1
1
openmpi/ompi/mca/coll/sm2/coll_sm2_service.c
2008-05-14 11:32:33 +00:00

318 строки
9.9 KiB
C

/*
* Copyright (c) 2004-2007 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2005 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
/**
* @file
*
* Most of the description of the data layout is in the
* coll_sm_module.c file.
*/
#include "ompi_config.h"
#include <unistd.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <fcntl.h>
#include "ompi/constants.h"
#include "ompi/communicator/communicator.h"
#include "ompi/mca/coll/coll.h"
#include "coll_sm2.h"
#include "ompi/mca/coll/base/base.h"
#include "orte/mca/rml/rml.h"
/* setup an multi-nomial tree - for each node in the tree
* this returns it's parent, and it's children */
int setup_multinomial_tree(int tree_order, int num_nodes,
tree_node_t *tree_nodes)
{
/* local variables */
int i,result;
int cnt, parent_cnt,n_nodes_in_this_level,node_index;
int n_cum_nodes,current_level,node,n_nodes_prev_level,rank,parent_rank;
int n_nodes_in_last_level,n_full_stripes,n_in_partial_stipe,n_children;
int n_lvls_in_tree;
/* sanity check */
if( 1 >= tree_order ) {
goto Error;
}
/* figure out number of levels in the tree */
n_lvls_in_tree=0;
result=num_nodes;
/* cnt - number of ranks in given level */
cnt=1;
/* parent_cnt - cummulative count of ranks */
parent_cnt=0;
while( 0 < result ) {
result-=cnt;
cnt*=tree_order;
n_lvls_in_tree++;
};
/* loop over tree levels */
n_nodes_in_this_level=1;
node_index=-1;
n_cum_nodes=0;
for( current_level = 0 ; current_level < n_lvls_in_tree ; current_level++) {
/* loop over nodes in current level */
for ( node=0 ; node < n_nodes_in_this_level ; node++ ) {
/* get node index */
node_index++;
/* break if reach group size */
if( node_index == num_nodes) {
break;
}
tree_nodes[node_index].my_rank=node_index;
tree_nodes[node_index].children_ranks=NULL;
/*
* Parents
*/
if( 0 == current_level ) {
tree_nodes[node_index].n_parents=0;
/* get parent index */
tree_nodes[node_index].parent_rank=-1;
} else {
tree_nodes[node_index].n_parents=1;
/* get parent index */
n_nodes_prev_level=n_nodes_in_this_level/tree_order;
if( current_level == n_lvls_in_tree -1 ) {
/* load balance the lowest level */
parent_rank=node-
(node/n_nodes_prev_level)*n_nodes_prev_level;
parent_rank=n_cum_nodes-n_nodes_prev_level+
parent_rank;
tree_nodes[node_index].parent_rank=parent_rank;
} else {
tree_nodes[node_index].parent_rank=
(n_cum_nodes-n_nodes_prev_level)+node/tree_order;
}
}
/*
* Children
*/
/* get number of children */
if( (n_lvls_in_tree-1) == current_level ) {
/* leaves have no nodes */
tree_nodes[node_index].n_children=0;
tree_nodes[node_index].children_ranks=NULL;
} else {
/* take into account last level being incomplete */
if( (n_lvls_in_tree-2) == current_level ) {
/* last level is load balanced */
n_nodes_in_last_level=num_nodes-
(n_cum_nodes+n_nodes_in_this_level);
n_full_stripes=n_nodes_in_last_level/n_nodes_in_this_level;
n_in_partial_stipe=n_nodes_in_last_level-
n_full_stripes*n_nodes_in_this_level;
n_children=n_full_stripes;
if( n_full_stripes < tree_order ) {
if( node <= n_in_partial_stipe-1 ) {
n_children++;
}
}
tree_nodes[node_index].n_children=n_children;
if( 0 < n_children ) {
tree_nodes[node_index].children_ranks=(int *)
malloc(sizeof(int)*n_children);
if( NULL == tree_nodes[node_index].children_ranks) {
goto Error;
}
} else {
tree_nodes[node_index].children_ranks=NULL;
}
/* fill in list */
for( rank=0 ; rank < n_children ; rank++ ) {
tree_nodes[node_index].children_ranks[rank]=
