/* -*- Mode: C; c-basic-offset:4 ; -*- */ /* * Copyright (c) 2004-2007 The Trustees of Indiana University and Indiana * University Research and Technology * Corporation. All rights reserved. * Copyright (c) 2004-2008 The University of Tennessee and The University * of Tennessee Research Foundation. All rights * reserved. * Copyright (c) 2004-2005 High Performance Computing Center Stuttgart, * University of Stuttgart. All rights reserved. * Copyright (c) 2004-2005 The Regents of the University of California. * All rights reserved. * Copyright (c) 2006 Sandia National Laboratories. All rights * reserved. * Copyright (c) 2007-2009 Sun Microsystems, Inc. All rights reserved. * * $COPYRIGHT$ * * Additional copyrights may follow * * $HEADER$ */ #include "ompi_config.h" #include #include #include "opal/util/if.h" #include "ompi/mca/pml/pml.h" #include "ompi/mca/btl/btl.h" #include "btl_udapl.h" #include "btl_udapl_endpoint.h" #include "btl_udapl_frag.h" #include "btl_udapl_mca.h" #include "btl_udapl_proc.h" #include "ompi/datatype/convertor.h" #include "ompi/datatype/datatype.h" #include "ompi/mca/mpool/base/base.h" #include "ompi/mca/mpool/rdma/mpool_rdma.h" #include "ompi/mca/btl/base/btl_base_error.h" #include "ompi/proc/proc.h" static int udapl_reg_mr(void *reg_data, void *base, size_t size, mca_mpool_base_registration_t *reg); static int udapl_dereg_mr(void *reg_data, mca_mpool_base_registration_t *reg); static int mca_btl_udapl_set_peer_parameters( struct mca_btl_udapl_module_t* udapl_btl, size_t nprocs); static int mca_btl_udapl_assign_netmask(mca_btl_udapl_module_t* udapl_btl); mca_btl_udapl_module_t mca_btl_udapl_module = { { &mca_btl_udapl_component.super, 0, /* max size of first fragment */ 0, /* min send fragment size */ 0, /* max send fragment size */ 0, /* btl_rdma_pipeline_send_length */ 0, /* btl_rdma_pipeline_frag_size */ 0, /* btl_min_rdma_pipeline_size */ 0, /* exclusivity */ 0, /* latency */ 0, /* bandwidth */ MCA_BTL_FLAGS_SEND, mca_btl_udapl_add_procs, mca_btl_udapl_del_procs, NULL, mca_btl_udapl_finalize, mca_btl_udapl_alloc, mca_btl_udapl_free, mca_btl_udapl_prepare_src, mca_btl_udapl_prepare_dst, mca_btl_udapl_send, NULL, /* send immediate */ mca_btl_udapl_put, NULL, /* get */ mca_btl_base_dump, NULL, /* mpool */ NULL, /* register error cb */ mca_btl_udapl_ft_event } }; static int udapl_reg_mr(void *reg_data, void *base, size_t size, mca_mpool_base_registration_t *reg) { mca_btl_udapl_module_t *btl = (mca_btl_udapl_module_t*)reg_data; mca_btl_udapl_reg_t *udapl_reg = (mca_btl_udapl_reg_t*)reg; DAT_REGION_DESCRIPTION region; DAT_VLEN dat_size; DAT_VADDR dat_addr; int rc; region.for_va = base; udapl_reg->lmr_triplet.virtual_address = (DAT_VADDR)(uintptr_t)base; udapl_reg->lmr_triplet.segment_length = size; udapl_reg->lmr = NULL; rc = dat_lmr_create(btl->udapl_ia, DAT_MEM_TYPE_VIRTUAL, region, size, btl->udapl_pz, DAT_MEM_PRIV_ALL_FLAG, &udapl_reg->lmr, &udapl_reg->lmr_triplet.lmr_context, &udapl_reg->rmr_context, &dat_size, &dat_addr); if(rc != DAT_SUCCESS) { BTL_UDAPL_VERBOSE_HELP(VERBOSE_SHOW_HELP, ("help-mpi-btl-udapl.txt", "dat_lmr_create DAT_INSUFFICIENT_RESOURCES", true)); return OMPI_ERR_OUT_OF_RESOURCE; } return OMPI_SUCCESS; } static int udapl_dereg_mr(void *reg_data, mca_mpool_base_registration_t *reg) { mca_btl_udapl_reg_t *udapl_reg = (mca_btl_udapl_reg_t*)reg; int rc; if(udapl_reg->lmr != NULL) { rc = dat_lmr_free(udapl_reg->lmr); if(rc != DAT_SUCCESS) { char* major; char* minor; dat_strerror(rc, (const char**)&major, (const char**)&minor); BTL_ERROR(("ERROR: %s %s %s\n", "dat_lmr_free", major, minor)); return OMPI_ERROR; } } return OMPI_SUCCESS; } /** * Initialize module module resources. */ int mca_btl_udapl_init(DAT_NAME_PTR ia_name, mca_btl_udapl_module_t* btl) { mca_mpool_base_resources_t res; DAT_CONN_QUAL port; DAT_RETURN rc; /* open the uDAPL interface */ btl->udapl_evd_async = DAT_HANDLE_NULL; rc = dat_ia_open(ia_name, btl->udapl_async_evd_qlen, &btl->udapl_evd_async, &btl->udapl_ia); if(DAT_SUCCESS != rc) { char* major; char* minor; dat_strerror(rc, (const char**)&major, (const char**)&minor); #if defined(__SVR4) && defined(__sun) if (strcmp(major, "DAT_INVALID_PARAMETER") == 0 && strcmp(minor, "DAT_INVALID_RO_COOKIE") == 0) { /* Some platforms that Solaris runs on implement the PCI * standard for relaxed ordering(RO). Using RDMA with * polling on a memory location as the uDAPL (and openib * BTL by the way) BTL does for short messages with * relaxed ordering could potentially produce silent data * corruption. For this reason we need to detect systems * which support relaxed ordering and turn off RDMA for * short messages. The uDAPL standard does not provide a * way to inform users of this scenario so Sun has * implemented the following. If a platform supports * relaxed ordering when the interface name is passed into * the dat_ia_open() call, the call will return * DAT_INVALID_PARAMETER and DAT_INVALID_RO_COOKIE. * DAT_INVALID_RO_COOKIE is not part of the uDAPL standard * at this time. The only way to open this interface is to * prefix the following cookie "RO_AWARE_" to the ia name * that was retreived from the dat registry. * * Example: ia_name = "ib0", new expected name will be * "RO_AWARE_ib0". * * Here, since our first ia open attempt failed in the * predetermined way, add the cookie and try to open again. **/ DAT_NAME_PTR ro_ia_name; /* prefix relaxed order cookie to ia_name */ asprintf(&ro_ia_name, "RO_AWARE_%s", ia_name); if (NULL == ro_ia_name) { return OMPI_ERR_OUT_OF_RESOURCE; } /* because this is not standard inform user in some way */ BTL_UDAPL_VERBOSE_HELP(VERBOSE_INFORM, ("help-mpi-btl-udapl.txt", "relaxed order support", true, ia_name, ro_ia_name)); /* try and open again */ btl->udapl_evd_async = DAT_HANDLE_NULL; rc = dat_ia_open(ro_ia_name, btl->udapl_async_evd_qlen, &btl->udapl_evd_async, &btl->udapl_ia); dat_strerror(rc, (const char**)&major, (const