1
1
openmpi/opal/mca/btl/vader/btl_vader_fifo.h
Nathan Hjelm 12bfd13150 btl/vader: improve performance for both single and multiple threads
This is a large update that does the following:

 - Only allocate fast boxes for a peer if a send count threshold
   has been reached (default: 16). This will greatly reduce the memory
   usage with large numbers of local peers.

 - Improve performance by limiting the number of fast boxes that can
   be allocated per peer (default: 32). This will reduce the amount
   of time spent polling for fast box messages.

 - Provide new MCA variables to configure the size, maximum count,
   and send count thresholds for fast boxes allocations.

 - Updated buffer design to increase the range of message sizes that
   can be sent with a fast box.

 - Add thread protection around fast box allocation (locks). When
   spin locks are available this should be updated to use spin locks.

 - Various fixes and cleanup.

This commit was SVN r32774.
2014-09-23 18:11:22 +00:00

228 строки
7.3 KiB
C

/* -*- Mode: C; c-basic-offset:4 ; indent-tabs-mode:nil -*- */
/*
* Copyright (c) 2004-2007 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2009 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2006-2007 Voltaire. All rights reserved.
* Copyright (c) 2009-2010 Cisco Systems, Inc. All rights reserved.
* Copyright (c) 2010-2014 Los Alamos National Security, LLC.
* All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
/**
* @file
*/
#ifndef MCA_BTL_VADER_FIFO_H
#define MCA_BTL_VADER_FIFO_H
#include "btl_vader.h"
#include "btl_vader_endpoint.h"
#include "btl_vader_frag.h"
#if SIZEOF_VOID_P == 8
#define vader_item_cmpset(x, y, z) opal_atomic_cmpset_64((volatile int64_t *)(x), (int64_t)(y), (int64_t)(z))
#define vader_item_swap(x, y) opal_atomic_swap_64((volatile int64_t *)(x), (int64_t)(y))
#define MCA_BTL_VADER_OFFSET_MASK 0xffffffffll
#define MCA_BTL_VADER_OFFSET_BITS 32
#define MCA_BTL_VADER_BITNESS 64
typedef int64_t fifo_value_t;
#else
#define vader_item_cmpset(x, y, z) opal_atomic_cmpset_32((volatile int32_t *)(x), (int32_t)(y), (int32_t)(z))
#define vader_item_swap(x, y) opal_atomic_swap_32((volatile int32_t *)(x), (int32_t)(y))
#define MCA_BTL_VADER_OFFSET_MASK 0x00ffffffl
#define MCA_BTL_VADER_OFFSET_BITS 24
#define MCA_BTL_VADER_BITNESS 32
typedef int32_t fifo_value_t;
#endif
#define VADER_FIFO_FREE ((fifo_value_t)-2)
/*
* Shared Memory FIFOs
*
* The FIFO is implemented as a linked list of frag headers. The fifo has multiple
* producers and a single consumer (in the single thread case) so the tail needs
* to be modified by an atomic or protected by a atomic lock.
*
* Since the frags live in shared memory that is mapped differently into
* each address space, the head and tail pointers are relative (each process must
* add its own offset).
*
* We introduce some padding at the end of the structure but it is probably unnecessary.
*/
/* lock free fifo */
typedef struct vader_fifo_t {
volatile fifo_value_t fifo_head;
volatile fifo_value_t fifo_tail;
volatile int32_t fbox_available;
} vader_fifo_t;
/* large enough to ensure the fifo is on its own cache line */
#define MCA_BTL_VADER_FIFO_SIZE 128
/***
* One or more FIFO components may be a pointer that must be
* accessed by multiple processes. Since the shared region may
* be mmapped differently into each process's address space,
* these pointers will be relative to some base address. Here,
* we define inline functions to translate between relative
* addresses and virtual addresses.
*/
/* This only works for finding the relative address for a pointer within my_segment */
static inline fifo_value_t virtual2relative (char *addr)
{
