_help("help-mpi-common-cuda.txt", "cuCtxGetCurrent failed",
true, res);
}
}
mca_common_cuda_enabled = false;
mca_common_cuda_register_memory = false;
} else if ((CUDA_SUCCESS == res) && (NULL == cuContext)) {
if (mca_common_cuda_warning) {
opal_show_help("help-mpi-common-cuda.txt", "cuCtxGetCurrent returned NULL",
true);
}
mca_common_cuda_enabled = false;
mca_common_cuda_register_memory = false;
} else {
/* All is good. mca_common_cuda_register_memory will retain its original
* value. Normally, that is 1, but the user can override it to disable
* registration of the internal buffers. */
mca_common_cuda_enabled = true;
opal_output_verbose(20, mca_common_cuda_output,
"CUDA: cuCtxGetCurrent succeeded");
}
/* No need to go on at this point. If we cannot create a context and we are at
* the point where we are making MPI calls, it is time to fully disable
* CUDA support.
*/
if (false == mca_common_cuda_enabled) {
return OMPI_ERROR;
}
#if OPAL_CUDA_SUPPORT_41
if (true == mca_common_cuda_enabled) {
/* Set up an array to store outstanding IPC async copy events */
cuda_event_ipc_array = NULL;
cuda_event_ipc_frag_array = NULL;
cuda_event_ipc_num_used = 0;
cuda_event_ipc_first_avail = 0;
cuda_event_ipc_first_used = 0;
cuda_event_ipc_array = (CUevent *) malloc(sizeof(CUevent) * cuda_event_max);
if (NULL == cuda_event_ipc_array) {
opal_show_help("help-mpi-common-cuda.txt", "No memory",
true, errno, strerror(errno));
return OMPI_ERROR;
}
/* Create the events since they can be reused. */
for (i = 0; i < cuda_event_max; i++) {
res = cuFunc.cuEventCreate(&cuda_event_ipc_array[i], CU_EVENT_DISABLE_TIMING);
if (CUDA_SUCCESS != res) {
opal_show_help("help-mpi-common-cuda.txt", "cuEventCreate failed",
true, ompi_process_info.nodename, res);
return OMPI_ERROR;
}
}
/* The first available status index is 0. Make an empty frag
array. */
cuda_event_ipc_frag_array = (struct mca_btl_base_descriptor_t **)
malloc(sizeof(struct mca_btl_base_descriptor_t *) * cuda_event_max);
if (NULL == cuda_event_ipc_frag_array) {
opal_show_help("help-mpi-common-cuda.txt", "No memory",
true, errno, strerror(errno));
return OMPI_ERROR;
}
}
#endif /* OPAL_CUDA_SUPPORT_41 */
if (true == mca_common_cuda_enabled) {
/* Set up an array to store outstanding async dtoh events. Used on the
* sending side for asynchronous copies. */
cuda_event_dtoh_array = NULL;
cuda_event_dtoh_frag_array = NULL;
cuda_event_dtoh_num_used = 0;
cuda_event_dtoh_first_avail = 0;
cuda_event_dtoh_first_used = 0;
cuda_event_dtoh_array = (CUevent *) malloc(sizeof(CUevent) * cuda_event_max);
if (NULL == cuda_event_dtoh_array) {
opal_show_help("help-mpi-common-cuda.txt", "No memory",
true, errno, strerror(errno));
return OMPI_ERROR;
}
/* Create the events since they can be reused. */
for (i = 0; i < cuda_event_max; i++) {
res = cuFunc.cuEventCreate(&cuda_event_dtoh_array[i], CU_EVENT_DISABLE_TIMING);
if (CUDA_SUCCESS != res) {
opal_show_help("help-mpi-common-cuda.txt", "cuEventCreate failed",
true, ompi_process_info.nodename, res);
return OMPI_ERROR;
}
}
/* The first available status index is 0. Make an empty frag
array. */
cuda_event_dtoh_frag_array = (struct mca_btl_base_descriptor_t **)
malloc(sizeof(struct mca_btl_base_descriptor_t *) * cuda_event_max);
if (NULL == cuda_event_dtoh_frag_array) {
opal_show_help("help-mpi-common-cuda.txt", "No memory",
true, errno, strerror(errno));
return OMPI_ERROR;
}
/* Set up an array to store outstanding async htod events. Used on the
* receiving side for asynchronous copies. */
cuda_event_htod_array = NULL;
cuda_event_htod_frag_array = NULL;
cuda_event_htod_num_used = 0;
cuda_event_htod_first_avail = 0;
cuda_event_htod_first_used = 0;
cuda_event_htod_array = (CUevent *) malloc(sizeof(CUevent) * cuda_event_max);
if (NULL == cuda_event_htod_array) {
opal_show_help("help-mpi-common-cuda.txt", "No memory",
true, errno, strerror(errno));
return OMPI_ERROR;
}
/* Create the events since they can be reused. */
for (i = 0; i < cuda_event_max; i++) {
res = cuFunc.cuEventCreate(&cuda_event_htod_array[i], CU_EVENT_DISABLE_TIMING);
if (CUDA_SUCCESS != res) {
opal_show_help("help-mpi-common-cuda.txt", "cuEventCreate failed",
true, ompi_process_info.nodename, res);
return OMPI_ERROR;
}
}
/* The first available status index is 0. Make an empty frag
array. */
cuda_event_htod_frag_array = (struct mca_btl_base_descriptor_t **)
malloc(sizeof(struct mca_btl_base_descriptor_t *) * cuda_event_max);
if (NULL == cuda_event_htod_frag_array) {
opal_show_help("help-mpi-common-cuda.txt", "No memory",
true, errno, strerror(errno));
return OMPI_ERROR;
}
}
s = opal_list_get_size(&common_cuda_memory_registrations);
for(i = 0; i < s; i++) {
mem_reg = (common_cuda_mem_regs_t *)
opal_list_remove_first(&common_cuda_memory_registrations);
if (mca_common_cuda_enabled && mca_common_cuda_register_memory) {
res = cuFunc.cuMemHostRegister(mem_reg->ptr, mem_reg->amount, 0);
if (res != CUDA_SUCCESS) {
/* If registering the memory fails, print a message and continue.
