1
1
Jeff Squyres c7c3de87f5 Add ummunotify support to Open MPI. See
http://marc.info/?l=linux-mm-commits&m=127352503417787&w=2 for more
details.

 * Remove the ptmalloc memory component; replace it with a new "linux"
   memory component.
 * The linux memory component will conditionally compile in support
   for ummunotify.  At run-time, if it has ummunotify support and
   finds run-time support for ummunotify (i.e., /dev/ummunotify), it
   uses it.  If not, it tries to use ptmalloc via the glibc memory
   hooks. 
 * Add some more API functions to the memory framework to accomodate
   the ummunotify model (i.e., poll to see if memory has "changed").
 * Add appropriate calls in the rcache to the new memory APIs to see
   if memory has changed, and to react accordingly.
 * Add a few comments in the openib BTL to indicate why we don't need
   to notify the OPAL memory framework about specific instances of
   registered memory.
 * Add dummy API calls in the solaris malloc component (since it
   doesn't have polling/"did memory change" support).

This commit was SVN r23113.
2010-05-11 21:43:19 +00:00

69 строки
2.4 KiB
C++

/* Basic platform-independent macro definitions for mutexes,
thread-specific data and parameters for malloc.
Copyright (C) 2003 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA. */
#ifndef _GENERIC_MALLOC_MACHINE_H
#define _GENERIC_MALLOC_MACHINE_H
#include <atomic.h>
#ifndef mutex_init /* No threads, provide dummy macros */
# define NO_THREADS
/* The mutex functions used to do absolutely nothing, i.e. lock,
trylock and unlock would always just return 0. However, even
without any concurrently active threads, a mutex can be used
legitimately as an `in use' flag. To make the code that is
protected by a mutex async-signal safe, these macros would have to
be based on atomic test-and-set operations, for example. */
typedef int mutex_t;
# define mutex_init(m) (*(m) = 0)
# define mutex_lock(m) ((*(m) = 1), 0)
# define mutex_trylock(m) (*(m) ? 1 : ((*(m) = 1), 0))
# define mutex_unlock(m) (*(m) = 0)
typedef void *tsd_key_t;
# define tsd_key_create(key, destr) do {} while(0)
# define tsd_setspecific(key, data) ((key) = (data))
# define tsd_getspecific(key, vptr) (vptr = (key))
# define thread_atfork(prepare, parent, child) do {} while(0)
#endif /* !defined mutex_init */
#ifndef atomic_full_barrier
# define atomic_full_barrier() __asm ("" ::: "memory")
#endif
#ifndef atomic_read_barrier
# define atomic_read_barrier() atomic_full_barrier ()
#endif
#ifndef atomic_write_barrier
# define atomic_write_barrier() atomic_full_barrier ()
#endif
#ifndef DEFAULT_TOP_PAD
# define DEFAULT_TOP_PAD 131072
#endif
#endif /* !defined(_GENERIC_MALLOC_MACHINE_H) */