node+rank*n_nodes_in_this_level;
tree_nodes[node_index].children_ranks[rank]+=
(n_cum_nodes+n_nodes_in_this_level);
}
} else {
n_children=tree_order;
tree_nodes[node_index].n_children=tree_order;
tree_nodes[node_index].children_ranks=(int *)
malloc(sizeof(int)*n_children);
if( NULL == tree_nodes[node_index].children_ranks) {
goto Error;
}
for( rank=0 ; rank < n_children ; rank++ ) {
tree_nodes[node_index].children_ranks[rank]=
rank+tree_order*node;
tree_nodes[node_index].children_ranks[rank]+=
(n_cum_nodes+n_nodes_in_this_level);
}
}
}
} /* end node loop */
/* update helper counters */
n_cum_nodes+=n_nodes_in_this_level;
n_nodes_in_this_level*=tree_order;
}
/* set node type */
for(i=0 ; i < num_nodes ; i++ ) {
if( 0 == tree_nodes[i].n_parents ) {
tree_nodes[i].my_node_type=ROOT_NODE;
} else if ( 0 == tree_nodes[i].n_children ) {
tree_nodes[i].my_node_type=LEAF_NODE;
} else {
tree_nodes[i].my_node_type=INTERIOR_NODE;
}
}
/* successful return */
return OMPI_SUCCESS;
Error:
/* free allocated memory */
for( i=0 ; i < num_nodes ; i++ ) {
if( NULL != tree_nodes[i].children_ranks ) {
free(tree_nodes[i].children_ranks);
}
}
/* error return */
return OMPI_ERROR;
}
/* setup recursive doubleing tree node */
int setup_recursive_doubling_tree_node(int num_nodes, int node_rank,
pair_exchange_node_t *exchange_node)
{
/* local variables */
int i,tmp,cnt,result,tree_order,n_extra_nodes;
int n_exchanges;
/* figure out number of levels in the tree */
n_exchanges=0;
result=num_nodes;
tree_order=2;
/* cnt - number of ranks in given level */
cnt=1;
while( num_nodes > cnt ) {
cnt*=tree_order;
n_exchanges++;
};
/* figure out the largest power of 2 that is less than or equal to
* num_nodes */
if( cnt > num_nodes) {
cnt/=tree_order;
n_exchanges--;
}
exchange_node->log_2=n_exchanges;
tmp=1;
for(i=0 ; i < n_exchanges ; i++ ) {
tmp*=2;
}
exchange_node->n_largest_pow_2=tmp;
/* set node characteristics - node that is not within the largest
* power of 2 will just send it's data to node that will participate
* in the recursive doubling, and get the result back at the end.
*/
if( node_rank+1 > cnt ) {
exchange_node->node_type=EXTRA_NODE;
} else {
exchange_node->node_type=EXCHANGE_NODE;
}
/* set the initial and final data exchanges - those that are not
* part of the recursive doubling.
*/
n_extra_nodes=num_nodes-cnt;
if ( EXCHANGE_NODE == exchange_node->node_type ) {
if( node_rank < n_extra_nodes ) {
exchange_node->n_extra_sources=1;
exchange_node->rank_extra_source=cnt+node_rank;
} else {
exchange_node->n_extra_sources=0;
exchange_node->rank_extra_source=-1;
}
} else {
exchange_node->n_extra_sources=1;
exchange_node->rank_extra_source=node_rank-cnt;
}
/* set the exchange pattern */
if( EXCHANGE_NODE == exchange_node->node_type ) {
exchange_node->n_exchanges=n_exchanges;
exchange_node->rank_exchanges=(int *) malloc
(n_exchanges*sizeof(int));
if( NULL == exchange_node->rank_exchanges ) {
goto Error;
}
/* fill in exchange partners */
result=1;
tmp=node_rank;
for( i=0 ; i < n_exchanges ; i++ ) {
if(tmp & 1 ) {
exchange_node->rank_exchanges[i]=
node_rank-result;
} else {
exchange_node->rank_exchanges[i]=
node_rank+result;
}
result*=2;
tmp/=2;
}
} else {
exchange_node->n_exchanges=0;
exchange_node->rank_exchanges=NULL;
}
/* set the number of tags needed per stripe - this must be the
* same across all procs in the communicator.
*/
exchange_node->n_tags=2*n_exchanges+1;
/* successful return */
return OMPI_SUCCESS;
Error:
/* error return */
return OMPI_ERROR;
}