1
1
openmpi/ompi/mca/btl/sm/btl_sm.c
2008-09-08 15:39:30 +00:00

847 строки
28 KiB
C

/*
* Copyright (c) 2004-2007 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2008 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2007 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2006-2007 Voltaire. All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "ompi_config.h"
#include <string.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
#include "opal/threads/mutex.h"
#include "ompi/datatype/convertor.h"
#include "opal/sys/atomic.h"
#include "orte/util/show_help.h"
#include "opal/util/if.h"
#include "opal/mca/carto/carto.h"
#include "opal/mca/carto/base/base.h"
#include "opal/mca/paffinity/base/base.h"
#include "opal/mca/maffinity/base/base.h"
#include "orte/util/proc_info.h"
#include "opal/util/printf.h"
#include "ompi/class/ompi_fifo.h"
#include "ompi/class/ompi_free_list.h"
#include "ompi/mca/pml/pml.h"
#include "ompi/mca/btl/btl.h"
#include "ompi/mca/mpool/base/base.h"
#include "ompi/mca/common/sm/common_sm_mmap.h"
#include "ompi/mca/mpool/sm/mpool_sm.h"
#include "btl_sm.h"
#include "btl_sm_endpoint.h"
#include "btl_sm_frag.h"
#include "btl_sm_fifo.h"
#include "ompi/proc/proc.h"
mca_btl_sm_t mca_btl_sm = {
{
&mca_btl_sm_component.super,
0, /* btl_eager_limit */
0, /* btl_rndv_eager_limit */
0, /* btl_max_send_size */
0, /* btl_rdma_pipeline_send_length */
0, /* btl_rdma_pipeline_frag_size */
0, /* btl_min_rdma_pipeline_size */
0, /* btl_exclusivity */
0, /* btl_latency */
0, /* btl_bandwidth */
0, /* btl flags */
mca_btl_sm_add_procs,
mca_btl_sm_del_procs,
NULL,
mca_btl_sm_finalize,
mca_btl_sm_alloc,
mca_btl_sm_free,
mca_btl_sm_prepare_src,
NULL,
mca_btl_sm_send,
NULL /*mca_btl_sm_sendi*/, /* send immediate */
NULL, /* put */
NULL, /* get */
mca_btl_base_dump,
NULL, /* mpool */
mca_btl_sm_register_error_cb, /* register error */
mca_btl_sm_ft_event
}
};
/*
* calculate offset of an address from the beginning of a shared memory segment
*/
#define ADDR2OFFSET(ADDR, BASE) ((char*)(ADDR) - (char*)(BASE))
/*
* calculate an absolute address in a local address space given an offset and
* a base address of a shared memory segment
*/
#define OFFSET2ADDR(OFFSET, BASE) ((ptrdiff_t)(OFFSET) + (char*)(BASE))
static void *mpool_calloc(size_t nmemb, size_t size)
{
void *buf;
size_t bsize = nmemb * size;
mca_mpool_base_module_t *mpool = mca_btl_sm_component.sm_mpool;
buf = mpool->mpool_alloc(mpool, bsize, CACHE_LINE_SIZE, 0, NULL);
if (NULL == buf)
return NULL;
memset(buf, 0, bsize);
return buf;
}
static int init_fifos(ompi_fifo_t *f, int n)
{
int j;
for(j=0; j < n; j++) {
f[j].head = (ompi_cb_fifo_wrapper_t*)OMPI_CB_FREE;
f[j].tail = (ompi_cb_fifo_wrapper_t*)OMPI_CB_FREE;
if(opal_using_threads()) {
char *buf = (char *) mpool_calloc(2, CACHE_LINE_SIZE);
/* allocate head and tail locks on different cache lines */
if(NULL == buf)
return OMPI_ERROR;
f[j].head_lock = (opal_atomic_lock_t*)buf;
f[j].tail_lock = (opal_atomic_lock_t*)(buf + CACHE_LINE_SIZE);
opal_atomic_init(f[j].head_lock, OPAL_ATOMIC_UNLOCKED);
opal_atomic_init(f[j].tail_lock, OPAL_ATOMIC_UNLOCKED);
} else {
f[j].head_lock = NULL;
f[j].tail_lock = NULL;
}
}
return OMPI_SUCCESS;
}
static void init_maffinity(int *my_mem_node, int *max_mem_node)