* This is not a fatal error. */
opal_show_help("help-mpi-common-cuda.txt", "cuMemHostRegister failed",
true, mem_reg->ptr, mem_reg->amount,
ompi_process_info.nodename, res, mem_reg->msg);
} else {
opal_output_verbose(20, mca_common_cuda_output,
"CUDA: cuMemHostRegister OK on mpool %s: "
"address=%p, bufsize=%d",
mem_reg->msg, mem_reg->ptr, (int)mem_reg->amount);
}
}
free(mem_reg->msg);
OBJ_RELEASE(mem_reg);
}
/* Create stream for use in ipc asynchronous copies */
res = cuFunc.cuStreamCreate(&ipcStream, 0);
if (OPAL_UNLIKELY(res != CUDA_SUCCESS)) {
opal_show_help("help-mpi-common-cuda.txt", "cuStreamCreate failed",
true, ompi_process_info.nodename, res);
return OMPI_ERROR;
}
/* Create stream for use in dtoh asynchronous copies */
res = cuFunc.cuStreamCreate(&dtohStream, 0);
if (OPAL_UNLIKELY(res != CUDA_SUCCESS)) {
opal_show_help("help-mpi-common-cuda.txt", "cuStreamCreate failed",
true, ompi_process_info.nodename, res);
return OMPI_ERROR;
}
/* Create stream for use in htod asynchronous copies */
res = cuFunc.cuStreamCreate(&htodStream, 0);
if (OPAL_UNLIKELY(res != CUDA_SUCCESS)) {
opal_show_help("help-mpi-common-cuda.txt", "cuStreamCreate failed",
true, ompi_process_info.nodename, res);
return OMPI_ERROR;
}
if (mca_common_cuda_cumemcpy_async) {
/* Create stream for use in cuMemcpyAsync synchronous copies */
res = cuFunc.cuStreamCreate(&memcpyStream, 0);
if (OPAL_UNLIKELY(res != CUDA_SUCCESS)) {
opal_show_help("help-mpi-common-cuda.txt", "cuStreamCreate failed",
true, ompi_process_info.nodename, res);
return OMPI_ERROR;
}
/* Create event for use in cuMemcpyAsync synchronous copies */
res = cuFunc.cuEventCreate(&memcpyEvent, 0);
if (OPAL_UNLIKELY(res != CUDA_SUCCESS)) {
opal_show_help("help-mpi-common-cuda.txt", "cuEventCreate failed",
true, ompi_process_info.nodename, res);
return OMPI_ERROR;
}
}
opal_output_verbose(30, mca_common_cuda_output,
"CUDA: initialized");
common_cuda_initialized = true;
return OMPI_SUCCESS;
}
/**
* Call the CUDA register function so we pin the memory in the CUDA
* space.
*/
void mca_common_cuda_register(void *ptr, size_t amount, char *msg) {
int res;
/* Always first check if the support is enabled. If not, just return */
if (!ompi_mpi_cuda_support)
return;
/* Registering memory during BTL initialization will be the first call
* into the cuda common code, so this is where we do the first
* initialization function. If the first stage fails, then disable
* support and return. */
if (!stage_one_init_complete) {
if (0 != mca_common_cuda_stage_one_init()) {
ompi_mpi_cuda_support = 0;
return;
}
}
if (!common_cuda_initialized) {
common_cuda_mem_regs_t *regptr;
regptr = OBJ_NEW(common_cuda_mem_regs_t);
regptr->ptr = ptr;
regptr->amount = amount;
regptr->msg = strdup(msg);
opal_list_append(&common_cuda_memory_registrations,
(opal_list_item_t*)regptr);
return;
}
if (mca_common_cuda_enabled && mca_common_cuda_register_memory) {
res = cuFunc.cuMemHostRegister(ptr, amount, 0);
if (OPAL_UNLIKELY(res != CUDA_SUCCESS)) {
/* If registering the memory fails, print a message and continue.
* This is not a fatal error. */
opal_show_help("help-mpi-common-cuda.txt", "cuMemHostRegister failed",
true, ptr, amount,
ompi_process_info.nodename, res, msg);
} else {
opal_output_verbose(20, mca_common_cuda_output,
"CUDA: cuMemHostRegister OK on mpool %s: "
"address=%p, bufsize=%d",
msg, ptr, (int)amount);
}
}
}
/**
* Call the CUDA unregister function so we unpin the memory in the CUDA
* space.
*/
void mca_common_cuda_unregister(void *ptr, char *msg) {
int res, i, s;
common_cuda_mem_regs_t *mem_reg;
/* This can happen if memory was queued up to be registered, but
* no CUDA operations happened, so it never was registered.
* Therefore, just release any of the resources. */
if (!common_cuda_initialized) {
s = opal_list_get_size(&common_cuda_memory_registrations);
for(i = 0; i < s; i++) {
mem_reg = (common_cuda_mem_regs_t *)
opal_list_remove_first(&common_cuda_memory_registrations);
free(mem_reg->msg);
OBJ_RELEASE(mem_reg);
}
return;
}
if (mca_common_cuda_enabled && mca_common_cuda_register_memory) {
res = cuFunc.cuMemHostUnregister(ptr);
if (OPAL_UNLIKELY(res != CUDA_SUCCESS)) {
/* If unregistering the memory fails, print a message and continue.
* This is not a fatal error. */
opal_show_help("help-mpi-common-cuda.txt", "cuMemHostUnregister failed",
true, ptr,
ompi_process_info.nodename, res, msg);
} else {
opal_output_verbose(20, mca_common_cuda_output,
"CUDA: cuMemHostUnregister OK on mpool %s: "
"address=%p",
msg, ptr);
}
}
}
#if OPAL_CUDA_SUPPORT_41
/*
* Get the memory handle of a local section of memory that can be sent
* to the remote size so it can access the memory. This is the
* registration function for the sending side of a message transfer.
*/
int cuda_getmemhandle(void *base, size_t size, mca_mpool_base_registration_t *newreg,
mca_mpool_base_registration_t *hdrreg)
{
CUmemorytype memType;
CUresult result;
CUipcMemHandle memHandle;
CUdeviceptr pbase;
size_t psize;
mca_mpool_common_cuda_reg_t *cuda_reg = (mca_mpool_common_cuda_reg_t*)newreg;
/* We should only be there if this is a CUDA device pointer */
result = cuFunc.cuPointerGetAttribute(&memType,
CU_POINTER_ATTRIBUTE_MEMORY_TYPE, (CUdeviceptr)base);
assert(CUDA_SUCCESS == result);
assert(CU_MEMORYTYPE_DEVICE == memType);
/* Get the memory handle so we can send it to the remote process. */
result = cuFunc.cuIpcGetMemHandle(&memHandle, (CUdeviceptr)base);
CUDA_DUMP_MEMHANDLE((100, &memHandle, "GetMemHandle-After"));
if (CUDA_SUCCESS != result) {
opal_show_help("help-mpi-common-cuda.txt", "cuIpcGetMemHandle failed",
true, result, base);
return OMPI_ERROR;
} else {
opal_output_verbose(20, mca_common_cuda_output,
"CUDA: cuIpcGetMemHandle passed: base=%p size=%d",
base, (int)size);
}
/* Need to get the real base and size of the memory handle. This is
* how the remote side saves the handles in a cache. */
result = cuFunc.cuMemGetAddressRange(&pbase, &psize, (CUdeviceptr)base);
if (CUDA_SUCCESS != result) {
opal_show_help("help-mpi-common-cuda.txt", "cuMemGetAddressRange failed",
true, result, base);
return OMPI_ERROR;
} else {
opal_output_verbose(10, mca_common_cuda_output,
"CUDA: cuMemGetAddressRange passed: addr=%p, size=%d, pbase=%p, psize=%d ",
base, (int)size, (void *)pbase, (int)psize);
}
/* Store all the information in the registration */
cuda_reg->base.base = (void *)pbase;
cuda_reg->base.bound = (unsigned char *)pbase + psize - 1;
memcpy(&cuda_reg->memHandle, &memHandle, sizeof(memHandle));
#if OPAL_CUDA_SYNC_MEMOPS
/* With CUDA 6.0, we can set an attribute on the memory pointer that will
* ensure any synchronous copies are completed prior to any other access
* of the memory region. This means we do not need to record an event
* and send to the remote side.
