1
1
openmpi/ompi/mca/btl/udapl/btl_udapl.c
Ralph Castain dc7f45dafd Remove the obsolete and largely unused orte_system_info structure. The only fields that were used in that struct were nodeid and nodename - these have been transferred to the orte_process_info structure.
Only one place used the user name field - session_dir, when formulating the name of the top-level directory. Accordingly, the code for getting the user's id has been moved to the session_dir code.

This commit was SVN r17926.
2008-03-23 23:10:15 +00:00

1221 строка
40 KiB
C

/* -*- Mode: C; c-basic-offset:4 ; -*- */
/*
* Copyright (c) 2004-2007 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2008 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2006 Sandia National Laboratories. All rights
* reserved.
* Copyright (c) 2007-2008 Sun Microsystems, Inc. All rights reserved.
*
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "ompi_config.h"
#include <errno.h>
#include <string.h>
#include "opal/util/output.h"
#include "opal/util/if.h"
#include "opal/util/show_help.h"
#include "ompi/mca/pml/pml.h"
#include "ompi/mca/btl/btl.h"
#include "btl_udapl.h"
#include "btl_udapl_endpoint.h"
#include "btl_udapl_frag.h"
#include "btl_udapl_mca.h"
#include "btl_udapl_proc.h"
#include "ompi/datatype/convertor.h"
#include "ompi/datatype/datatype.h"
#include "ompi/mca/mpool/base/base.h"
#include "ompi/mca/mpool/rdma/mpool_rdma.h"
#include "ompi/mca/btl/base/btl_base_error.h"
#include "ompi/proc/proc.h"
static int udapl_reg_mr(void *reg_data, void *base, size_t size,
mca_mpool_base_registration_t *reg);
static int udapl_dereg_mr(void *reg_data, mca_mpool_base_registration_t *reg);
static int mca_btl_udapl_set_peer_parameters(
struct mca_btl_udapl_module_t* udapl_btl,
size_t nprocs);
static int mca_btl_udapl_assign_netmask(mca_btl_udapl_module_t* udapl_btl);
mca_btl_udapl_module_t mca_btl_udapl_module = {
{
&mca_btl_udapl_component.super,
0, /* max size of first fragment */
0, /* min send fragment size */
0, /* max send fragment size */
0, /* btl_rdma_pipeline_send_length */
0, /* btl_rdma_pipeline_frag_size */
0, /* btl_min_rdma_pipeline_size */
0, /* exclusivity */
0, /* latency */
0, /* bandwidth */
MCA_BTL_FLAGS_SEND,
mca_btl_udapl_add_procs,
mca_btl_udapl_del_procs,
NULL,
mca_btl_udapl_finalize,
mca_btl_udapl_alloc,
mca_btl_udapl_free,
mca_btl_udapl_prepare_src,
mca_btl_udapl_prepare_dst,
mca_btl_udapl_send,
mca_btl_udapl_put,
NULL, /* get */
mca_btl_base_dump,
NULL, /* mpool */
NULL, /* register error cb */
mca_btl_udapl_ft_event
}
};
static int udapl_reg_mr(void *reg_data, void *base, size_t size,
mca_mpool_base_registration_t *reg)
{
mca_btl_udapl_module_t *btl = (mca_btl_udapl_module_t*)reg_data;
mca_btl_udapl_reg_t *udapl_reg = (mca_btl_udapl_reg_t*)reg;
DAT_REGION_DESCRIPTION region;
DAT_VLEN dat_size;
DAT_VADDR dat_addr;
int rc;
region.for_va = base;
udapl_reg->lmr_triplet.virtual_address = (DAT_VADDR)(uintptr_t)base;
udapl_reg->lmr_triplet.segment_length = size;
udapl_reg->lmr = NULL;
rc = dat_lmr_create(btl->udapl_ia, DAT_MEM_TYPE_VIRTUAL, region, size,
btl->udapl_pz, DAT_MEM_PRIV_ALL_FLAG, &udapl_reg->lmr,
&udapl_reg->lmr_triplet.lmr_context, &udapl_reg->rmr_context,
&dat_size, &dat_addr);
if(rc != DAT_SUCCESS) {
BTL_UDAPL_VERBOSE_HELP(VERBOSE_SHOW_HELP, ("help-mpi-btl-udapl.txt",
"dat_lmr_create DAT_INSUFFICIENT_RESOURCES", true));
return OMPI_ERR_OUT_OF_RESOURCE;
}
return OMPI_SUCCESS;
}
static int udapl_dereg_mr(void *reg_data, mca_mpool_base_registration_t *reg)
{
mca_btl_udapl_reg_t *udapl_reg = (mca_btl_udapl_reg_t*)reg;
int rc;
if(udapl_reg->lmr != NULL) {
rc = dat_lmr_free(udapl_reg->lmr);
if(rc != DAT_SUCCESS) {
char* major;
char* minor;
dat_strerror(rc, (const char**)&major,
(const char**)&minor);
BTL_ERROR(("ERROR: %s %s %s\n", "dat_lmr_free",
major, minor));
return OMPI_ERROR;
}
}
return OMPI_SUCCESS;
}
/**
* Initialize module module resources.