{
static opal_carto_graph_t *topo;
opal_value_array_t dists;
int i, num_core, socket;
opal_paffinity_base_cpu_set_t cpus;
char *myslot = NULL;
opal_carto_node_distance_t *dist;
opal_carto_base_node_t *slot_node;
*my_mem_node = 0;
*max_mem_node = 1;
if(opal_carto_base_get_host_graph(&topo, "Memory") != OMPI_SUCCESS)
return;
OBJ_CONSTRUCT(&dists, opal_value_array_t);
opal_value_array_init(&dists, sizeof(opal_carto_node_distance_t));
if(opal_paffinity_base_get_processor_info(&num_core) != OMPI_SUCCESS) {
num_core = 100; /* set something large */
}
OPAL_PAFFINITY_CPU_ZERO(cpus);
opal_paffinity_base_get(&cpus);
/* find core we are running on */
for(i = 0; i < num_core; i++)
if(OPAL_PAFFINITY_CPU_ISSET(i, cpus))
break;
if (OMPI_SUCCESS != opal_paffinity_base_get_map_to_socket_core(i, &socket, &i)) {
/* no topology info available */
goto out;
}
asprintf(&myslot, "slot%d", socket);
slot_node = opal_carto_base_find_node(topo, myslot);
if(NULL == slot_node)
goto out;
opal_carto_base_get_nodes_distance(topo, slot_node, "Memory", &dists);
if((*max_mem_node = opal_value_array_get_size(&dists)) < 2)
goto out;
dist = (opal_carto_node_distance_t *) opal_value_array_get_item(&dists, 0);
opal_maffinity_base_node_name_to_id(dist->node->node_name, my_mem_node);
out:
if(myslot) free(myslot);
OBJ_DESTRUCT(&dists);
opal_carto_base_free_graph(topo);
}
static int sm_btl_first_time_init(mca_btl_sm_t *sm_btl, int n)
{
size_t size, length, length_payload;
char *sm_ctl_file;
ompi_fifo_t *my_fifos;
int my_mem_node=-1, num_mem_nodes=-1, i;
init_maffinity(&my_mem_node, &num_mem_nodes);
mca_btl_sm_component.mem_node = my_mem_node;
mca_btl_sm_component.num_mem_nodes = num_mem_nodes;
/* lookup shared memory pool */
mca_btl_sm_component.sm_mpools = (mca_mpool_base_module_t **) calloc(num_mem_nodes,
sizeof(mca_mpool_base_module_t*));
/* create mpool for each memory node */
for(i = 0; i < num_mem_nodes; i++) {
mca_mpool_base_resources_t res;
/* disable memory binding if there is only one memory node */
res.mem_node = (num_mem_nodes == 1) ? -1 : i;
mca_btl_sm_component.sm_mpools[i] =
mca_mpool_base_module_create(mca_btl_sm_component.sm_mpool_name,
sm_btl, &res);
/* Sanity check to ensure that we found it */
if(NULL == mca_btl_sm_component.sm_mpools[i])
return OMPI_ERR_OUT_OF_RESOURCE;
if(i == my_mem_node)
mca_btl_sm_component.sm_mpool = mca_btl_sm_component.sm_mpools[i];
}
mca_btl_sm_component.sm_mpool_base =
mca_btl_sm_component.sm_mpools[0]->mpool_base(mca_btl_sm_component.sm_mpools[0]);
/* set the shared memory offset */
mca_btl_sm_component.sm_offset = (ptrdiff_t*)calloc(n, sizeof(ptrdiff_t));
if(NULL == mca_btl_sm_component.sm_offset)
return OMPI_ERR_OUT_OF_RESOURCE;
/* create a list of peers */
mca_btl_sm_component.sm_peers = (struct mca_btl_base_endpoint_t**)
calloc(n, sizeof(struct mca_btl_base_endpoint_t*));
if(NULL == mca_btl_sm_component.sm_peers)
return OMPI_ERR_OUT_OF_RESOURCE;
/* Allocate Shared Memory BTL process coordination
* data structure. This will reside in shared memory */
/* set file name */
if(asprintf(&sm_ctl_file, "%s"OPAL_PATH_SEP"shared_mem_btl_module.%s",
orte_process_info.job_session_dir,
orte_process_info.nodename) < 0)
return OMPI_ERR_OUT_OF_RESOURCE;