*/
memType = 1; /* Just use this variable since we already have it */
result = cuFunc.cuPointerSetAttribute(&memType, CU_POINTER_ATTRIBUTE_SYNC_MEMOPS,
(CUdeviceptr)base);
if (OPAL_UNLIKELY(CUDA_SUCCESS != result)) {
opal_show_help("help-mpi-common-cuda.txt", "cuPointerSetAttribute failed",
true, ompi_process_info.nodename, result, base);
return OMPI_ERROR;
}
#else
/* Need to record the event to ensure that any memcopies into the
* device memory have completed. The event handle associated with
* this event is sent to the remote process so that it will wait
* on this event prior to copying data out of the device memory.
* Note that this needs to be the NULL stream to make since it is
* unknown what stream any copies into the device memory were done
* with. */
result = cuFunc.cuEventRecord((CUevent)cuda_reg->event, 0);
if (OPAL_UNLIKELY(CUDA_SUCCESS != result)) {
opal_show_help("help-mpi-common-cuda.txt", "cuEventRecord failed",
true, result, base);
return OMPI_ERROR;
}
#endif /* OPAL_CUDA_SYNC_MEMOPS */
return OMPI_SUCCESS;
}
/*
* This function is called by the local side that called the cuda_getmemhandle.
* There is nothing to be done so just return.
*/
int cuda_ungetmemhandle(void *reg_data, mca_mpool_base_registration_t *reg)
{
CUDA_DUMP_EVTHANDLE((100, ((mca_mpool_common_cuda_reg_t *)reg)->evtHandle, "cuda_ungetmemhandle"));
opal_output_verbose(10, mca_common_cuda_output,
"CUDA: cuda_ungetmemhandle (no-op): base=%p", reg->base);
return OMPI_SUCCESS;
}
/*
* Open a memory handle that refers to remote memory so we can get an address
* that works on the local side. This is the registration function for the
* remote side of a transfer. newreg contains the new handle. hddrreg contains
* the memory handle that was received from the remote side.
*/
int cuda_openmemhandle(void *base, size_t size, mca_mpool_base_registration_t *newreg,
mca_mpool_base_registration_t *hdrreg)
{
CUresult result;
CUipcMemHandle memHandle;
mca_mpool_common_cuda_reg_t *cuda_newreg = (mca_mpool_common_cuda_reg_t*)newreg;
/* Need to copy into memory handle for call into CUDA library. */
memcpy(&memHandle, cuda_newreg->memHandle, sizeof(memHandle));
CUDA_DUMP_MEMHANDLE((100, &memHandle, "Before call to cuIpcOpenMemHandle"));
/* Open the memory handle and store it into the registration structure. */
result = cuFunc.cuIpcOpenMemHandle((CUdeviceptr *)&newreg->alloc_base, memHandle,
CU_IPC_MEM_LAZY_ENABLE_PEER_ACCESS);
/* If there are some stale entries in the cache, they can cause other
* registrations to fail. Let the caller know that so that can attempt
* to clear them out. */
if (CUDA_ERROR_ALREADY_MAPPED == result) {
opal_output_verbose(10, mca_common_cuda_output,
"CUDA: cuIpcOpenMemHandle returned CUDA_ERROR_ALREADY_MAPPED for "
"p=%p,size=%d: notify memory pool\n", base, (int)size);
return OMPI_ERR_WOULD_BLOCK;
}
if (OPAL_UNLIKELY(CUDA_SUCCESS != result)) {
opal_show_help("help-mpi-common-cuda.txt", "cuIpcOpenMemHandle failed",
true, result, base);
/* Currently, this is a non-recoverable error */
return OMPI_ERROR;
} else {
opal_output_verbose(10, mca_common_cuda_output,
"CUDA: cuIpcOpenMemHandle passed: base=%p (remote base=%p,size=%d)",
newreg->alloc_base, base, (int)size);
CUDA_DUMP_MEMHANDLE((200, &memHandle, "cuIpcOpenMemHandle"));
}
return OMPI_SUCCESS;
}
/*
* Close a memory handle that refers to remote memory.
*/
int cuda_closememhandle(void *reg_data, mca_mpool_base_registration_t *reg)
{
CUresult result;
mca_mpool_common_cuda_reg_t *cuda_reg = (mca_mpool_common_cuda_reg_t*)reg;
result = cuFunc.cuIpcCloseMemHandle((CUdeviceptr)cuda_reg->base.alloc_base);
if (OPAL_UNLIKELY(CUDA_SUCCESS != result)) {
opal_show_help("help-mpi-common-cuda.txt", "cuIpcCloseMemHandle failed",
true, result, cuda_reg->base.alloc_base);
/* We will just continue on and hope things continue to work. */
} else {
opal_output_verbose(10, mca_common_cuda_output,
"CUDA: cuIpcCloseMemHandle passed: base=%p",
cuda_reg->base.alloc_base);
CUDA_DUMP_MEMHANDLE((100, cuda_reg->memHandle, "cuIpcCloseMemHandle"));
}
return OMPI_SUCCESS;
}
void mca_common_cuda_construct_event_and_handle(uint64_t **event, void **handle)
{
CUresult result;
result = cuFunc.cuEventCreate((CUevent *)event, CU_EVENT_INTERPROCESS | CU_EVENT_DISABLE_TIMING);
if (OPAL_UNLIKELY(CUDA_SUCCESS != result)) {
opal_show_help("help-mpi-common-cuda.txt", "cuEventCreate failed",
true, ompi_process_info.nodename, result);
}
result = cuFunc.cuIpcGetEventHandle((CUipcEventHandle *)handle, (CUevent)*event);
if (OPAL_UNLIKELY(CUDA_SUCCESS != result)) {
opal_show_help("help-mpi-common-cuda.txt", "cuIpcGetEventHandle failed",
true, result);
}
CUDA_DUMP_EVTHANDLE((10, handle, "construct_event_and_handle"));
}
void mca_common_cuda_destruct_event(uint64_t *event)
{
CUresult result;
result = cuFunc.cuEventDestroy((CUevent)event);
if (OPAL_UNLIKELY(CUDA_SUCCESS != result)) {
opal_show_help("help-mpi-common-cuda.txt", "cuEventDestroy failed",
true, result);
}
}
/*
* Put remote event on stream to ensure that the the start of the
* copy does not start until the completion of the event.