*/
int
mca_btl_udapl_init(DAT_NAME_PTR ia_name, mca_btl_udapl_module_t* btl)
{
mca_mpool_base_resources_t res;
DAT_CONN_QUAL port;
DAT_RETURN rc;
/* open the uDAPL interface */
btl->udapl_evd_async = DAT_HANDLE_NULL;
rc = dat_ia_open(ia_name, btl->udapl_async_evd_qlen,
&btl->udapl_evd_async, &btl->udapl_ia);
if(DAT_SUCCESS != rc) {
char* major;
char* minor;
dat_strerror(rc, (const char**)&major,
(const char**)&minor);
BTL_UDAPL_VERBOSE_HELP(VERBOSE_SHOW_HELP, ("help-mpi-btl-udapl.txt",
"dat_ia_open fail", true, ia_name, major, minor));
return OMPI_ERROR;
}
/* create a protection zone */
rc = dat_pz_create(btl->udapl_ia, &btl->udapl_pz);
if(DAT_SUCCESS != rc) {
char* major;
char* minor;
dat_strerror(rc, (const char**)&major,
(const char**)&minor);
BTL_ERROR(("ERROR: %s %s %s\n", "dat_pz_create",
major, minor));
goto failure;
}
/* query to get address information */
rc = dat_ia_query(btl->udapl_ia, &btl->udapl_evd_async,
DAT_IA_ALL, &(btl->udapl_ia_attr), 0, NULL);
if(DAT_SUCCESS != rc) {
char* major;
char* minor;
dat_strerror(rc, (const char**)&major,
(const char**)&minor);
BTL_ERROR(("ERROR: %s %s %s\n", "dat_ia_query",
major, minor));
goto failure;
}
memcpy(&btl->udapl_addr.addr, (btl->udapl_ia_attr).ia_address_ptr,
sizeof(DAT_SOCK_ADDR));
/* determine netmask */
mca_btl_udapl_assign_netmask(btl);
/* check evd qlen against adapter max */
if (btl->udapl_dto_evd_qlen > (btl->udapl_ia_attr).max_evd_qlen) {
BTL_UDAPL_VERBOSE_HELP(VERBOSE_SHOW_HELP, ("help-mpi-btl-udapl.txt",
"evd_qlen adapter max",
true,
"btl_udapl_dto_evd_qlen",
btl->udapl_dto_evd_qlen,
(btl->udapl_ia_attr).max_evd_qlen));
btl->udapl_dto_evd_qlen = btl->udapl_ia_attr.max_evd_qlen;
}
if (btl->udapl_conn_evd_qlen > (btl->udapl_ia_attr).max_evd_qlen) {
BTL_UDAPL_VERBOSE_HELP(VERBOSE_SHOW_HELP, ("help-mpi-btl-udapl.txt",
"evd_qlen adapter max",
true,
"btl_udapl_conn_evd_qlen",
btl->udapl_conn_evd_qlen,
(btl->udapl_ia_attr).max_evd_qlen));
btl->udapl_conn_evd_qlen = btl->udapl_ia_attr.max_evd_qlen;
}
/* set up evd's */
rc = dat_evd_create(btl->udapl_ia,
btl->udapl_dto_evd_qlen, DAT_HANDLE_NULL,
DAT_EVD_DTO_FLAG | DAT_EVD_RMR_BIND_FLAG, &btl->udapl_evd_dto);
if(DAT_SUCCESS != rc) {
char* major;
char* minor;
dat_strerror(rc, (const char**)&major,
(const char**)&minor);
BTL_ERROR(("ERROR: %s %s %s\n", "dat_evd_create (dto)",
major, minor));
goto failure;
}
rc = dat_evd_create(btl->udapl_ia,
btl->udapl_conn_evd_qlen, DAT_HANDLE_NULL,
DAT_EVD_CR_FLAG | DAT_EVD_CONNECTION_FLAG, &btl->udapl_evd_conn);
if(DAT_SUCCESS != rc) {
char* major;
char* minor;
dat_strerror(rc, (const char**)&major,
(const char**)&minor);
BTL_ERROR(("ERROR: %s %s %s\n", "dat_evd_create (conn)",
major, minor));
goto failure;
}
/* create our public service point */
rc = dat_psp_create_any(btl->udapl_ia, &port, btl->udapl_evd_conn,
DAT_PSP_CONSUMER_FLAG, &btl->udapl_psp);
if(DAT_SUCCESS != rc) {
char* major;
char* minor;
dat_strerror(rc, (const char**)&major,
(const char**)&minor);
BTL_ERROR(("ERROR: %s %s %s\n", "dat_psp_create_any",
major, minor));
goto failure;
}
/* establish endpoint parameters */
rc = mca_btl_udapl_endpoint_get_params(btl, &(btl->udapl_ep_param));
if(OMPI_SUCCESS != rc) {
/* by not erroring out here we can try to continue with
* the default endpoint parameter values
*/
BTL_UDAPL_VERBOSE_HELP(VERBOSE_SHOW_HELP, ("help-mpi-btl-udapl.txt",
"use default endpoint params",
true));
}
/* Save the port with the address information */
/* TODO - since we're doing the hack below, do we need our own port? */
btl->udapl_addr.port = port;
/* Using dat_ep_query to obtain the remote port would be ideal but
* since the current udapl implementations don't seem to support
* this we store the port in udapl_addr and explictly exchange the
* information later.