/* Pass in a data segment alignment of 0 to get no data
segment (only the shared control structure) */
size = sizeof(mca_common_sm_file_header_t) +
n * (sizeof(ompi_fifo_t*) + sizeof(char *) + sizeof(uint16_t)) + CACHE_LINE_SIZE;
if(!(mca_btl_sm_component.mmap_file =
mca_common_sm_mmap_init(size, sm_ctl_file,
sizeof(mca_common_sm_file_header_t),
CACHE_LINE_SIZE))) {
opal_output(0, "mca_btl_sm_add_procs: unable to create shared memory "
"BTL coordinating strucure :: size %lu \n",
(unsigned long)size);
free(sm_ctl_file);
return OMPI_ERROR;
}
free(sm_ctl_file);
/* set the pointer to the shared memory control structure */
mca_btl_sm_component.sm_ctl_header =
(mca_common_sm_file_header_t*)mca_btl_sm_component.mmap_file->map_seg;
/* check to make sure number of local procs is within the
* specified limits */
if(mca_btl_sm_component.sm_max_procs > 0 &&
mca_btl_sm_component.num_smp_procs + n >
mca_btl_sm_component.sm_max_procs) {
return OMPI_ERROR;
}
mca_btl_sm_component.shm_fifo = (ompi_fifo_t **)mca_btl_sm_component.mmap_file->data_addr;
mca_btl_sm_component.shm_bases = (char**)(mca_btl_sm_component.shm_fifo + n);
mca_btl_sm_component.shm_mem_nodes = (uint16_t*)(mca_btl_sm_component.shm_bases + n);
/* Sync with other local procs. (Do we have to?) */
if(0 == mca_btl_sm_component.my_smp_rank) {
mca_btl_sm_component.mmap_file->map_seg->seg_inited = true;
/* memory barrier to ensure this flag is set before other
* flags are set */
opal_atomic_wmb();
} else {
while(!mca_btl_sm_component.mmap_file->map_seg->seg_inited) {
opal_atomic_rmb();
opal_progress();
}
}
/* set the base of the shared memory segment */
mca_btl_sm_component.shm_bases[mca_btl_sm_component.my_smp_rank] =
(char*)mca_btl_sm_component.sm_mpool_base;
mca_btl_sm_component.shm_mem_nodes[mca_btl_sm_component.my_smp_rank] =
(uint16_t)my_mem_node;
/*
* initialize the array of fifo's "owned" by this process
* The virtual addresses are valid only in the sender's
* address space - unless the base of the shared memory
* segment is mapped at the same location in the reader's
* virtual address space.
*/
if(NULL == (my_fifos = (ompi_fifo_t*)mpool_calloc(n, sizeof(ompi_fifo_t))))
return OMPI_ERR_OUT_OF_RESOURCE;
if(init_fifos(my_fifos, n) != OMPI_SUCCESS)
return OMPI_ERR_OUT_OF_RESOURCE;
mca_btl_sm_component.shm_fifo[mca_btl_sm_component.my_smp_rank] = my_fifos;
opal_atomic_wmb();
/* cache the pointer to the 2d fifo array. These addresses
* are valid in the current process space */
mca_btl_sm_component.fifo = (ompi_fifo_t**)malloc(sizeof(ompi_fifo_t*) * n);
if(NULL == mca_btl_sm_component.fifo)
return OMPI_ERR_OUT_OF_RESOURCE;
mca_btl_sm_component.fifo[mca_btl_sm_component.my_smp_rank] = my_fifos;
mca_btl_sm_component.mem_nodes = (uint16_t *) malloc(sizeof(uint16_t) * n);
if(NULL == mca_btl_sm_component.mem_nodes)
return OMPI_ERR_OUT_OF_RESOURCE;
/* initialize fragment descriptor free lists */
/* allocation will be for the fragment descriptor and payload buffer */
length = sizeof(mca_btl_sm_frag1_t);
length_payload =
sizeof(mca_btl_sm_hdr_t) + mca_btl_sm_component.eager_limit;
ompi_free_list_init_new(&mca_btl_sm_component.sm_frags_eager, length,
CACHE_LINE_SIZE, OBJ_CLASS(mca_btl_sm_frag1_t),
length_payload, CACHE_LINE_SIZE,