*/
void mca_common_wait_stream_synchronize(mca_mpool_common_cuda_reg_t *rget_reg)
{
#if OPAL_CUDA_SYNC_MEMOPS
/* No need for any of this with SYNC_MEMOPS feature */
return;
#else /* OPAL_CUDA_SYNC_MEMOPS */
CUipcEventHandle evtHandle;
CUevent event;
CUresult result;
memcpy(&evtHandle, rget_reg->evtHandle, sizeof(evtHandle));
CUDA_DUMP_EVTHANDLE((100, &evtHandle, "stream_synchronize"));
result = cuFunc.cuIpcOpenEventHandle(&event, evtHandle);
if (OPAL_UNLIKELY(CUDA_SUCCESS != result)) {
opal_show_help("help-mpi-common-cuda.txt", "cuIpcOpenEventHandle failed",
true, result);
}
/* BEGIN of Workaround - There is a bug in CUDA 4.1 RC2 and earlier
* versions. Need to record an event on the stream, even though
* it is not used, to make sure we do not short circuit our way
* out of the cuStreamWaitEvent test.
*/
result = cuFunc.cuEventRecord(event, 0);
if (OPAL_UNLIKELY(CUDA_SUCCESS != result)) {
opal_show_help("help-mpi-common-cuda.txt", "cuEventRecord failed",
true, ompi_process_info.nodename, result);
}
/* END of Workaround */
result = cuFunc.cuStreamWaitEvent(0, event, 0);
if (OPAL_UNLIKELY(CUDA_SUCCESS != result)) {
opal_show_help("help-mpi-common-cuda.txt", "cuStreamWaitEvent failed",
true, result);
}
/* All done with this event. */
result = cuFunc.cuEventDestroy(event);
if (OPAL_UNLIKELY(CUDA_SUCCESS != result)) {
opal_show_help("help-mpi-common-cuda.txt", "cuEventDestroy failed",
true, result);
}
#endif /* OPAL_CUDA_SYNC_MEMOPS */
}
/*
* Start the asynchronous copy. Then record and save away an event that will
* be queried to indicate the copy has completed.
*/
int mca_common_cuda_memcpy(void *dst, void *src, size_t amount, char *msg,
struct mca_btl_base_descriptor_t *frag, int *done)
{
CUresult result;
int iter;
/* First make sure there is room to store the event. If not, then
* return an error. The error message will tell the user to try and
* run again, but with a larger array for storing events. */
if (cuda_event_ipc_num_used == cuda_event_max) {
opal_show_help("help-mpi-common-cuda.txt", "Out of cuEvent handles",
true, cuda_event_max, cuda_event_max+100, cuda_event_max+100);
return OMPI_ERR_OUT_OF_RESOURCE;
}
if (cuda_event_ipc_num_used > cuda_event_ipc_most) {
cuda_event_ipc_most = cuda_event_ipc_num_used;
/* Just print multiples of 10 */
if (0 == (cuda_event_ipc_most % 10)) {
opal_output_verbose(20, mca_common_cuda_output,
"Maximum ipc events used is now %d", cuda_event_ipc_most);
}
}
/* This is the standard way to run. Running with synchronous copies is available
* to measure the advantages of asynchronous copies. */
if (OPAL_LIKELY(mca_common_cuda_async)) {
result = cuFunc.cuMemcpyAsync((CUdeviceptr)dst, (CUdeviceptr)src, amount, ipcStream);
if (OPAL_UNLIKELY(CUDA_SUCCESS != result)) {
opal_show_help("help-mpi-common-cuda.txt", "cuMemcpyAsync failed",
true, dst, src, amount, result);
return OMPI_ERROR;
} else {
opal_output_verbose(20, mca_common_cuda_output,
"CUDA: cuMemcpyAsync passed: dst=%p, src=%p, size=%d",
dst, src, (int)amount);
}
result = cuFunc.cuEventRecord(cuda_event_ipc_array[cuda_event_ipc_first_avail], ipcStream);
if (OPAL_UNLIKELY(CUDA_SUCCESS != result)) {
opal_show_help("help-mpi-common-cuda.txt", "cuEventRecord failed",
true, ompi_process_info.nodename, result);
return OMPI_ERROR;
}
cuda_event_ipc_frag_array[cuda_event_ipc_first_avail] = frag;
/* Bump up the first available slot and number used by 1 */
cuda_event_ipc_first_avail++;
if (cuda_event_ipc_first_avail >= cuda_event_max) {
cuda_event_ipc_first_avail = 0;
}
cuda_event_ipc_num_used++;
*done = 0;
} else {
/* Mimic the async function so they use the same memcpy call. */
result = cuFunc.cuMemcpyAsync((CUdeviceptr)dst, (CUdeviceptr)src, amount, ipcStream);
if (OPAL_UNLIKELY(CUDA_SUCCESS != result)) {
opal_show_help("help-mpi-common-cuda.txt", "cuMemcpyAsync failed",
true, dst, src, amount, result);
return OMPI_ERROR;
} else {
opal_output_verbose(20, mca_common_cuda_output,
"CUDA: cuMemcpyAsync passed: dst=%p, src=%p, size=%d",
dst, src, (int)amount);
}
/* Record an event, then wait for it to complete with calls to cuEventQuery */
result = cuFunc.cuEventRecord(cuda_event_ipc_array[cuda_event_ipc_first_avail], ipcStream);
if (OPAL_UNLIKELY(CUDA_SUCCESS != result)) {
opal_show_help("help-mpi-common-cuda.txt", "cuEventRecord failed",
true, ompi_process_info.nodename, result);
return OMPI_ERROR;
}
cuda_event_ipc_frag_array[cuda_event_ipc_first_avail] = frag;
/* Bump up the first available slot and number used by 1 */
cuda_event_ipc_first_avail++;
if (cuda_event_ipc_first_avail >= cuda_event_max) {
cuda_event_ipc_first_avail = 0;
}
cuda_event_ipc_num_used++;
result = cuFunc.cuEventQuery(cuda_event_ipc_array[cuda_event_ipc_first_used]);
if ((CUDA_SUCCESS != result) && (CUDA_ERROR_NOT_READY != result)) {
opal_show_help("help-mpi-common-cuda.txt", "cuEventQuery failed",
true, result);
return OMPI_ERROR;
}
iter = 0;
while (CUDA_ERROR_NOT_READY == result) {
if (0 == (iter % 10)) {
opal_output(-1, "EVENT NOT DONE (iter=%d)", iter);
}
result = cuFunc.cuEventQuery(cuda_event_ipc_array[cuda_event_ipc_first_used]);
if ((CUDA_SUCCESS != result) && (CUDA_ERROR_NOT_READY != result)) {
opal_show_help("help-mpi-common-cuda.txt", "cuEventQuery failed",
true, result);
return OMPI_ERROR;
}
iter++;
}
--cuda_event_ipc_num_used;
++cuda_event_ipc_first_used;
if (cuda_event_ipc_first_used >= cuda_event_max) {
cuda_event_ipc_first_used = 0;
}
*done = 1;
}
return OMPI_SUCCESS;
}
/*
* Record an event and save the frag. This is called by the sending side and
* is used to queue an event when a htod copy has been initiated.