*/
((struct sockaddr_in*)&btl->udapl_addr.addr)->sin_port = htons(port);
/* initialize the memory pool */
res.reg_data = btl;
res.sizeof_reg = sizeof(mca_btl_udapl_reg_t);
res.register_mem = udapl_reg_mr;
res.deregister_mem = udapl_dereg_mr;
btl->super.btl_mpool = mca_mpool_base_module_create(
mca_btl_udapl_component.udapl_mpool_name, &btl->super, &res);
/* initialize objects */
OBJ_CONSTRUCT(&btl->udapl_frag_eager, ompi_free_list_t);
OBJ_CONSTRUCT(&btl->udapl_frag_max, ompi_free_list_t);
OBJ_CONSTRUCT(&btl->udapl_frag_user, ompi_free_list_t);
OBJ_CONSTRUCT(&btl->udapl_frag_control, ompi_free_list_t);
OBJ_CONSTRUCT(&btl->udapl_lock, opal_mutex_t);
/* check buffer alignment against dat library */
if (mca_btl_udapl_component.udapl_buffer_alignment !=
DAT_OPTIMAL_ALIGNMENT) {
BTL_UDAPL_VERBOSE_HELP(VERBOSE_SHOW_HELP, ("help-mpi-btl-udapl.txt",
"optimal buffer alignment mismatch",
true,
DAT_OPTIMAL_ALIGNMENT,
mca_btl_udapl_component.udapl_buffer_alignment,
DAT_OPTIMAL_ALIGNMENT));
}
/* initialize free lists */
ompi_free_list_init_ex_new(&btl->udapl_frag_eager,
sizeof(mca_btl_udapl_frag_eager_t) +
mca_btl_udapl_component.udapl_eager_frag_size,
mca_btl_udapl_component.udapl_buffer_alignment,
OBJ_CLASS(mca_btl_udapl_frag_eager_t),
mca_btl_udapl_component.udapl_eager_frag_size,
mca_btl_udapl_component.udapl_buffer_alignment,
mca_btl_udapl_component.udapl_free_list_num,
mca_btl_udapl_component.udapl_free_list_max,
mca_btl_udapl_component.udapl_free_list_inc,
btl->super.btl_mpool,
NULL,
NULL);
ompi_free_list_init_ex_new(&btl->udapl_frag_max,
sizeof(mca_btl_udapl_frag_max_t) +
mca_btl_udapl_component.udapl_max_frag_size,
mca_btl_udapl_component.udapl_buffer_alignment,
OBJ_CLASS(mca_btl_udapl_frag_max_t),
mca_btl_udapl_component.udapl_max_frag_size,
mca_btl_udapl_component.udapl_buffer_alignment,
mca_btl_udapl_component.udapl_free_list_num,
mca_btl_udapl_component.udapl_free_list_max,
mca_btl_udapl_component.udapl_free_list_inc,
btl->super.btl_mpool,
NULL,
NULL);
ompi_free_list_init_ex_new(&btl->udapl_frag_user,
sizeof(mca_btl_udapl_frag_user_t),
mca_btl_udapl_component.udapl_buffer_alignment,
OBJ_CLASS(mca_btl_udapl_frag_user_t),
0,0,
mca_btl_udapl_component.udapl_free_list_num,
mca_btl_udapl_component.udapl_free_list_max,
mca_btl_udapl_component.udapl_free_list_inc,
NULL,
NULL,
NULL);
ompi_free_list_init_ex_new(&btl->udapl_frag_control,
sizeof(mca_btl_udapl_frag_eager_t) +
mca_btl_udapl_component.udapl_eager_frag_size,
mca_btl_udapl_component.udapl_buffer_alignment,
OBJ_CLASS(mca_btl_udapl_frag_eager_t),
mca_btl_udapl_component.udapl_eager_frag_size,
mca_btl_udapl_component.udapl_buffer_alignment,
mca_btl_udapl_component.udapl_free_list_num,
-1,
mca_btl_udapl_component.udapl_free_list_inc,
btl->super.btl_mpool,
NULL,
NULL);
/* initialize eager rdma buffer info */
btl->udapl_eager_rdma_endpoints = OBJ_NEW(opal_pointer_array_t);
opal_pointer_array_init(btl->udapl_eager_rdma_endpoints,
mca_btl_udapl_component.udapl_max_eager_rdma_peers,
mca_btl_udapl_component.udapl_max_eager_rdma_peers,
0);
btl->udapl_eager_rdma_endpoint_count = 0;
OBJ_CONSTRUCT(&btl->udapl_eager_rdma_lock, opal_mutex_t);
/* initialize miscellaneous variables */
btl->udapl_async_events = 0;
btl->udapl_connect_inprogress = 0;
btl->udapl_num_peers = 0;
/* TODO - Set up SRQ when it is supported */
return OMPI_SUCCESS;
failure:
dat_ia_close(btl->udapl_ia, DAT_CLOSE_ABRUPT_FLAG);
return OMPI_ERROR;
}
/*
* Cleanup/release module resources.
*/
int mca_btl_udapl_finalize(struct mca_btl_base_module_t* base_btl)
{
mca_btl_udapl_module_t* udapl_btl = (mca_btl_udapl_module_t*) base_btl;
int32_t i;
/*
* Cleaning up the endpoints here because mca_btl_udapl_del_procs
* is never called by upper layers.
* Note: this is only looking at those endpoints which are available
* off of the btl module rdma list.
*/
for (i=0; i < udapl_btl->udapl_eager_rdma_endpoint_count; i++) {
mca_btl_udapl_endpoint_t* endpoint =
opal_pointer_array_get_item(udapl_btl->udapl_eager_rdma_endpoints,
i);
OBJ_DESTRUCT(endpoint);
}
/* release uDAPL resources */
dat_evd_free(udapl_btl->udapl_evd_dto);
dat_evd_free(udapl_btl->udapl_evd_conn);
dat_pz_free(udapl_btl->udapl_pz);
dat_ia_close(udapl_btl->udapl_ia, DAT_CLOSE_GRACEFUL_FLAG);
/* destroy objects */
OBJ_DESTRUCT(&udapl_btl->udapl_lock);
OBJ_DESTRUCT(&udapl_btl->udapl_frag_eager);
OBJ_DESTRUCT(&udapl_btl->udapl_frag_max);
OBJ_DESTRUCT(&udapl_btl->udapl_frag_user);
OBJ_DESTRUCT(&udapl_btl->udapl_frag_control);
OBJ_DESTRUCT(&udapl_btl->udapl_eager_rdma_lock);
/* destroy mpool */
if (OMPI_SUCCESS !=
mca_mpool_base_module_destroy(udapl_btl->super.btl_mpool)) {
BTL_UDAPL_VERBOSE_OUTPUT(VERBOSE_INFORM,
("WARNING: Failed to release mpool"));
return OMPI_ERROR;
}
free(udapl_btl);
return OMPI_SUCCESS;
}
/*
* Adjust parameters that are dependent on the number of peers.