char**)&minor); if (DAT_SUCCESS == rc) { /* do not allow RDMA for short messages */ mca_btl_udapl_component.udapl_use_eager_rdma = 0; free(ro_ia_name); } else { BTL_UDAPL_VERBOSE_HELP(VERBOSE_SHOW_HELP, ("help-mpi-btl-udapl.txt", "dat_ia_open fail RO", true, ro_ia_name, major, minor, ia_name)); free(ro_ia_name); return OMPI_ERROR; } } else { #endif BTL_UDAPL_VERBOSE_HELP(VERBOSE_SHOW_HELP, ("help-mpi-btl-udapl.txt", "dat_ia_open fail", true, ia_name, major, minor)); return OMPI_ERROR; #if defined(__SVR4) && defined(__sun) } #endif } /* create a protection zone */ rc = dat_pz_create(btl->udapl_ia, &btl->udapl_pz); if(DAT_SUCCESS != rc) { char* major; char* minor; dat_strerror(rc, (const char**)&major, (const char**)&minor); BTL_ERROR(("ERROR: %s %s %s\n", "dat_pz_create", major, minor)); goto failure; } /* query to get address information */ rc = dat_ia_query(btl->udapl_ia, &btl->udapl_evd_async, DAT_IA_ALL, &(btl->udapl_ia_attr), 0, NULL); if(DAT_SUCCESS != rc) { char* major; char* minor; dat_strerror(rc, (const char**)&major, (const char**)&minor); BTL_ERROR(("ERROR: %s %s %s\n", "dat_ia_query", major, minor)); goto failure; } memcpy(&btl->udapl_addr.addr, (btl->udapl_ia_attr).ia_address_ptr, sizeof(DAT_SOCK_ADDR)); /* determine netmask */ mca_btl_udapl_assign_netmask(btl); /* check evd qlen against adapter max */ if (btl->udapl_dto_evd_qlen > (btl->udapl_ia_attr).max_evd_qlen) { BTL_UDAPL_VERBOSE_HELP(VERBOSE_SHOW_HELP, ("help-mpi-btl-udapl.txt", "evd_qlen adapter max", true, "btl_udapl_dto_evd_qlen", btl->udapl_dto_evd_qlen, (btl->udapl_ia_attr).max_evd_qlen)); btl->udapl_dto_evd_qlen = btl->udapl_ia_attr.max_evd_qlen; } if (btl->udapl_conn_evd_qlen > (btl->udapl_ia_attr).max_evd_qlen) { BTL_UDAPL_VERBOSE_HELP(VERBOSE_SHOW_HELP, ("help-mpi-btl-udapl.txt", "evd_qlen adapter max", true, "btl_udapl_conn_evd_qlen", btl->udapl_conn_evd_qlen, (btl->udapl_ia_attr).max_evd_qlen)); btl->udapl_conn_evd_qlen = btl->udapl_ia_attr.max_evd_qlen; } /* set up evd's */ rc = dat_evd_create(btl->udapl_ia, btl->udapl_dto_evd_qlen, DAT_HANDLE_NULL, DAT_EVD_DTO_FLAG | DAT_EVD_RMR_BIND_FLAG, &btl->udapl_evd_dto); if(DAT_SUCCESS != rc) { char* major; char* minor; dat_strerror(rc, (const char**)&major, (const char**)&minor); BTL_ERROR(("ERROR: %s %s %s\n", "dat_evd_create (dto)", major, minor)); goto failure; } rc = dat_evd_create(btl->udapl_ia, btl->udapl_conn_evd_qlen, DAT_HANDLE_NULL, DAT_EVD_CR_FLAG | DAT_EVD_CONNECTION_FLAG, &btl->udapl_evd_conn); if(DAT_SUCCESS != rc) { char* major; char* minor; dat_strerror(rc, (const char**)&major, (const char**)&minor); BTL_ERROR(("ERROR: %s %s %s\n", "dat_evd_create (conn)", major, minor)); goto failure; } /* create our public service point */ rc = dat_psp_create_any(btl->udapl_ia, &port, btl->udapl_evd_conn, DAT_PSP_CONSUMER_FLAG, &btl->udapl_psp); if(DAT_SUCCESS != rc) { char* major; char* minor; dat_strerror(rc, (const char**)&major, (const char**)&minor); BTL_ERROR(("ERROR: %s %s %s\n", "dat_psp_create_any", major, minor)); goto failure; } /* establish endpoint parameters */ rc = mca_btl_udapl_endpoint_get_params(btl, &(btl->udapl_ep_param)); if(OMPI_SUCCESS != rc) { /* by not erroring out here we can try to continue with * the default endpoint parameter values */ BTL_UDAPL_VERBOSE_HELP(VERBOSE_SHOW_HELP, ("help-mpi-btl-udapl.txt", "use default endpoint params", true)); } /* Save the port with the address information */ /* TODO - since we're doing the hack below, do we need our own port? */ btl->udapl_addr.port = port; /* Using dat_ep_query to obtain the remote port would be ideal but * since the current udapl implementations don't seem to support * this we store the port in udapl_addr and explictly exchange the * information later. */ ((struct sockaddr_in*)&btl->udapl_addr.addr)->sin_port = htons(port); /* initialize the memory pool */ res.reg_data = btl; res.sizeof_reg = sizeof(mca_btl_udapl_reg_t); res.register_mem = udapl_reg_mr; res.deregister_mem = udapl_dereg_mr; btl->super.btl_mpool = mca_mpool_base_module_create( mca_btl_udapl_component.udapl_mpool_name, &btl->super, &res); if (NULL == btl->super.btl_mpool) { BTL_UDAPL_VERBOSE_OUTPUT(VERBOSE_INFORM, ("WARNING: Failed to create mpool.")); goto failure; } /* initialize objects */ OBJ_CONSTRUCT(&btl->udapl_frag_eager, ompi_free_list_t); OBJ_CONSTRUCT(&btl->udapl_frag_eager_recv, ompi_free_list_t); OBJ_CONSTRUCT(&btl->udapl_frag_max, ompi_free_list_t); OBJ_CONSTRUCT(&btl->udapl_frag_max_recv, ompi_free_list_t); OBJ_CONSTRUCT(&btl->udapl_frag_user, ompi_free_list_t); OBJ_CONSTRUCT(&btl->udapl_frag_control, ompi_free_list_t); OBJ_CONSTRUCT(&btl->udapl_lock, opal_mutex_t); /* check buffer alignment against dat library */ if (mca_btl_udapl_component.udapl_buffer_alignment != DAT_OPTIMAL_ALIGNMENT) { BTL_UDAPL_VERBOSE_HELP(VERBOSE_SHOW_HELP, ("help-mpi-btl-udapl.txt", "optimal buffer alignment mismatch", true, DAT_OPTIMAL_ALIGNMENT, mca_btl_udapl_component.udapl_buffer_alignment, DAT_OPTIMAL_ALIGNMENT)); } /* initialize free lists */ ompi_free_list_init_ex_new(&btl->udapl_frag_eager, sizeof(mca_btl_udapl_frag_eager_t) + mca_btl_udapl_component.udapl_eager_frag_size, mca_btl_udapl_component.udapl_buffer_alignment, OBJ_CLASS(mca_btl_udapl_frag_eager_t), mca_btl_udapl_component.udapl_eager_frag_size, mca_btl_udapl_component.udapl_buffer_alignment, mca_btl_udapl_component.udapl_free_list_num, mca_btl_udapl_component.udapl_free_list_max, mca_btl_udapl_component.udapl_free_list_inc, btl->super.btl_mpool, NULL, NULL); ompi_free_list_init_ex_new(&btl->udapl_frag_eager_recv, sizeof(mca_btl_udapl_frag_eager_t) + mca_btl_udapl_component.udapl_eager_frag_size, mca_btl_udapl_component.udapl_buffer_alignment, OBJ_CLASS(mca_btl_udapl_frag_eager_t), mca_btl_udapl_component.udapl_eager_frag_size, mca_btl_udapl_component.udapl_buffer_alignment, mca_btl_udapl_component.udapl_free_list_num, mca_btl_udapl_component.udapl_free_list_max, mca_btl_udapl_component.udapl_free_list_inc, btl->super.btl_mpool, NULL, NULL); ompi_free_list_init_ex_new(&btl->udapl_frag_max, sizeof(mca_btl_udapl_frag_max_t) + mca_btl_udapl_component.udapl_max_frag_size, mca_btl_udapl_component.udapl_buffer_alignment, OBJ_CLASS(mca_btl_udapl_frag_max_t), mca_btl_udapl_component.udapl_max_frag_size, mca_btl_udapl_component.udapl_buffer_alignment, mca_btl_udapl_component.udapl_free_list_num, mca_btl_udapl_component.udapl_free_list_max, mca_btl_udapl_component.udapl_free_list_inc, btl->super.btl_mpool, NULL, NULL); ompi_free_list_init_ex_new(&btl->udapl_frag_max_recv, sizeof(mca_btl_udapl_frag_max_t) + mca_btl_udapl_component.udapl_max_frag_size, mca_btl_udapl_component.udapl_buffer_alignment, OBJ_CLASS(mca_btl_udapl_frag_max_t), mca_btl_udapl_component.udapl_max_frag_size, mca_btl_udapl_component.udapl_buffer_alignment, mca_btl_udapl_component.udapl_free_list_num, mca_btl_udapl_component.udapl_free_list_max, mca_btl_udapl_component.udapl_free_list_inc, btl->super.btl_mpool, NULL, NULL); ompi_free_list_init_ex_new(&btl->udapl_frag_user, sizeof(mca_btl_udapl_frag_user_t), mca_btl_udapl_component.udapl_buffer_alignment, OBJ_CLASS(mca_btl_udapl_frag_user_t), 0,0, mca_btl_udapl_component.udapl_free_list_num, mca_btl_udapl_component.udapl_free_list_max, mca_btl_udapl_component.udapl_free_list_inc, NULL, NULL, NULL); ompi_free_list_init_ex_new(&btl->udapl_frag_control, sizeof(mca_btl_udapl_frag_eager_t) + mca_btl_udapl_component.udapl_eager_frag_size, mca_btl_udapl_component.udapl_buffer_alignment, OBJ_CLASS(mca_btl_udapl_frag_eager_t), mca_btl_udapl_component.udapl_eager_frag_size, mca_btl_udapl_component.udapl_buffer_alignment, mca_btl_udapl_component.udapl_free_list_num, -1, mca_btl_udapl_component.udapl_free_list_inc, btl->super.btl_mpool, NULL, NULL); /* initialize eager rdma buffer info */ btl->udapl_eager_rdma_endpoints = OBJ_NEW(opal_pointer_array_t); opal_pointer_array_init(btl->udapl_eager_rdma_endpoints, mca_btl_udapl_component.udapl_max_eager_rdma_peers, mca_btl_udapl_component.udapl_max_eager_rdma_peers, 0); btl->udapl_eager_rdma_endpoint_count = 0; OBJ_CONSTRUCT(&btl->udapl_eager_rdma_lock, opal_mutex_t); /* initialize miscellaneous variables */ btl->udapl_async_events = 0; btl->udapl_connect_inprogress = 0; btl->udapl_num_peers = 0; /* TODO - Set up SRQ when it is supported */ return OMPI_SUCCESS; failure: dat_ia_close(btl->udapl_ia, DAT_CLOSE_ABRUPT_FLAG); return OMPI_ERROR; } /* * Cleanup/release module resources. */ int mca_btl_udapl_finalize(struct mca_btl_base_module_t* base_btl) { mca_btl_udapl_module_t* udapl_btl = (mca_btl_udapl_module_t*) base_btl; int32_t i; /* * Cleaning up the endpoints here because mca_btl_udapl_del_procs * is never called by upper layers. * Note: this is only looking at those endpoints which are available * off of the btl module rdma list. */ for (i=0; i < udapl_btl->udapl_eager_rdma_endpoint_count; i++) { mca_btl_udapl_endpoint_t* endpoint = opal_pointer_array_get_item(udapl_btl->udapl_eager_rdma_endpoints, i); OBJ_DESTRUCT(endpoint); } /* release uDAPL resources */ dat_evd_free(udapl_btl->udapl_evd_dto); dat_evd_free(udapl_btl->udapl_evd_conn); dat_pz_free(udapl_btl->udapl_pz); dat_ia_close(udapl_btl->udapl_ia, DAT_CLOSE_GRACEFUL_FLAG); /* destroy objects */ OBJ_DESTRUCT(&udapl_btl->udapl_lock); OBJ_DESTRUCT(&udapl_btl->udapl_frag_eager); OBJ_DESTRUCT(&udapl_btl->udapl_frag_eager_recv); OBJ_DESTRUCT(&udapl_btl->udapl_frag_max); OBJ_DESTRUCT(&udapl_btl->udapl_frag_max_recv); OBJ_DESTRUCT(&udapl_btl->udapl_frag_user); OBJ_DESTRUCT(&udapl_btl->udapl_frag_control); OBJ_DESTRUCT(&udapl_btl->udapl_eager_rdma_lock); /* destroy mpool */ if (OMPI_SUCCESS != mca_mpool_base_module_destroy(udapl_btl->super.btl_mpool)) { BTL_UDAPL_VERBOSE_OUTPUT(VERBOSE_INFORM, ("WARNING: Failed to release mpool")); return OMPI_ERROR; } free(udapl_btl); return OMPI_SUCCESS; } /* * Adjust parameters that are dependent on the number of peers. * * @param udapl_btl (IN) BTL module * @param nprocs (IN) number of processes handed into * mca_btl_udapl_add_procs() * @return OMPI_SUCCESS or error status on failure */ static int mca_btl_udapl_set_peer_parameters( struct mca_btl_udapl_module_t* udapl_btl, size_t nprocs) { int rc = OMPI_SUCCESS; DAT_RETURN dat_rc = DAT_SUCCESS; uint potential_udapl_timeout; int first_time_sizing = (udapl_btl->udapl_num_peers == 0 ? 1 : 0); DAT_EVD_PARAM evd_param; /* nprocs includes self so subtract 1 */ udapl_btl->udapl_num_peers += nprocs - 1; /* resize dto_evd_qlen if not already at its max */ if (udapl_btl->udapl_dto_evd_qlen != udapl_btl->udapl_ia_attr.max_evd_qlen) { int potential_dto_evd_qlen; int max_connection_dto_events; int eager_connection_dto_events; /* eager connection dto events already factored into * max_recv/request_dtos but need to calculate max connection dtos; * see mca_btl_udapl_get_params() for max_recv/request_dtos */ eager_connection_dto_events = udapl_btl->udapl_max_recv_dtos + udapl_btl->udapl_max_request_dtos; max_connection_dto_events = mca_btl_udapl_component.udapl_num_recvs + mca_btl_udapl_component.udapl_num_sends + (mca_btl_udapl_component.udapl_num_recvs / mca_btl_udapl_component.udapl_sr_win) + 1; potential_dto_evd_qlen = udapl_btl->udapl_num_peers * (eager_connection_dto_events + max_connection_dto_events); /* here we use what the library calculates as the * potential_dto_evd_qlen unless the user has set */ if (first_time_sizing) { if (udapl_btl->udapl_dto_evd_qlen < potential_dto_evd_qlen) { if (MCA_BTL_UDAPL_DTO_EVD_QLEN_DEFAULT != udapl_btl->udapl_dto_evd_qlen) { /* user modified so warn */ BTL_UDAPL_VERBOSE_HELP(VERBOSE_SHOW_HELP, ("help-mpi-btl-udapl.txt", "evd_qlen too low", true, "btl_udapl_dto_evd_qlen", udapl_btl->udapl_dto_evd_qlen, "btl_udapl_dto_evd_qlen", potential_dto_evd_qlen)); } else { udapl_btl->udapl_dto_evd_qlen = potential_dto_evd_qlen; } } } else { /* since this is not the first time attempting to resize the * evd