*/
int mca_common_cuda_record_dtoh_event(char *msg, struct mca_btl_base_descriptor_t *frag)
{
CUresult result;
/* First make sure there is room to store the event. If not, then
* return an error. The error message will tell the user to try and
* run again, but with a larger array for storing events. */
if (cuda_event_dtoh_num_used == cuda_event_max) {
opal_show_help("help-mpi-common-cuda.txt", "Out of cuEvent handles",
true, cuda_event_max, cuda_event_max+100, cuda_event_max+100);
return OMPI_ERR_OUT_OF_RESOURCE;
}
if (cuda_event_dtoh_num_used > cuda_event_dtoh_most) {
cuda_event_dtoh_most = cuda_event_dtoh_num_used;
/* Just print multiples of 10 */
if (0 == (cuda_event_dtoh_most % 10)) {
opal_output_verbose(20, mca_common_cuda_output,
"Maximum DtoH events used is now %d", cuda_event_dtoh_most);
}
}
result = cuFunc.cuEventRecord(cuda_event_dtoh_array[cuda_event_dtoh_first_avail], dtohStream);
if (OPAL_UNLIKELY(CUDA_SUCCESS != result)) {
opal_show_help("help-mpi-common-cuda.txt", "cuEventRecord failed",
true, ompi_process_info.nodename, result);
return OMPI_ERROR;
}
cuda_event_dtoh_frag_array[cuda_event_dtoh_first_avail] = frag;
/* Bump up the first available slot and number used by 1 */
cuda_event_dtoh_first_avail++;
if (cuda_event_dtoh_first_avail >= cuda_event_max) {
cuda_event_dtoh_first_avail = 0;
}
cuda_event_dtoh_num_used++;
return OMPI_SUCCESS;
}
/*
* Record an event and save the frag. This is called by the receiving side and
* is used to queue an event when a dtoh copy has been initiated.
*/
int mca_common_cuda_record_htod_event(char *msg, struct mca_btl_base_descriptor_t *frag)
{
CUresult result;
/* First make sure there is room to store the event. If not, then
* return an error. The error message will tell the user to try and
* run again, but with a larger array for storing events. */
if (cuda_event_htod_num_used == cuda_event_max) {
opal_show_help("help-mpi-common-cuda.txt", "Out of cuEvent handles",
true, cuda_event_max, cuda_event_max+100, cuda_event_max+100);
return OMPI_ERR_OUT_OF_RESOURCE;
}
if (cuda_event_htod_num_used > cuda_event_htod_most) {
cuda_event_htod_most = cuda_event_htod_num_used;
/* Just print multiples of 10 */
if (0 == (cuda_event_htod_most % 10)) {
opal_output_verbose(20, mca_common_cuda_output,
"Maximum HtoD events used is now %d", cuda_event_htod_most);
}
}
result = cuFunc.cuEventRecord(cuda_event_htod_array[cuda_event_htod_first_avail], htodStream);
if (OPAL_UNLIKELY(CUDA_SUCCESS != result)) {
opal_show_help("help-mpi-common-cuda.txt", "cuEventRecord failed",
true, ompi_process_info.nodename, result);
return OMPI_ERROR;
}
cuda_event_htod_frag_array[cuda_event_htod_first_avail] = frag;
/* Bump up the first available slot and number used by 1 */
cuda_event_htod_first_avail++;
if (cuda_event_htod_first_avail >= cuda_event_max) {
cuda_event_htod_first_avail = 0;
}
cuda_event_htod_num_used++;
return OMPI_SUCCESS;
}
/**
* Used to get the dtoh stream for initiating asynchronous copies.
*/
void *mca_common_cuda_get_dtoh_stream(void) {
return (void *)dtohStream;
}
/**
* Used to get the htod stream for initiating asynchronous copies.
*/
void *mca_common_cuda_get_htod_stream(void) {
return (void *)htodStream;
}
/*
* Function is called every time progress is called with the sm BTL. If there
* are outstanding events, check to see if one has completed. If so, hand
* back the fragment for further processing.
*/
int progress_one_cuda_ipc_event(struct mca_btl_base_descriptor_t **frag) {
CUresult result;
if (cuda_event_ipc_num_used > 0) {
opal_output_verbose(20, mca_common_cuda_output,
"CUDA: progress_one_cuda_ipc_event, outstanding_events=%d",
cuda_event_ipc_num_used);
result = cuFunc.cuEventQuery(cuda_event_ipc_array[cuda_event_ipc_first_used]);
/* We found an event that is not ready, so return. */
if (CUDA_ERROR_NOT_READY == result) {
opal_output_verbose(20, mca_common_cuda_output,
"CUDA: cuEventQuery returned CUDA_ERROR_NOT_READY");
*frag = NULL;
return 0;
} else if (CUDA_SUCCESS != result) {
opal_show_help("help-mpi-common-cuda.txt", "cuEventQuery failed",
true, result);
*frag = NULL;
return OMPI_ERROR;
}
*frag = cuda_event_ipc_frag_array[cuda_event_ipc_first_used];
opal_output_verbose(10, mca_common_cuda_output,
"CUDA: cuEventQuery returned %d", result);
/* Bump counters, loop around the circular buffer if necessary */
--cuda_event_ipc_num_used;
++cuda_event_ipc_first_used;
if (cuda_event_ipc_first_used >= cuda_event_max) {
cuda_event_ipc_first_used = 0;
}
/* A return value of 1 indicates an event completed and a frag was returned */
return 1;
}
return 0;
}
/**
* Progress any dtoh event completions.