*
* @param udapl_btl (IN) BTL module
* @param nprocs (IN) number of processes handed into
* mca_btl_udapl_add_procs()
* @return OMPI_SUCCESS or error status on failure
*/
static int mca_btl_udapl_set_peer_parameters(
struct mca_btl_udapl_module_t* udapl_btl,
size_t nprocs)
{
int rc = OMPI_SUCCESS;
DAT_RETURN dat_rc = DAT_SUCCESS;
uint potential_udapl_timeout;
int first_time_sizing = (udapl_btl->udapl_num_peers == 0 ? 1 : 0);
DAT_EVD_PARAM evd_param;
/* nprocs includes self so subtract 1 */
udapl_btl->udapl_num_peers += nprocs - 1;
/* resize dto_evd_qlen if not already at its max */
if (udapl_btl->udapl_dto_evd_qlen !=
udapl_btl->udapl_ia_attr.max_evd_qlen) {
int potential_dto_evd_qlen;
int max_connection_dto_events;
int eager_connection_dto_events;
/* eager connection dto events already factored into
* max_recv/request_dtos but need to calculate max connection dtos;
* see mca_btl_udapl_get_params() for max_recv/request_dtos
*/
eager_connection_dto_events = udapl_btl->udapl_max_recv_dtos +
udapl_btl->udapl_max_request_dtos;
max_connection_dto_events = mca_btl_udapl_component.udapl_num_recvs +
mca_btl_udapl_component.udapl_num_sends +
(mca_btl_udapl_component.udapl_num_recvs /
mca_btl_udapl_component.udapl_sr_win) + 1;
potential_dto_evd_qlen = udapl_btl->udapl_num_peers *
(eager_connection_dto_events + max_connection_dto_events);
/* here we use what the library calculates as the
* potential_dto_evd_qlen unless the user has set
*/
if (first_time_sizing) {
if (udapl_btl->udapl_dto_evd_qlen < potential_dto_evd_qlen) {
if (MCA_BTL_UDAPL_DTO_EVD_QLEN_DEFAULT !=
udapl_btl->udapl_dto_evd_qlen) {
/* user modified so warn */
BTL_UDAPL_VERBOSE_HELP(VERBOSE_SHOW_HELP,
("help-mpi-btl-udapl.txt",
"evd_qlen too low",
true,
"btl_udapl_dto_evd_qlen",
udapl_btl->udapl_dto_evd_qlen,
"btl_udapl_dto_evd_qlen",
potential_dto_evd_qlen));
} else {
udapl_btl->udapl_dto_evd_qlen = potential_dto_evd_qlen;
}
}
} else {
/* since this is not the first time attempting to resize the
* evd queue length just use the potential value; this may not
* be the best solution
*/
udapl_btl->udapl_dto_evd_qlen = potential_dto_evd_qlen;
}
udapl_btl->udapl_dto_evd_qlen = ((udapl_btl->udapl_dto_evd_qlen >
udapl_btl->udapl_ia_attr.max_evd_qlen) ?
udapl_btl->udapl_ia_attr.max_evd_qlen :
udapl_btl->udapl_dto_evd_qlen);
/* OFED stack does not return DAT_INVALID_STATE when
* the new qlen is less than current value so here we find
* current value and if greater than what we intend to set
* it to skip the resize.
*/
dat_rc = dat_evd_query(udapl_btl->udapl_evd_dto,
DAT_EVD_FIELD_EVD_QLEN, &evd_param);
if(DAT_SUCCESS != dat_rc) {
char* major;
char* minor;
dat_strerror(dat_rc, (const char**)&major,
(const char**)&minor);
BTL_ERROR(("ERROR: %s %s %s\n", "dat_evd_query",
major, minor));
}
if (udapl_btl->udapl_dto_evd_qlen > evd_param.evd_qlen) {
/* resize dto event dispatcher queue length */
dat_rc = dat_evd_resize(udapl_btl->udapl_evd_dto,
udapl_btl->udapl_dto_evd_qlen);
if(DAT_SUCCESS != dat_rc) {
char* major;
char* minor;
dat_strerror(dat_rc, (const char**)&major,
(const char**)&minor);
BTL_ERROR(("ERROR: %s %s %s\n", "dat_evd_resize",
major, minor));
rc = OMPI_ERR_OUT_OF_RESOURCE;
}
}
}
/* resize connection evd qlen */
if (udapl_btl->udapl_conn_evd_qlen !=
udapl_btl->udapl_ia_attr.max_evd_qlen) {
int potential_conn_evd_qlen = 2 * udapl_btl->udapl_num_peers;
if (first_time_sizing) {
if (udapl_btl->udapl_conn_evd_qlen < potential_conn_evd_qlen) {
if (MCA_BTL_UDAPL_CONN_EVD_QLEN_DEFAULT !=
udapl_btl->udapl_conn_evd_qlen) {
/* user modified so warn */
BTL_UDAPL_VERBOSE_HELP(VERBOSE_SHOW_HELP,
("help-mpi-btl-udapl.txt",
"evd_qlen too low",
true,
"btl_udapl_conn_evd_qlen",
udapl_btl->udapl_conn_evd_qlen,
"btl_udapl_conn_evd_qlen",
potential_conn_evd_qlen));
} else {
udapl_btl->udapl_conn_evd_qlen = potential_conn_evd_qlen;
}
}
} else {
/* since this is not the first time attempting to resize the
* evd queue length just use the potential value; this may not
* be the best solution
*/
udapl_btl->udapl_conn_evd_qlen = potential_conn_evd_qlen;
}
udapl_btl->udapl_conn_evd_qlen = ((udapl_btl->udapl_conn_evd_qlen >
udapl_btl->udapl_ia_attr.max_evd_qlen) ?