mca_btl_sm_component.sm_free_list_num,
mca_btl_sm_component.sm_free_list_max,
mca_btl_sm_component.sm_free_list_inc,
mca_btl_sm_component.sm_mpool);
length = sizeof(mca_btl_sm_frag2_t);
length_payload =
sizeof(mca_btl_sm_hdr_t) + mca_btl_sm_component.max_frag_size;
ompi_free_list_init_new(&mca_btl_sm_component.sm_frags_max, length,
CACHE_LINE_SIZE, OBJ_CLASS(mca_btl_sm_frag2_t),
length_payload, CACHE_LINE_SIZE,
mca_btl_sm_component.sm_free_list_num,
mca_btl_sm_component.sm_free_list_max,
mca_btl_sm_component.sm_free_list_inc,
mca_btl_sm_component.sm_mpool);
opal_free_list_init(&mca_btl_sm_component.pending_send_fl,
sizeof(btl_sm_pending_send_item_t),
OBJ_CLASS(opal_free_list_item_t),
16, -1, 32);
/* set flag indicating btl has been inited */
sm_btl->btl_inited = true;
return OMPI_SUCCESS;
}
static struct mca_btl_base_endpoint_t *
create_sm_endpoint(int local_proc, struct ompi_proc_t *proc)
{
struct mca_btl_base_endpoint_t *ep;
#if OMPI_ENABLE_PROGRESS_THREADS == 1
char path[PATH_MAX];
#endif
ep = (struct mca_btl_base_endpoint_t*)
malloc(sizeof(struct mca_btl_base_endpoint_t));
if(NULL == ep)
return NULL;
ep->peer_smp_rank = local_proc + mca_btl_sm_component.num_smp_procs;
OBJ_CONSTRUCT(&ep->pending_sends, opal_list_t);
#if OMPI_ENABLE_PROGRESS_THREADS == 1
sprintf(path, "%s"OPAL_PATH_SEP"sm_fifo.%lu",
orte_process_info.job_session_dir,
(unsigned long)proc->proc_name.vpid);
ep->fifo_fd = open(path, O_WRONLY);
if(ep->fifo_fd < 0) {
opal_output(0, "mca_btl_sm_add_procs: open(%s) failed with errno=%d\n",
path, errno);
free(ep);
return NULL;
}
#endif
return ep;
}
static void calc_sm_max_procs(int n)
{
/* see if need to allocate space for extra procs */
if(0 > mca_btl_sm_component.sm_max_procs) {
/* no limit */
if(0 <= mca_btl_sm_component.sm_extra_procs) {
/* limit */
mca_btl_sm_component.sm_max_procs =
n + mca_btl_sm_component.sm_extra_procs;
} else {
/* no limit */
mca_btl_sm_component.sm_max_procs = 2 * n;
}
}
}
int mca_btl_sm_add_procs(
struct mca_btl_base_module_t* btl,
size_t nprocs,
struct ompi_proc_t **procs,
struct mca_btl_base_endpoint_t **peers,
ompi_bitmap_t* reachability)
{
int return_code = OMPI_SUCCESS;
int32_t n_local_procs = 0, proc, j,
my_smp_rank = mca_btl_sm_component.my_smp_rank;
ompi_proc_t* my_proc; /* pointer to caller's proc structure */
mca_btl_sm_t *sm_btl;
bool have_connected_peer = false;
char **bases;
/* initializion */
sm_btl = (mca_btl_sm_t *)btl;
/* get pointer to my proc structure */
if(NULL == (my_proc = ompi_proc_local()))
return OMPI_ERR_OUT_OF_RESOURCE;
/* Get unique host identifier for each process in the list,
* and idetify procs that are on this host. Add procs on this
* host to shared memory reachbility list. Also, get number
* of local procs in the procs list. */
for(proc = 0; proc < (int32_t)nprocs; proc++) {
/* check to see if this proc can be reached via shmem (i.e.,
if they're on my local host and in my job) */
if (procs[proc]->proc_name.jobid != my_proc->proc_name.jobid ||
0 == (procs[proc]->proc_flags & OMPI_PROC_FLAG_LOCAL)) {
peers[proc] = NULL;
continue;
}
/* check to see if this is me */
if(my_proc == procs[proc]) {
my_smp_rank = mca_btl_sm_component.my_smp_rank = n_local_procs++;
continue;
}
/* we have someone to talk to */