queue length just use the potential value; this may not * be the best solution */ udapl_btl->udapl_dto_evd_qlen = potential_dto_evd_qlen; } udapl_btl->udapl_dto_evd_qlen = ((udapl_btl->udapl_dto_evd_qlen > udapl_btl->udapl_ia_attr.max_evd_qlen) ? udapl_btl->udapl_ia_attr.max_evd_qlen : udapl_btl->udapl_dto_evd_qlen); /* OFED stack does not return DAT_INVALID_STATE when * the new qlen is less than current value so here we find * current value and if greater than what we intend to set * it to skip the resize. */ dat_rc = dat_evd_query(udapl_btl->udapl_evd_dto, DAT_EVD_FIELD_EVD_QLEN, &evd_param); if(DAT_SUCCESS != dat_rc) { char* major; char* minor; dat_strerror(dat_rc, (const char**)&major, (const char**)&minor); BTL_ERROR(("ERROR: %s %s %s\n", "dat_evd_query", major, minor)); } if (udapl_btl->udapl_dto_evd_qlen > evd_param.evd_qlen) { /* resize dto event dispatcher queue length */ dat_rc = dat_evd_resize(udapl_btl->udapl_evd_dto, udapl_btl->udapl_dto_evd_qlen); if(DAT_SUCCESS != dat_rc) { char* major; char* minor; dat_strerror(dat_rc, (const char**)&major, (const char**)&minor); BTL_ERROR(("ERROR: %s %s %s\n", "dat_evd_resize", major, minor)); rc = OMPI_ERR_OUT_OF_RESOURCE; } } } /* resize connection evd qlen */ if (udapl_btl->udapl_conn_evd_qlen != udapl_btl->udapl_ia_attr.max_evd_qlen) { int potential_conn_evd_qlen = 2 * udapl_btl->udapl_num_peers; if (first_time_sizing) { if (udapl_btl->udapl_conn_evd_qlen < potential_conn_evd_qlen) { if (MCA_BTL_UDAPL_CONN_EVD_QLEN_DEFAULT != udapl_btl->udapl_conn_evd_qlen) { /* user modified so warn */ BTL_UDAPL_VERBOSE_HELP(VERBOSE_SHOW_HELP, ("help-mpi-btl-udapl.txt", "evd_qlen too low", true, "btl_udapl_conn_evd_qlen", udapl_btl->udapl_conn_evd_qlen, "btl_udapl_conn_evd_qlen", potential_conn_evd_qlen)); } else { udapl_btl->udapl_conn_evd_qlen = potential_conn_evd_qlen; } } } else { /* since this is not the first time attempting to resize the * evd queue length just use the potential value; this may not * be the best solution */ udapl_btl->udapl_conn_evd_qlen = potential_conn_evd_qlen; } udapl_btl->udapl_conn_evd_qlen = ((udapl_btl->udapl_conn_evd_qlen > udapl_btl->udapl_ia_attr.max_evd_qlen) ? udapl_btl->udapl_ia_attr.max_evd_qlen : udapl_btl->udapl_conn_evd_qlen); /* OFED stack does not return DAT_INVALID_STATE when * the new qlen is less than current value so here we find * current value and if greater than what we intend to set * it to skip the resize. */ dat_rc = dat_evd_query(udapl_btl->udapl_evd_conn, DAT_EVD_FIELD_EVD_QLEN, &evd_param); if(DAT_SUCCESS != dat_rc) { char* major; char* minor; dat_strerror(dat_rc, (const char**)&major, (const char**)&minor); BTL_ERROR(("ERROR: %s %s %s\n", "dat_evd_query", major, minor)); } if (udapl_btl->udapl_conn_evd_qlen > evd_param.evd_qlen) { /* resize conn evd queue length */ dat_rc = dat_evd_resize(udapl_btl->udapl_evd_conn, udapl_btl->udapl_conn_evd_qlen); if(DAT_SUCCESS != dat_rc) { char* major; char* minor; dat_strerror(dat_rc, (const