udapl_btl->udapl_ia_attr.max_evd_qlen :
udapl_btl->udapl_conn_evd_qlen);
/* OFED stack does not return DAT_INVALID_STATE when
* the new qlen is less than current value so here we find
* current value and if greater than what we intend to set
* it to skip the resize.
*/
dat_rc = dat_evd_query(udapl_btl->udapl_evd_conn,
DAT_EVD_FIELD_EVD_QLEN, &evd_param);
if(DAT_SUCCESS != dat_rc) {
char* major;
char* minor;
dat_strerror(dat_rc, (const char**)&major,
(const char**)&minor);
BTL_ERROR(("ERROR: %s %s %s\n", "dat_evd_query",
major, minor));
}
if (udapl_btl->udapl_conn_evd_qlen > evd_param.evd_qlen) {
/* resize conn evd queue length */
dat_rc = dat_evd_resize(udapl_btl->udapl_evd_conn,
udapl_btl->udapl_conn_evd_qlen);
if(DAT_SUCCESS != dat_rc) {
char* major;
char* minor;
dat_strerror(dat_rc, (const char**)&major,
(const char**)&minor);
BTL_ERROR(("ERROR: %s %s %s\n", "dat_evd_resize",
major, minor));
rc = OMPI_ERR_OUT_OF_RESOURCE;
}
}
}
/* adjust connection timeout value, calculated in microseconds */
potential_udapl_timeout = MCA_BTL_UDAPL_CONN_TIMEOUT_INC *
udapl_btl->udapl_num_peers;
if (mca_btl_udapl_component.udapl_timeout <
potential_udapl_timeout) {
if (MCA_BTL_UDAPL_CONN_TIMEOUT_DEFAULT !=
mca_btl_udapl_component.udapl_timeout) {
/* user modified so warn */
BTL_UDAPL_VERBOSE_HELP(VERBOSE_SHOW_HELP,
("help-mpi-btl-udapl.txt",
"connection timeout low",
true,
"btl_udapl_timeout",
mca_btl_udapl_component.udapl_timeout,
"btl_udapl_timeout",
potential_udapl_timeout));
} else {
mca_btl_udapl_component.udapl_timeout =
potential_udapl_timeout;
}
}
mca_btl_udapl_component.udapl_timeout =
((mca_btl_udapl_component.udapl_timeout >
MCA_BTL_UDAPL_CONN_TIMEOUT_MAX) ?
MCA_BTL_UDAPL_CONN_TIMEOUT_MAX :
mca_btl_udapl_component.udapl_timeout);
return rc;
}
/*
* Find and assign system netmask for the address of the uDAPL BTL
* module, but only if udapl_if_mask has not been set by the "--mca
* btl_udapl_if_mask" parameter. This routine will either find
* the system netmask or set the value to 0.
*
* @param udapl_btl (IN) BTL module
*
* @return OMPI_SUCCESS or OMPI_ERROR
*/
static int mca_btl_udapl_assign_netmask(mca_btl_udapl_module_t* udapl_btl)
{
struct sockaddr *saddr;
struct sockaddr_in *btl_addr;
char btl_addr_string[INET_ADDRSTRLEN];
char btl_ifname[INET_ADDRSTRLEN];
/* Setting if_mask to 0 informs future steps to assume all
* addresses are reachable.
*/
udapl_btl->udapl_if_mask = 0;
if (mca_btl_udapl_component.udapl_compare_subnet) {
/* go get system netmask value */
/* use generic address to find address family */
saddr = (struct sockaddr *)&(udapl_btl->udapl_addr.addr);
if (saddr->sa_family == AF_INET) {
btl_addr = (struct sockaddr_in *)saddr;
/*
* Retrieve the netmask of the udapl btl address. To
* accomplish this requires 4 steps and the use of an opal
* utility. This same utility is used by the tcp oob.
* Steps:
* 1. Get string value of known udapl btl module address.
* 2. Use string value to find the interface name of address.
* 3. Use interface name to find its index.
* 4. From the index get the netmask.