have_connected_peer = true;
if(!(peers[proc] = create_sm_endpoint(n_local_procs, procs[proc]))) {
return_code = OMPI_ERROR;
goto CLEANUP;
}
n_local_procs++;
/* add this proc to shared memory accessibility list */
return_code = ompi_bitmap_set_bit(reachability, proc);
if(OMPI_SUCCESS != return_code)
goto CLEANUP;
}
/* jump out if there's not someone we can talk to */
if (!have_connected_peer)
goto CLEANUP;
/* make sure that my_smp_rank has been defined */
if(-1 == my_smp_rank) {
return_code = OMPI_ERROR;
goto CLEANUP;
}
calc_sm_max_procs(n_local_procs);
if (!sm_btl->btl_inited) {
return_code =
sm_btl_first_time_init(sm_btl, mca_btl_sm_component.sm_max_procs);
if(return_code != OMPI_SUCCESS)
goto CLEANUP;
}
/* set local proc's smp rank in the peers structure for
* rapid access and calulcate reachebility */
for(proc = 0; proc < (int32_t)nprocs; proc++) {
if(NULL == peers[proc])
continue;
mca_btl_sm_component.sm_peers[peers[proc]->peer_smp_rank] = peers[proc];
peers[proc]->my_smp_rank = my_smp_rank;
}
bases = mca_btl_sm_component.shm_bases;
for(j = mca_btl_sm_component.num_smp_procs;
j < mca_btl_sm_component.num_smp_procs + n_local_procs; j++) {
ptrdiff_t diff;
int peer_mem_node;
if(j == my_smp_rank)
continue;
/* spin until this element is allocated */
while(NULL == mca_btl_sm_component.shm_fifo[j]) {
opal_atomic_rmb();
opal_progress();
}
/* Calculate the difference as (my_base - their_base) */
diff = ADDR2OFFSET(bases[my_smp_rank], bases[j]);
mca_btl_sm_component.sm_offset[j] = diff;
/* store local address of remote fifos */
mca_btl_sm_component.fifo[j] =
(ompi_fifo_t*)OFFSET2ADDR(diff, mca_btl_sm_component.shm_fifo[j]);
/* don't forget to update the head_lock if allocated because this
* address is also in the remote process */
if(mca_btl_sm_component.fifo[j][my_smp_rank].head_lock != NULL) {
mca_btl_sm_component.fifo[j][my_smp_rank].head_lock =
(opal_atomic_lock_t*)OFFSET2ADDR(diff, mca_btl_sm_component.fifo[j][my_smp_rank].head_lock);
}
/* cache local copy of peer memory node number */
peer_mem_node = mca_btl_sm_component.mem_nodes[j] = mca_btl_sm_component.shm_mem_nodes[j];
/* Initialize fifo for use. Note that sender does initialization */
return_code = ompi_fifo_init(mca_btl_sm_component.size_of_cb_queue,
mca_btl_sm_component.cb_lazy_free_freq,
mca_btl_sm_component.cb_max_num,
/* fifo mpool */
mca_btl_sm_component.sm_mpools[peer_mem_node],
/* head mpool */
mca_btl_sm_component.sm_mpool,
/* tail mpool */
mca_btl_sm_component.sm_mpools[peer_mem_node],
&mca_btl_sm_component.fifo[j][my_smp_rank],
mca_btl_sm_component.sm_offset[j]);
if(return_code != OMPI_SUCCESS)
goto CLEANUP;
}
/* update the local smp process count */
mca_btl_sm_component.num_smp_procs += n_local_procs;
/* make sure we have enough eager fragmnents for each process */
return_code = ompi_free_list_resize(&mca_btl_sm_component.sm_frags_eager,
mca_btl_sm_component.num_smp_procs * 2);
if (OMPI_SUCCESS != return_code)
goto CLEANUP;
CLEANUP:
return return_code;
}
int mca_btl_sm_del_procs(
struct mca_btl_base_module_t* btl,
size_t nprocs,
struct ompi_proc_t **procs,
struct mca_btl_base_endpoint_t **peers)
{
return OMPI_SUCCESS;
}
/**
* MCA->BTL Clean up any resources held by BTL module
* before the module is unloaded.