return (fifo_value_t) ((intptr_t) (addr - mca_btl_vader_component.my_segment)) | ((fifo_value_t)MCA_BTL_VADER_LOCAL_RANK << MCA_BTL_VADER_OFFSET_BITS);
}
static inline fifo_value_t virtual2relativepeer (struct mca_btl_base_endpoint_t *endpoint, char *addr)
{
return (fifo_value_t) ((intptr_t) (addr - endpoint->segment_base)) | ((fifo_value_t)endpoint->peer_smp_rank << MCA_BTL_VADER_OFFSET_BITS);
}
static inline void *relative2virtual (fifo_value_t offset)
{
return (void *)(intptr_t)((offset & MCA_BTL_VADER_OFFSET_MASK) + mca_btl_vader_component.endpoints[offset >> MCA_BTL_VADER_OFFSET_BITS].segment_base);
}
#include "btl_vader_fbox.h"
/**
* vader_fifo_read:
*
* @brief reads a single fragment from a local fifo
*
* @param[inout] fifo - FIFO to read from
* @param[out] ep - returns the endpoint the fifo element was read from
*
* @returns a fragment header or NULL
*
* This function does not currently support multiple readers.
*/
static inline mca_btl_vader_hdr_t *vader_fifo_read (vader_fifo_t *fifo, struct mca_btl_base_endpoint_t **ep)
{
mca_btl_vader_hdr_t *hdr;
fifo_value_t value;
if (VADER_FIFO_FREE == fifo->fifo_head) {
return NULL;
}
opal_atomic_rmb ();
value = fifo->fifo_head;
*ep = &mca_btl_vader_component.endpoints[value >> MCA_BTL_VADER_OFFSET_BITS];
hdr = (mca_btl_vader_hdr_t *) relative2virtual (value);
fifo->fifo_head = VADER_FIFO_FREE;
assert (hdr->next != value);
if (OPAL_UNLIKELY(VADER_FIFO_FREE == hdr->next)) {
opal_atomic_rmb();
if (!vader_item_cmpset (&fifo->fifo_tail, value, VADER_FIFO_FREE)) {
while (VADER_FIFO_FREE == hdr->next) {
opal_atomic_rmb ();
}
fifo->fifo_head = hdr->next;
}
} else {
fifo->fifo_head = hdr->next;
}
opal_atomic_wmb ();
return hdr;
}
static inline void vader_fifo_init (vader_fifo_t *fifo)
{
fifo->fifo_head = fifo->fifo_tail = VADER_FIFO_FREE;
fifo->fbox_available = mca_btl_vader_component.fbox_max;
mca_btl_vader_component.my_fifo = fifo;
}
static inline void vader_fifo_write (vader_fifo_t *fifo, fifo_value_t value)
{
fifo_value_t prev;
opal_atomic_wmb ();
prev = vader_item_swap (&fifo->fifo_tail, value);
opal_atomic_rmb ();
assert (prev != value);
if (OPAL_LIKELY(VADER_FIFO_FREE != prev)) {
mca_btl_vader_hdr_t *hdr = (mca_btl_vader_hdr_t *) relative2virtual (prev);
hdr->next = value;
} else {
fifo->fifo_head = value;
}
opal_atomic_wmb ();
}
/**
* vader_fifo_write_ep:
*
* @brief write a frag (relative to this process' base) to another rank's fifo
*
* @param[in] hdr - fragment header to write
* @param[in] ep - endpoint to write the fragment to
*
* This function is used to send a fragment to a remote peer. {hdr} must belong
* to the current process.
*/
static inline bool vader_fifo_write_ep (mca_btl_vader_hdr_t *hdr, struct mca_btl_base_endpoint_t *ep)
{
fifo_value_t rhdr = virtual2relative ((char *) hdr);
if (ep->fbox_out.buffer) {
/* if there is a fast box for this peer then use the fast box to send the fragment header.
* this is done to ensure fragment ordering */
opal_atomic_wmb ();
return mca_btl_vader_fbox_sendi (ep, 0xfe, &rhdr, sizeof (rhdr), NULL, 0);
}
mca_btl_vader_try_fbox_setup (ep, hdr);
hdr->next = VADER_FIFO_FREE;
vader_fifo_write (ep->fifo, rhdr);
return true;
}
/**
* vader_fifo_write_back:
*
* @brief write a frag (relative to the remote process' base) to the remote fifo
*
* @param[in] hdr - fragment header to write
* @param[in] ep - endpoint the fragment belongs to
*
* This function is used to return a fragment to the sending process. It differs from vader_fifo_write_ep
* in that it uses the {ep} to produce the relative address.
*/
static inline void vader_fifo_write_back (mca_btl_vader_hdr_t *hdr, struct mca_btl_base_endpoint_t *ep)
{
hdr->next = VADER_FIFO_FREE;
vader_fifo_write(ep->fifo, virtual2relativepeer (ep, (char *) hdr));
}
#endif /* MCA_BTL_VADER_FIFO_H */