*/
/* retrieve string value of udapl btl address */
inet_ntop(AF_INET, (void *) &btl_addr->sin_addr,
btl_addr_string, INET_ADDRSTRLEN);
/* use address string to retrieve associated interface name */
if (OPAL_SUCCESS !=
opal_ifaddrtoname(btl_addr_string,
btl_ifname, INET_ADDRSTRLEN)) {
BTL_UDAPL_VERBOSE_HELP(VERBOSE_SHOW_HELP,
("help-mpi-btl-udapl.txt", "interface not found",
true, orte_process_info.nodename, btl_addr_string));
return OMPI_ERROR;
}
/* use interface name to retrieve index; then
* use index to retrieve udapl btl address netmask
*/
if (OPAL_SUCCESS !=
opal_ifindextomask(opal_ifnametoindex(btl_ifname),
&(udapl_btl->udapl_if_mask), sizeof(udapl_btl->udapl_if_mask))) {
BTL_UDAPL_VERBOSE_HELP(VERBOSE_SHOW_HELP,
("help-mpi-btl-udapl.txt", "netmask not found",
true, orte_process_info.nodename, btl_addr_string));
return OMPI_ERROR;
}
/* report if_mask used by address */
BTL_UDAPL_VERBOSE_OUTPUT(VERBOSE_INFORM,
("uDAPL BTL address %s : if_mask = %d",
btl_addr_string, udapl_btl->udapl_if_mask));
} else {
/* current uDAPL BTL does not support IPv6 */
BTL_UDAPL_VERBOSE_HELP(VERBOSE_SHOW_HELP,
("help-mpi-btl-udapl.txt", "IPv4 only",
true, orte_process_info.nodename));
return OMPI_ERROR;
}
}
return OMPI_SUCCESS;
}
/*
*
*/
int mca_btl_udapl_add_procs(
struct mca_btl_base_module_t* btl,
size_t nprocs,
struct ompi_proc_t **ompi_procs,
struct mca_btl_base_endpoint_t** peers,
ompi_bitmap_t* reachable)
{
mca_btl_udapl_module_t* udapl_btl = (mca_btl_udapl_module_t*)btl;
int i, rc;
for(i = 0; i < (int) nprocs; i++) {
struct ompi_proc_t* ompi_proc = ompi_procs[i];
mca_btl_udapl_proc_t* udapl_proc;
mca_btl_base_endpoint_t* udapl_endpoint;
if(ompi_proc == ompi_proc_local())
continue;
if(NULL == (udapl_proc = mca_btl_udapl_proc_create(ompi_proc))) {
continue;
}
OPAL_THREAD_LOCK(&udapl_proc->proc_lock);
/* The btl_proc datastructure is shared by all uDAPL BTL
* instances that are trying to reach this destination.
* Cache the peer instance on the btl_proc.
*/
udapl_endpoint = OBJ_NEW(mca_btl_udapl_endpoint_t);
if(NULL == udapl_endpoint) {
OPAL_THREAD_UNLOCK(&udapl_proc->proc_lock);
return OMPI_ERR_OUT_OF_RESOURCE;
}
udapl_endpoint->endpoint_btl = udapl_btl;
rc = mca_btl_udapl_proc_insert(udapl_proc, udapl_endpoint);
if(rc != OMPI_SUCCESS) {
OBJ_RELEASE(udapl_endpoint);
OPAL_THREAD_UNLOCK(&udapl_proc->proc_lock);
continue;
}
ompi_bitmap_set_bit(reachable, i);
OPAL_THREAD_UNLOCK(&udapl_proc->proc_lock);
peers[i] = udapl_endpoint;
}
/* resize based on number of processes */
if (OMPI_SUCCESS !=
mca_btl_udapl_set_peer_parameters(udapl_btl, nprocs)) {
return OMPI_ERR_OUT_OF_RESOURCE;
}
return OMPI_SUCCESS;
}
int mca_btl_udapl_del_procs(struct mca_btl_base_module_t* btl,
size_t nprocs,
struct ompi_proc_t **procs,
struct mca_btl_base_endpoint_t ** peers)
{
/* TODO */
return OMPI_SUCCESS;
}
/**
* Allocate a segment.
*
* @param btl (IN) BTL module
* @param size (IN) Request segment size.
*/
mca_btl_base_descriptor_t* mca_btl_udapl_alloc(
struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
uint8_t order,
size_t size,
uint32_t flags)
{
mca_btl_udapl_module_t* udapl_btl = (mca_btl_udapl_module_t*) btl;
mca_btl_udapl_frag_t* frag;
int rc;
int pad = 0;
/* compute pad as needed */
MCA_BTL_UDAPL_FRAG_CALC_ALIGNMENT_PAD(pad,
(size + sizeof(mca_btl_udapl_footer_t)));
if((size + pad) <= btl->btl_eager_limit) {
MCA_BTL_UDAPL_FRAG_ALLOC_EAGER(udapl_btl, frag, rc);
} else if(size <= btl->btl_max_send_size) {
MCA_BTL_UDAPL_FRAG_ALLOC_MAX(udapl_btl, frag, rc);
} else {
return NULL;
}
frag->segment.seg_len = size;
/* Set up the LMR triplet from the frag segment.
* Note: The triplet.segment_len is set to what is required for
* actually sending the fragment, if later it is determined
* that rdma can be used to transfer the fragment the
* triplet.segment_len will have to change.
*/
frag->triplet.virtual_address =
(DAT_VADDR)(uintptr_t)frag->segment.seg_addr.pval;
frag->triplet.segment_length =
frag->segment.seg_len + sizeof(mca_btl_udapl_footer_t);
assert(frag->triplet.lmr_context ==
frag->registration->lmr_triplet.lmr_context);
frag->btl = udapl_btl;
frag->base.des_src = &frag->segment;
frag->base.des_src_cnt = 1;
frag->base.des_dst = NULL;
frag->base.des_dst_cnt = 0;
frag->base.des_flags = flags;
frag->base.order = MCA_BTL_NO_ORDER;
return &frag->base;
}
/**
* Return a segment
*/
int mca_btl_udapl_free(
struct mca_btl_base_module_t* btl,
mca_btl_base_descriptor_t* des)
{
mca_btl_udapl_frag_t* frag = (mca_btl_udapl_frag_t*)des;
if(0 == frag->size) {
if (NULL != frag->registration) {
btl->btl_mpool->mpool_deregister(btl->btl_mpool,
&(frag->registration->base));
frag->registration = NULL;
}
MCA_BTL_UDAPL_FRAG_RETURN_USER(btl, frag);
} else if(frag->size == mca_btl_udapl_component.udapl_eager_frag_size) {
MCA_BTL_UDAPL_FRAG_RETURN_EAGER(btl, frag);
} else if(frag->size == mca_btl_udapl_component.udapl_max_frag_size) {
MCA_BTL_UDAPL_FRAG_RETURN_MAX(btl, frag);
} else {
BTL_UDAPL_VERBOSE_OUTPUT(VERBOSE_DIAGNOSE,
("mca_btl_udapl_free: invalid descriptor\n"));
return OMPI_ERR_BAD_PARAM;
}
return OMPI_SUCCESS;
}
/**
* Pack data and return a descriptor that can be
* used for send/put.