*
* @param btl (IN) BTL module.
*
* Prior to unloading a BTL module, the MCA framework will call
* the BTL finalize method of the module. Any resources held by
* the BTL should be released and if required the memory corresponding
* to the BTL module freed.
*
*/
int mca_btl_sm_finalize(struct mca_btl_base_module_t* btl)
{
return OMPI_SUCCESS;
}
/*
* Register callback function for error handling..
*/
int mca_btl_sm_register_error_cb(
struct mca_btl_base_module_t* btl,
mca_btl_base_module_error_cb_fn_t cbfunc)
{
mca_btl_sm_t *sm_btl = (mca_btl_sm_t *)btl;
sm_btl->error_cb = cbfunc;
return OMPI_SUCCESS;
}
/**
* Allocate a segment.
*
* @param btl (IN) BTL module
* @param size (IN) Request segment size.
*/
extern mca_btl_base_descriptor_t* mca_btl_sm_alloc(
struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
uint8_t order,
size_t size,
uint32_t flags)
{
mca_btl_sm_frag_t* frag;
int rc;
if(size <= mca_btl_sm_component.eager_limit) {
MCA_BTL_SM_FRAG_ALLOC1(frag,rc);
} else if (size <= mca_btl_sm_component.max_frag_size) {
MCA_BTL_SM_FRAG_ALLOC2(frag,rc);
} else {
return NULL;
}
if (frag != NULL) {
frag->segment.seg_len = size;
frag->base.des_flags = flags;
}
return (mca_btl_base_descriptor_t*)frag;
}
/**
* Return a segment allocated by this BTL.
*
* @param btl (IN) BTL module
* @param segment (IN) Allocated segment.
*/
extern int mca_btl_sm_free(
struct mca_btl_base_module_t* btl,
mca_btl_base_descriptor_t* des)
{
mca_btl_sm_frag_t* frag = (mca_btl_sm_frag_t*)des;
MCA_BTL_SM_FRAG_RETURN(frag);
return OMPI_SUCCESS;
}
/**
* Pack data
*
* @param btl (IN) BTL module
*/
struct mca_btl_base_descriptor_t* mca_btl_sm_prepare_src(
struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
mca_mpool_base_registration_t* registration,
struct ompi_convertor_t* convertor,
uint8_t order,
size_t reserve,
size_t* size,
uint32_t flags)
{
mca_btl_sm_frag_t* frag;
struct iovec iov;
uint32_t iov_count = 1;
size_t max_data = *size;
int rc;
MCA_BTL_SM_FRAG_ALLOC2(frag, rc);
if(NULL == frag) {
return NULL;
}
if(reserve + max_data > frag->size) {
max_data = frag->size - reserve;
}
iov.iov_len = max_data;
iov.iov_base =
(IOVBASE_TYPE*)(((unsigned char*)(frag->segment.seg_addr.pval)) +
reserve);
rc = ompi_convertor_pack(convertor, &iov, &iov_count, &max_data );
if(rc < 0) {
MCA_BTL_SM_FRAG_RETURN(frag);
return NULL;
}
frag->segment.seg_len = reserve + max_data;
frag->base.des_flags = flags;
*size = max_data;
return &frag->base;
}
#if 0
#define MCA_BTL_SM_TOUCH_DATA_TILL_CACHELINE_BOUNDARY(sm_frag) \
do { \
char* _memory = (char*)(sm_frag)->segment.seg_addr.pval + \
(sm_frag)->segment.seg_len; \
int* _intmem; \
size_t align = (intptr_t)_memory & 0xFUL; \
switch( align & 0x3 ) { \
case 3: *_memory = 0; _memory++; \
case 2: *_memory = 0; _memory++; \
case 1: *_memory = 0; _memory++; \
} \
align >>= 2; \
_intmem = (int*)_memory; \
switch( align ) { \
case 3: *_intmem = 0; _intmem++; \
case 2: *_intmem = 0; _intmem++; \
case 1: *_intmem = 0; _intmem++; \
} \
} while(0)
#else
#define MCA_BTL_SM_TOUCH_DATA_TILL_CACHELINE_BOUNDARY(sm_frag)
#endif
#if 0
if( OPAL_LIKELY(align > 0) ) { \
align = 0xFUL - align; \
memset( _memory, 0, align ); \
} \
#endif
/**
* Initiate an inline send to the peer. If failure then return a descriptor.