*/
int progress_one_cuda_dtoh_event(struct mca_btl_base_descriptor_t **frag) {
CUresult result;
if (cuda_event_dtoh_num_used > 0) {
opal_output_verbose(30, mca_common_cuda_output,
"CUDA: progress_one_cuda_dtoh_event, outstanding_events=%d",
cuda_event_dtoh_num_used);
result = cuFunc.cuEventQuery(cuda_event_dtoh_array[cuda_event_dtoh_first_used]);
/* We found an event that is not ready, so return. */
if (CUDA_ERROR_NOT_READY == result) {
opal_output_verbose(30, mca_common_cuda_output,
"CUDA: cuEventQuery returned CUDA_ERROR_NOT_READY");
*frag = NULL;
return 0;
} else if (CUDA_SUCCESS != result) {
opal_show_help("help-mpi-common-cuda.txt", "cuEventQuery failed",
true, result);
*frag = NULL;
return OMPI_ERROR;
}
*frag = cuda_event_dtoh_frag_array[cuda_event_dtoh_first_used];
opal_output_verbose(30, mca_common_cuda_output,
"CUDA: cuEventQuery returned %d", result);
/* Bump counters, loop around the circular buffer if necessary */
--cuda_event_dtoh_num_used;
++cuda_event_dtoh_first_used;
if (cuda_event_dtoh_first_used >= cuda_event_max) {
cuda_event_dtoh_first_used = 0;
}
/* A return value of 1 indicates an event completed and a frag was returned */
return 1;
}
return 0;
}
/**
* Progress any dtoh event completions.
*/
int progress_one_cuda_htod_event(struct mca_btl_base_descriptor_t **frag) {
CUresult result;
if (cuda_event_htod_num_used > 0) {
opal_output_verbose(30, mca_common_cuda_output,
"CUDA: progress_one_cuda_htod_event, outstanding_events=%d",
cuda_event_htod_num_used);
result = cuFunc.cuEventQuery(cuda_event_htod_array[cuda_event_htod_first_used]);
/* We found an event that is not ready, so return. */
if (CUDA_ERROR_NOT_READY == result) {
opal_output_verbose(30, mca_common_cuda_output,
"CUDA: cuEventQuery returned CUDA_ERROR_NOT_READY");
*frag = NULL;
return 0;
} else if (CUDA_SUCCESS != result) {
opal_show_help("help-mpi-common-cuda.txt", "cuEventQuery failed",
true, result);
*frag = NULL;
return OMPI_ERROR;
}
*frag = cuda_event_htod_frag_array[cuda_event_htod_first_used];
opal_output_verbose(30, mca_common_cuda_output,
"CUDA: cuEventQuery returned %d", result);
/* Bump counters, loop around the circular buffer if necessary */
--cuda_event_htod_num_used;
++cuda_event_htod_first_used;
if (cuda_event_htod_first_used >= cuda_event_max) {
cuda_event_htod_first_used = 0;
}
/* A return value of 1 indicates an event completed and a frag was returned */
return 1;
}
return 0;
}
/**
* Need to make sure the handle we are retrieving from the cache is still
* valid. Compare the cached handle to the one received.
*/
int mca_common_cuda_memhandle_matches(mca_mpool_common_cuda_reg_t *new_reg,
mca_mpool_common_cuda_reg_t *old_reg)
{
if (0 == memcmp(new_reg->memHandle, old_reg->memHandle, sizeof(new_reg->memHandle))) {
return 1;
} else {
return 0;
}
}
/*
* Function to dump memory handle information. This is based on
* definitions from cuiinterprocess_private.h.
*/
static void cuda_dump_memhandle(int verbose, void *memHandle, char *str) {
struct InterprocessMemHandleInternal
{
/* The first two entries are the CUinterprocessCtxHandle */
int64_t ctxId; /* unique (within a process) id of the sharing context */
int pid; /* pid of sharing context */
int64_t size;
int64_t blocksize;
int64_t offset;
int gpuId;
int subDeviceIndex;
int64_t serial;
} memH;
if (NULL == str) {
str = "CUDA";
}
memcpy(&memH, memHandle, sizeof(memH));
opal_output_verbose(verbose, mca_common_cuda_output,
"%s:ctxId=%d, pid=%d, size=%d, blocksize=%d, offset=%d, gpuId=%d, "
"subDeviceIndex=%d, serial=%d",
str, (int)memH.ctxId, memH.pid, (int)memH.size, (int)memH.blocksize, (int)memH.offset,
memH.gpuId, memH.subDeviceIndex, (int)memH.serial);
}
/*
* Function to dump memory handle information. This is based on
* definitions from cuiinterprocess_private.h.
*/
static void cuda_dump_evthandle(int verbose, void *evtHandle, char *str) {
struct InterprocessEventHandleInternal
{
/* The first two entries are the CUinterprocessCtxHandle */
int64_t ctxId; /* unique (within a process) id of the sharing context */
int pid; /* pid of sharing context */
int pad; /* pad to match the structure */
int index;
} evtH;
if (NULL == str) {
str = "CUDA";
}
memcpy(&evtH, evtHandle, sizeof(evtH));
opal_output_verbose(verbose, mca_common_cuda_output,
"CUDA: %s:ctxId=%d, pid=%d, index=%d",
str, (int)evtH.ctxId, evtH.pid, (int)evtH.index);
}
/* Return microseconds of elapsed time. Microseconds are relevant when
* trying to understand the fixed overhead of the communication. Used
* when trying to time various functions.
*
* Cut and past the following to get timings where wanted.