*
* @param btl (IN) BTL module
* @param peer (IN) BTL peer addressing
*/
mca_btl_base_descriptor_t* mca_btl_udapl_prepare_src(
struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
struct mca_mpool_base_registration_t* registration,
struct ompi_convertor_t* convertor,
uint8_t order,
size_t reserve,
size_t* size,
uint32_t flags
)
{
mca_btl_udapl_frag_t* frag = NULL;
struct iovec iov;
uint32_t iov_count = 1;
size_t max_data = *size;
int rc;
int pad = 0;
/* compute pad as needed */
MCA_BTL_UDAPL_FRAG_CALC_ALIGNMENT_PAD(pad,
(max_data + reserve + sizeof(mca_btl_udapl_footer_t)));
if(ompi_convertor_need_buffers(convertor) == false && 0 == reserve) {
if(registration != NULL || max_data > btl->btl_max_send_size) {
MCA_BTL_UDAPL_FRAG_ALLOC_USER(btl, frag, rc);
if(NULL == frag){
return NULL;
}
iov.iov_len = max_data;
iov.iov_base = NULL;
ompi_convertor_pack(convertor, &iov,
&iov_count, &max_data );
*size = max_data;
if(NULL == registration) {
rc = btl->btl_mpool->mpool_register(btl->btl_mpool, iov.iov_base,
max_data, 0,
&registration);
if(rc != OMPI_SUCCESS) {
MCA_BTL_UDAPL_FRAG_RETURN_USER(btl,frag);
return NULL;
}
/* keep track of the registration we did */
frag->registration = (mca_btl_udapl_reg_t*)registration;
}
frag->segment.seg_len = max_data;
frag->segment.seg_addr.pval = iov.iov_base;
frag->triplet.segment_length = max_data;
frag->triplet.virtual_address = (DAT_VADDR)(uintptr_t)iov.iov_base;
frag->triplet.lmr_context =
((mca_btl_udapl_reg_t*)registration)->lmr_triplet.lmr_context;
/* initialize base descriptor */
frag->base.des_src = &frag->segment;
frag->base.des_src_cnt = 1;
frag->base.des_dst = NULL;
frag->base.des_dst_cnt = 0;
frag->base.des_flags = flags;
frag->base.order = MCA_BTL_NO_ORDER;
return &frag->base;
}
}
if(max_data + pad + reserve <= btl->btl_eager_limit) {
/* the data is small enough to fit in the eager frag and
* memory is not prepinned */
MCA_BTL_UDAPL_FRAG_ALLOC_EAGER(btl, frag, rc);
}
if(NULL == frag) {
/* the data doesn't fit into eager frag or eager frag is
* not available */
MCA_BTL_UDAPL_FRAG_ALLOC_MAX(btl, frag, rc);
if(NULL == frag) {
return NULL;
}
if(max_data + reserve > btl->btl_max_send_size) {
max_data = btl->btl_max_send_size - reserve;
}
}
iov.iov_len = max_data;
iov.iov_base = (char *) frag->segment.seg_addr.pval + reserve;
rc = ompi_convertor_pack(convertor,
&iov, &iov_count, &max_data );
if(rc < 0) {
MCA_BTL_UDAPL_FRAG_RETURN_MAX(btl, frag);
return NULL;
}
*size = max_data;
/* setup lengths and addresses to send out data */
frag->segment.seg_len = max_data + reserve;
frag->triplet.segment_length =
max_data + reserve + sizeof(mca_btl_udapl_footer_t);
frag->triplet.virtual_address =
(DAT_VADDR)(uintptr_t)frag->segment.seg_addr.pval;
/* initialize base descriptor */
frag->base.des_src = &frag->segment;
frag->base.des_src_cnt = 1;
frag->base.des_dst = NULL;
frag->base.des_dst_cnt = 0;
frag->base.des_flags = flags;
frag->base.order = MCA_BTL_NO_ORDER;
return &frag->base;
}
/**
* Prepare a descriptor for send/rdma using the supplied
* convertor. If the convertor references data that is contiguous,
* the descriptor may simply point to the user buffer. Otherwise,
* this routine is responsible for allocating buffer space and
* packing if required.
