1
1
openmpi/opal/util/bipartite_graph.h
William Zhang ca70b703a1 opal/util: Add function to get vertex data from bipartite graph
Currently, there is no function that allows the user to retrieve the
data they have stored in a vertex easily. Using the internal macros and
knowledge of the structures, the new function will return a pointer to
the user provided vertex data.

Signed-off-by: William Zhang <wilzhang@amazon.com>
2019-09-11 18:28:07 +00:00

179 строки
5.8 KiB
C

/*
* Copyright (c) 2014 Cisco Systems, Inc. All rights reserved.
* Copyright (c) 2017-2019 Amazon.com, Inc. or its affiliates. All Rights
* reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
/* Implements an adjacency-list-based weighted directed graph (digraph),
* focused on supporting bipartite digraphs and flow-network problems.
*
* Note that some operations might be more efficient if this structure were
* converted to use an adjacency matrix instead of an adjacency list. OTOH
* that complicates other pieces of the implementation (specifically, adding
* and removing edges). */
#ifndef OPAL_BP_GRAPH_H
#define OPAL_BP_GRAPH_H
struct opal_bp_graph_vertex_t;
struct opal_bp_graph_edge_t;
struct opal_bp_graph_t;
typedef struct opal_bp_graph_vertex_t opal_bp_graph_vertex_t;
typedef struct opal_bp_graph_edge_t opal_bp_graph_edge_t;
typedef struct opal_bp_graph_t opal_bp_graph_t;
/**
* callback function pointer type for cleaning up user data associated with a
* vertex or edge */
typedef void (*opal_bp_graph_cleanup_fn_t)(void *user_data);
/**
* create a new empty graph
*
* Any new vertices will have NULL user data associated.
*
* @param[in] v_data_cleanup_fn cleanup function to use for vertex user data
* @param[in] e_data_cleanup_fn cleanup function to use for edge user data
* @param[out] g_out the created graph
*
* @returns OPAL_SUCCESS or an OMPI error code
*/
int opal_bp_graph_create(opal_bp_graph_cleanup_fn_t v_data_cleanup_fn,
opal_bp_graph_cleanup_fn_t e_data_cleanup_fn,
opal_bp_graph_t **g_out);
/**
* free the given graph
*
* Any user data associated with vertices or edges in the graph will have
* the given edge/vertex cleanup callback invoked in some arbitrary order.
*
* @returns OPAL_SUCCESS or an OMPI error code
*/
int opal_bp_graph_free(opal_bp_graph_t *g);
/**
* clone (deep copy) the given graph
*
* Note that copy_user_data==true is not currently supported (requires the
* addition of a copy callback for user data).
*
* @param[in] g the graph to clone
* @param[in] copy_user_data if true, copy vertex/edge user data to the new
* graph
* @param[in] g_clone_out the resulting cloned graph
* @returns OPAL_SUCCESS or an OMPI error code
*/
int opal_bp_graph_clone(const opal_bp_graph_t *g,
bool copy_user_data,
opal_bp_graph_t **g_clone_out);
/**
* return the number of edges for which this vertex is a destination
*
* @param[in] g the graph to query
* @param[in] vertex the vertex id to query
* @returns the number of edges for which this vertex is a destination
*/
int opal_bp_graph_indegree(const opal_bp_graph_t *g,
int vertex);
/**
* return the number of edges for which this vertex is a source
*
* @param[in] g the graph to query
* @param[in] vertex the vertex id to query
* @returns the number of edges for which this vertex is a source
*/
int opal_bp_graph_outdegree(const opal_bp_graph_t *g,
int vertex);
/**
* add an edge to the given graph
*
* @param[in] from source vertex ID
* @param[in] to target vertex ID
* @param[in] cost cost value for this edge (lower is better)
* @param[in] capacity maximum flow transmissible on this edge
* @param[in] e_data caller data to associate with this edge, useful for
* debugging or minimizing state shared across components
*
* @returns OPAL_SUCCESS or an OMPI error code
*/
int opal_bp_graph_add_edge(opal_bp_graph_t *g,
int from,
int to,
int64_t cost,
int capacity,
void *e_data);
/**
* add a vertex to the given graph
*
* @param[in] g graph to manipulate
* @param[in] v_data data to associate with the new vertex
* @param[out] index_out integer index of the new vertex. May be NULL.
*
* @returns OPAL_SUCCESS or an OMPI error code
*/
int opal_bp_graph_add_vertex(opal_bp_graph_t *g,
void *v_data,
int *index_out);
/**
* Get a pointer to the vertex data given the graph and vertex index
* associated with the vertex.
*
* @param[in] g graph the vertex belongs to
* @param[in] v_index integer index of the vertex
* @param[out] v_data_out data associated with the new vertex, may be NULL.
*
* @returns OPAL_SUCCESS or an OMPI error code
*/
int opal_bp_graph_get_vertex_data(opal_bp_graph_t *g,
int v_index,
void** v_data_out);
/**
* compute the order of a graph (number of vertices)
*
* @param[in] g the graph to query
*/
int opal_bp_graph_order(const opal_bp_graph_t *g);
/**
* This function solves the "assignment problem":
* http://en.wikipedia.org/wiki/Assignment_problem
*
* The goal is to find a maximum cardinality, minimum cost matching in a
* weighted bipartite graph. Maximum cardinality takes priority over minimum
* cost.
*
* Capacities in the given graph are ignored (assumed to be 1 at the start).
* It is also assumed that the graph only contains edges from one vertex set
* to the other and that no edges exist in the reverse direction ("forward"
* edges only).
*
* The algorithm(s) used will be deterministic. That is, given the exact same
* graph, two calls to this routine will result in the same matching result.
*
* @param[in] g an acyclic bipartite directed graph for
* which a matching is sought
* @param[out] num_match_edges_out number edges found in the matching
* @param[out] match_edges_out an array of (u,v) vertex pairs indicating
* which edges are in the matching
*
* @returns OPAL_SUCCESS or an OMPI error code
*/
int opal_bp_graph_solve_bipartite_assignment(const opal_bp_graph_t *g,
int *num_match_edges_out,
int **match_edges_out);
#endif /* OPAL_BP_GRAPH_H */