*
* clock_gettime(CLOCK_MONOTONIC, &ts_start);
* FUNCTION OF INTEREST
* clock_gettime(CLOCK_MONOTONIC, &ts_end);
* accum = mydifftime(ts_start, ts_end);
* opal_output(0, "Function took %7.2f usecs\n", accum);
*
*/
#if OPAL_ENABLE_DEBUG
static float mydifftime(struct timespec ts_start, struct timespec ts_end) {
float seconds;
float microseconds;
float nanoseconds;
/* If we did not rollover the seconds clock, then we just take
* the difference between the nanoseconds clock for actual time */
if (0 == (ts_end.tv_sec - ts_start.tv_sec)) {
nanoseconds = (float)(ts_end.tv_nsec - ts_start.tv_nsec);
return nanoseconds / THOUSAND;
} else {
seconds = (float)(ts_end.tv_sec - ts_start.tv_sec);
/* Note that this value can be negative or positive
* which is fine. In the case that it is negative, it
* just gets subtracted from the difference which is what
* we want. */
nanoseconds = (float)(ts_end.tv_nsec - ts_start.tv_nsec);
microseconds = (seconds * MILLION) + (nanoseconds/THOUSAND);
return microseconds;
}
}
#endif /* OPAL_ENABLE_DEBUG */
#endif /* OPAL_CUDA_SUPPORT_41 */
/* Routines that get plugged into the opal datatype code */
static int mca_common_cuda_is_gpu_buffer(const void *pUserBuf)
{
int res;
CUmemorytype memType;
CUdeviceptr dbuf = (CUdeviceptr)pUserBuf;
CUcontext ctx = NULL;
res = cuFunc.cuPointerGetAttribute(&memType,
CU_POINTER_ATTRIBUTE_MEMORY_TYPE, dbuf);
if (res != CUDA_SUCCESS) {
/* If we cannot determine it is device pointer,
* just assume it is not. */
return 0;
} else if (memType == CU_MEMORYTYPE_HOST) {
/* Host memory, nothing to do here */
return 0;
}
/* Must be a device pointer */
assert(memType == CU_MEMORYTYPE_DEVICE);
/* This piece of code was added in to handle in a case involving
* OMP threads. The user had initialized CUDA and then spawned
* two threads. The first thread had the CUDA context, but the
* second thread did not. We therefore had no context to act upon
* and future CUDA driver calls would fail. Therefore, if we have
* GPU memory, but no context, get the context from the GPU memory
* and set the current context to that. It is rare that we will not
* have a context. */
res = cuFunc.cuCtxGetCurrent(&ctx);
if (OPAL_UNLIKELY(NULL == ctx)) {
if (CUDA_SUCCESS == res) {
res = cuFunc.cuPointerGetAttribute(&ctx,
CU_POINTER_ATTRIBUTE_CONTEXT, dbuf);
if (res != CUDA_SUCCESS) {
opal_output(0, "CUDA: error calling cuPointerGetAttribute: "
"res=%d, ptr=%p aborting...", res, pUserBuf);
ompi_rte_abort(1, NULL);
} else {
res = cuFunc.cuCtxSetCurrent(ctx);
if (res != CUDA_SUCCESS) {
opal_output(0, "CUDA: error calling cuCtxSetCurrent: "
"res=%d, ptr=%p aborting...", res, pUserBuf);
ompi_rte_abort(1, NULL);
} else {
opal_output_verbose(10, mca_common_cuda_output,
"CUDA: cuCtxSetCurrent passed: ptr=%p", pUserBuf);
}
}
} else {
/* Print error and proceed */
opal_output(0, "CUDA: error calling cuCtxGetCurrent: "
"res=%d, ptr=%p aborting...", res, pUserBuf);
ompi_rte_abort(1, NULL);
}
}
/* First access on a device pointer finalizes CUDA support initialization.
* If initialization fails, disable support. */
if (!stage_three_init_complete) {
if (0 != mca_common_cuda_stage_three_init()) {
ompi_mpi_cuda_support = 0;
}
}
return 1;
}
static int mca_common_cuda_cu_memcpy_async(void *dest, const void *src, size_t size,
opal_convertor_t* convertor)
{
return cuFunc.cuMemcpyAsync((CUdeviceptr)dest, (CUdeviceptr)src, size,
(CUstream)convertor->stream);
}
/**
* This function is plugged into various areas where a cuMemcpy would be called.
* This is a synchronous operation that will not return until the copy is complete.
*/
static int mca_common_cuda_cu_memcpy(void *dest, const void *src, size_t size)
{
CUresult result;
#if OPAL_ENABLE_DEBUG
CUmemorytype memTypeSrc, memTypeDst;
if (OPAL_UNLIKELY(mca_common_cuda_cumemcpy_timing)) {
/* Nice to know type of source and destination for timing output. Do
* not care about return code as memory type will just be set to 0 */
result = cuFunc.cuPointerGetAttribute(&memTypeDst,
CU_POINTER_ATTRIBUTE_MEMORY_TYPE, (CUdeviceptr)dest);
result = cuFunc.cuPointerGetAttribute(&memTypeSrc,
CU_POINTER_ATTRIBUTE_MEMORY_TYPE, (CUdeviceptr)src);
clock_gettime(CLOCK_MONOTONIC, &ts_start);
}
#endif
if (mca_common_cuda_cumemcpy_async) {
result = cuFunc.cuMemcpyAsync((CUdeviceptr)dest, (CUdeviceptr)src, size, memcpyStream);
if (OPAL_UNLIKELY(CUDA_SUCCESS != result)) {
opal_show_help("help-mpi-common-cuda.txt", "cuMemcpyAsync failed",
true, dest, src, size, result);
return OMPI_ERROR;
}
result = cuFunc.cuEventRecord(memcpyEvent, memcpyStream);
if (OPAL_UNLIKELY(CUDA_SUCCESS != result)) {
opal_show_help("help-mpi-common-cuda.txt", "cuEventRecord failed",
true, ompi_process_info.nodename, result);
return 0;
}
result = cuFunc.cuEventSynchronize(memcpyEvent);
if (OPAL_UNLIKELY(CUDA_SUCCESS != result)) {
opal_show_help("help-mpi-common-cuda.txt", "cuEventSynchronize failed",
true, ompi_process_info.nodename, result);
return OMPI_ERROR;
}
} else {
result = cuFunc.cuMemcpy((CUdeviceptr)dest, (CUdeviceptr)src, size);
if (OPAL_UNLIKELY(CUDA_SUCCESS != result)) {
opal_show_help("help-mpi-common-cuda.txt", "cuMemcpy failed",
true, result);
return OMPI_ERROR;
}
}
#if OPAL_ENABLE_DEBUG
if (OPAL_UNLIKELY(mca_common_cuda_cumemcpy_timing)) {
clock_gettime(CLOCK_MONOTONIC, &ts_end);