*
* @param btl (IN) BTL module
* @param endpoint (IN) BTL peer addressing
* @param convertor (IN) Data type convertor
* @param reserve (IN) Additional bytes requested by upper layer to precede user data
* @param size (IN/OUT) Number of bytes to prepare (IN), number of bytes actually prepared (OUT)
*/
mca_btl_base_descriptor_t* mca_btl_udapl_prepare_dst(
struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
struct mca_mpool_base_registration_t* registration,
struct ompi_convertor_t* convertor,
uint8_t order,
size_t reserve,
size_t* size,
uint32_t flags)
{
mca_btl_udapl_frag_t* frag;
int rc;
MCA_BTL_UDAPL_FRAG_ALLOC_USER(btl, frag, rc);
if(NULL == frag) {
return NULL;
}
frag->segment.seg_len = *size;
ompi_convertor_get_current_pointer( convertor, (void**)&(frag->segment.seg_addr.pval) );
if(NULL == registration) {
/* didn't get a memory registration passed in, so must
* register the region now
*/
rc = btl->btl_mpool->mpool_register(btl->btl_mpool,
frag->segment.seg_addr.pval,
frag->segment.seg_len,
0,
&registration);
if(OMPI_SUCCESS != rc || NULL == registration) {
MCA_BTL_UDAPL_FRAG_RETURN_USER(btl,frag);
return NULL;
}
frag->registration = (mca_btl_udapl_reg_t*)registration;
}
frag->base.des_src = NULL;
frag->base.des_src_cnt = 0;
frag->base.des_dst = &frag->segment;
frag->base.des_dst_cnt = 1;
frag->base.des_flags = flags;
frag->segment.seg_key.key32[0] =
((mca_btl_udapl_reg_t*)registration)->rmr_context;
frag->base.order = MCA_BTL_NO_ORDER;
return &frag->base;
}
/**
* Initiate an asynchronous send.
*
* @param btl (IN) BTL module
* @param endpoint (IN) BTL addressing information
* @param descriptor (IN) Description of the data to be transferred
* @param tag (IN) The tag value used to notify the peer.
*/
int mca_btl_udapl_send(
struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
struct mca_btl_base_descriptor_t* des,
mca_btl_base_tag_t tag)
{
mca_btl_udapl_frag_t* frag = (mca_btl_udapl_frag_t*)des;
frag->endpoint = endpoint;
frag->ftr = (mca_btl_udapl_footer_t *)
((char *)frag->segment.seg_addr.pval + frag->segment.seg_len);
frag->ftr->tag = tag;
frag->type = MCA_BTL_UDAPL_SEND;
/* TODO - will inlining this give worthwhile performance? */
return mca_btl_udapl_endpoint_send(endpoint, frag);
}
/**
* Initiate an asynchronous put.
*
* @param btl (IN) BTL module
* @param endpoint (IN) BTL addressing information
* @param descriptor (IN) Description of the data to be transferred
*/
int mca_btl_udapl_put(
mca_btl_base_module_t* btl,
mca_btl_base_endpoint_t* endpoint,
mca_btl_base_descriptor_t* des)
{
DAT_RMR_TRIPLET remote_buffer;
DAT_DTO_COOKIE cookie;
int rc = OMPI_SUCCESS;
mca_btl_udapl_frag_t* frag = (mca_btl_udapl_frag_t*)des;
mca_btl_base_segment_t *dst_segment = des->des_dst;
frag->btl = (mca_btl_udapl_module_t *)btl;
frag->endpoint = endpoint;
frag->type = MCA_BTL_UDAPL_PUT;
if(OPAL_THREAD_ADD32(&endpoint->endpoint_sr_tokens[BTL_UDAPL_MAX_CONNECTION], -1) < 0) {
OPAL_THREAD_ADD32(&endpoint->endpoint_sr_tokens[BTL_UDAPL_MAX_CONNECTION], 1);
OPAL_THREAD_LOCK(&endpoint->endpoint_lock);
opal_list_append(&endpoint->endpoint_max_frags,
(opal_list_item_t*)frag);
OPAL_THREAD_UNLOCK(&endpoint->endpoint_lock);
opal_progress();
} else {
frag->triplet.segment_length = frag->segment.seg_len;
remote_buffer.rmr_context =
(DAT_RMR_CONTEXT)dst_segment->seg_key.key32[0];
remote_buffer.target_address =
(DAT_VADDR)(uintptr_t)dst_segment->seg_addr.lval;
remote_buffer.segment_length = dst_segment->seg_len;
cookie.as_ptr = frag;
OPAL_THREAD_LOCK(&endpoint->endpoint_lock);
rc = dat_ep_post_rdma_write(endpoint->endpoint_max,
1,
&frag->triplet,
cookie,
&remote_buffer,
DAT_COMPLETION_DEFAULT_FLAG);
OPAL_THREAD_UNLOCK(&endpoint->endpoint_lock);
if(DAT_SUCCESS != rc) {
char* major;
char* minor;
dat_strerror(rc, (const char**)&major,
(const char**)&minor);
BTL_ERROR(("ERROR: %s %s %s\n", "dat_ep_post_rdma_write",
major, minor));
rc = OMPI_ERROR;
}
}
return rc;
}
/**
* Initiate an asynchronous get.
*
* @param btl (IN) BTL module
* @param endpoint (IN) BTL addressing information
* @param descriptor (IN) Description of the data to be transferred
*
*/
int mca_btl_udapl_get(
mca_btl_base_module_t* btl,
mca_btl_base_endpoint_t* endpoint,
mca_btl_base_descriptor_t* des)
{
BTL_UDAPL_VERBOSE_OUTPUT(VERBOSE_DEVELOPER, ("udapl_get\n"));
return OMPI_ERR_NOT_IMPLEMENTED;
}
int mca_btl_udapl_ft_event(int state) {
if(OPAL_CRS_CHECKPOINT == state) {
;
}
else if(OPAL_CRS_CONTINUE == state) {
;
}
else if(OPAL_CRS_RESTART == state) {
;
}
else if(OPAL_CRS_TERM == state ) {
;
}
else {
;
}
return OMPI_SUCCESS;
}