*
* @param btl (IN) BTL module
* @param peer (IN) BTL peer addressing
*/
int mca_btl_sm_sendi( struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
struct ompi_convertor_t* convertor,
void* header,
size_t header_size,
size_t payload_size,
uint8_t order,
uint32_t flags,
mca_btl_base_tag_t tag,
mca_btl_base_descriptor_t** descriptor )
{
size_t max_data, length = (header_size + payload_size);
mca_btl_sm_frag_t* frag;
int rc;
if( length < mca_btl_sm_component.eager_limit ) {
MCA_BTL_SM_FRAG_ALLOC1(frag, rc);
if( OPAL_UNLIKELY(NULL == frag) ) {
*descriptor = NULL;
return rc;
}
frag->segment.seg_len = length;
frag->hdr->len = length;
assert( 0 == (flags & MCA_BTL_DES_SEND_ALWAYS_CALLBACK) );
frag->base.des_flags = flags | MCA_BTL_DES_FLAGS_BTL_OWNERSHIP;
frag->hdr->tag = tag;
frag->endpoint = endpoint;
memcpy( frag->segment.seg_addr.pval, header, header_size );
if( payload_size ) {
struct iovec iov;
uint32_t iov_count;
/* pack the data into the supplied buffer */
iov.iov_base = (IOVBASE_TYPE*)((unsigned char*)frag->segment.seg_addr.pval + header_size);
iov.iov_len = max_data = payload_size;
iov_count = 1;
(void)ompi_convertor_pack( convertor,
&iov, &iov_count, &max_data);
assert(max_data == payload_size);
}
MCA_BTL_SM_TOUCH_DATA_TILL_CACHELINE_BOUNDARY(frag);
/*
* post the descriptor in the queue - post with the relative
* address
*/
MCA_BTL_SM_FIFO_WRITE(endpoint, endpoint->my_smp_rank,
endpoint->peer_smp_rank, frag->hdr, false, rc);
return rc;
}
*descriptor = mca_btl_sm_alloc( btl, endpoint, order,
payload_size + header_size, flags);
return OMPI_ERR_RESOURCE_BUSY;
}
/**
* Initiate a send to the peer.
*
* @param btl (IN) BTL module
* @param peer (IN) BTL peer addressing
*/
int mca_btl_sm_send(
struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
struct mca_btl_base_descriptor_t* descriptor,
mca_btl_base_tag_t tag)
{
mca_btl_sm_frag_t* frag = (mca_btl_sm_frag_t*)descriptor;
int rc;
/* available header space */
frag->hdr->len = frag->segment.seg_len;
/* type of message, pt-2-pt, one-sided, etc */
frag->hdr->tag = tag;
MCA_BTL_SM_TOUCH_DATA_TILL_CACHELINE_BOUNDARY(frag);
frag->endpoint = endpoint;
/*
* post the descriptor in the queue - post with the relative
* address
*/
MCA_BTL_SM_FIFO_WRITE(endpoint, endpoint->my_smp_rank,
endpoint->peer_smp_rank, frag->hdr, false, rc);
if( OPAL_LIKELY(0 == rc) ) {
return 1; /* the data is completely gone */
}
frag->base.des_flags |= MCA_BTL_DES_SEND_ALWAYS_CALLBACK;
/* not yet gone, but pending. Let the upper level knows that
* the callback will be triggered when the data will be sent.
*/
return 0;
}
int mca_btl_sm_ft_event(int state) {
if(OPAL_CRS_CHECKPOINT == state) {
;
}
else if(OPAL_CRS_CONTINUE == state) {
;
}
else if(OPAL_CRS_RESTART == state) {
;
}
else if(OPAL_CRS_TERM == state ) {
;
}
else {
;
}
return OMPI_SUCCESS;
}