accum = mydifftime(ts_start, ts_end);
if (mca_common_cuda_cumemcpy_async) {
opal_output(0, "cuMemcpyAsync took %7.2f usecs (src=%p (%d), dst=%p (%d))\n",
accum, src, memTypeSrc, dest, memTypeDst);
} else {
opal_output(0, "cuMemcpy took %7.2f usecs (src=%p (%d), dst=%p (%d))\n",
accum, src, memTypeSrc, dest, memTypeDst);
}
}
#endif
return OMPI_SUCCESS;
}
static int mca_common_cuda_memmove(void *dest, void *src, size_t size)
{
CUdeviceptr tmp;
int result;
result = cuFunc.cuMemAlloc(&tmp,size);
if (mca_common_cuda_cumemcpy_async) {
result = cuFunc.cuMemcpyAsync(tmp, (CUdeviceptr)src, size, memcpyStream);
if (OPAL_UNLIKELY(CUDA_SUCCESS != result)) {
opal_show_help("help-mpi-common-cuda.txt", "cuMemcpyAsync failed",
true, tmp, src, size, result);
return OMPI_ERROR;
}
result = cuFunc.cuMemcpyAsync((CUdeviceptr)dest, tmp, size, memcpyStream);
if (OPAL_UNLIKELY(CUDA_SUCCESS != result)) {
opal_show_help("help-mpi-common-cuda.txt", "cuMemcpyAsync failed",
true, dest, tmp, size, result);
return OMPI_ERROR;
}
result = cuFunc.cuEventRecord(memcpyEvent, memcpyStream);
if (OPAL_UNLIKELY(CUDA_SUCCESS != result)) {
opal_show_help("help-mpi-common-cuda.txt", "cuEventRecord failed",
true, ompi_process_info.nodename, result);
return OMPI_ERROR;
}
result = cuFunc.cuEventSynchronize(memcpyEvent);
if (OPAL_UNLIKELY(CUDA_SUCCESS != result)) {
opal_show_help("help-mpi-common-cuda.txt", "cuEventSynchronize failed",
true, ompi_process_info.nodename, result);
return OMPI_ERROR;
}
} else {
result = cuFunc.cuMemcpy(tmp, (CUdeviceptr)src, size);
if (OPAL_UNLIKELY(result != CUDA_SUCCESS)) {
opal_output(0, "CUDA: memmove-Error in cuMemcpy: res=%d, dest=%p, src=%p, size=%d",
result, (void *)tmp, src, (int)size);
return OMPI_ERROR;
}
result = cuFunc.cuMemcpy((CUdeviceptr)dest, tmp, size);
if (OPAL_UNLIKELY(result != CUDA_SUCCESS)) {
opal_output(0, "CUDA: memmove-Error in cuMemcpy: res=%d, dest=%p, src=%p, size=%d",
result, dest, (void *)tmp, (int)size);
return OMPI_ERROR;
}
}
cuFunc.cuMemFree(tmp);
return OMPI_SUCCESS;
}
int mca_common_cuda_get_device(int *devicenum)
{
CUdevice cuDev;
int res;
res = cuFunc.cuCtxGetDevice(&cuDev);
if (OPAL_UNLIKELY(res != CUDA_SUCCESS)) {
opal_output(0, "CUDA: cuCtxGetDevice failed: res=%d",
res);
return res;
}
*devicenum = cuDev;
return 0;
}
int mca_common_cuda_device_can_access_peer(int *access, int dev1, int dev2)
{
int res;
res = cuFunc.cuDeviceCanAccessPeer(access, (CUdevice)dev1, (CUdevice)dev2);
if (OPAL_UNLIKELY(res != CUDA_SUCCESS)) {
opal_output(0, "CUDA: cuDeviceCanAccessPeer failed: res=%d",
res);
return res;
}
return 0;
}
int mca_common_cuda_get_address_range(void *pbase, size_t *psize, void *base)
{
CUresult result;
result = cuFunc.cuMemGetAddressRange((CUdeviceptr *)pbase, psize, (CUdeviceptr)base);
if (OPAL_UNLIKELY(CUDA_SUCCESS != result)) {
opal_show_help("help-mpi-common-cuda.txt", "cuMemGetAddressRange failed",
true, result, base);
return OMPI_ERROR;
} else {
opal_output_verbose(50, mca_common_cuda_output,
"CUDA: cuMemGetAddressRange passed: addr=%p, pbase=%p, psize=%lu ",
base, *(char **)pbase, *psize);
}
return 0;
}
#if OPAL_CUDA_GDR_SUPPORT
/* Check to see if the memory was freed between the time it was stored in
* the registration cache and now. Return true if the memory was previously
* freed. This is indicated by the BUFFER_ID value in the registration cache
* not matching the BUFFER_ID of the buffer we are checking. Return false
* if the registration is still good.
*/
bool mca_common_cuda_previously_freed_memory(mca_mpool_base_registration_t *reg)
{
int res;
unsigned long long bufID;
unsigned char *dbuf = reg->base;
res = cuFunc.cuPointerGetAttribute(&bufID, CU_POINTER_ATTRIBUTE_BUFFER_ID,
(CUdeviceptr)dbuf);
/* If we cannot determine the BUFFER_ID, then print a message and default
* to forcing the registration to be kicked out. */
if (OPAL_UNLIKELY(res != CUDA_SUCCESS)) {
opal_show_help("help-mpi-common-cuda.txt", "bufferID failed",
true, ompi_process_info.nodename, res);
return true;
}
opal_output_verbose(50, mca_common_cuda_output,
"CUDA: base=%p, bufID=%llu, reg->gpu_bufID=%llu, %s", dbuf, bufID, reg->gpu_bufID,
(reg->gpu_bufID == bufID ? "BUFFER_ID match":"BUFFER_ID do not match"));
if (bufID != reg->gpu_bufID) {
return true;
} else {
return false;
}
}
/*
* Get the buffer ID from the memory and store it in the registration.
* This is needed to ensure the cached registration is not stale. If
* we fail to get buffer ID, print an error and set buffer ID to 0.
* Also set SYNC_MEMOPS on any GPU registration to ensure that
* synchronous copies complete before the buffer is accessed.
*/
void mca_common_cuda_get_buffer_id(mca_mpool_base_registration_t *reg)
{
int res;
unsigned long long bufID = 0;
unsigned char *dbuf = reg->base;
int enable = 1;
res = cuFunc.cuPointerGetAttribute(&bufID, CU_POINTER_ATTRIBUTE_BUFFER_ID,
(CUdeviceptr)dbuf);
if (OPAL_UNLIKELY(res != CUDA_SUCCESS)) {
opal_show_help("help-mpi-common-cuda.txt", "bufferID failed", true, res);
}
reg->gpu_bufID = bufID;
res = cuFunc.cuPointerSetAttribute(&enable, CU_POINTER_ATTRIBUTE_SYNC_MEMOPS,
(CUdeviceptr)dbuf);
if (OPAL_UNLIKELY(CUDA_SUCCESS != res)) {
opal_show_help("help-mpi-common-cuda.txt", "cuPointerSetAttribute failed",
true, ompi_process_info.nodename, res, dbuf);
}
}
#endif /* OPAL_CUDA_GDR_SUPPORT */