char**)&major, (const char**)&minor); BTL_ERROR(("ERROR: %s %s %s\n", "dat_evd_resize", major, minor)); rc = OMPI_ERR_OUT_OF_RESOURCE; } } } /* adjust connection timeout value, calculated in microseconds */ potential_udapl_timeout = MCA_BTL_UDAPL_CONN_TIMEOUT_INC * udapl_btl->udapl_num_peers; if (mca_btl_udapl_component.udapl_timeout < potential_udapl_timeout) { if (MCA_BTL_UDAPL_CONN_TIMEOUT_DEFAULT != mca_btl_udapl_component.udapl_timeout) { /* user modified so warn */ BTL_UDAPL_VERBOSE_HELP(VERBOSE_SHOW_HELP, ("help-mpi-btl-udapl.txt", "connection timeout low", true, "btl_udapl_timeout", mca_btl_udapl_component.udapl_timeout, "btl_udapl_timeout", potential_udapl_timeout)); } else { mca_btl_udapl_component.udapl_timeout = potential_udapl_timeout; } } mca_btl_udapl_component.udapl_timeout = ((mca_btl_udapl_component.udapl_timeout > MCA_BTL_UDAPL_CONN_TIMEOUT_MAX) ? MCA_BTL_UDAPL_CONN_TIMEOUT_MAX : mca_btl_udapl_component.udapl_timeout); return rc; } /* * Find and assign system netmask for the address of the uDAPL BTL * module, but only if udapl_if_mask has not been set by the "--mca * btl_udapl_if_mask" parameter. This routine will either find * the system netmask or set the value to 0. * * @param udapl_btl (IN) BTL module * * @return OMPI_SUCCESS or OMPI_ERROR */ static int mca_btl_udapl_assign_netmask(mca_btl_udapl_module_t* udapl_btl) { struct sockaddr *saddr; struct sockaddr_in *btl_addr; char btl_addr_string[INET_ADDRSTRLEN]; char btl_ifname[INET_ADDRSTRLEN]; /* Setting if_mask to 0 informs future steps to assume all * addresses are reachable. */ udapl_btl->udapl_if_mask = 0; if (mca_btl_udapl_component.udapl_compare_subnet) { /* go get system netmask value */ /* use generic address to find address family */ saddr = (struct sockaddr *)&(udapl_btl->udapl_addr.addr); if (saddr->sa_family == AF_INET) { btl_addr = (struct sockaddr_in *)saddr; /* * Retrieve the netmask of the udapl btl address. To * accomplish this requires 4 steps and the use of an opal * utility. This same utility is used by the tcp oob. * Steps: * 1. Get string value of known udapl btl module address. * 2. Use string value to find the interface name of address. * 3. Use interface name to find its index. * 4. From the index get the netmask. */ /* retrieve string value of udapl btl address */ inet_ntop(AF_INET, (void *) &btl_addr->sin_addr, btl_addr_string, INET_ADDRSTRLEN); /* use address string to retrieve associated interface name */ if (OPAL_SUCCESS != opal_ifaddrtoname(btl_addr_string, btl_ifname, INET_ADDRSTRLEN)) { BTL_UDAPL_VERBOSE_HELP(VERBOSE_SHOW_HELP, ("help-mpi-btl-udapl.txt", "interface not found", true, orte_process_info.nodename, btl_addr_string)); return OMPI_ERROR; } /* use interface name to retrieve index; then * use index to retrieve udapl btl address netmask */ if (OPAL_SUCCESS != opal_ifindextomask(opal_ifnametoindex(btl_ifname), &(udapl_btl->udapl_if_mask), sizeof(udapl_btl->udapl_if_mask))) { BTL_UDAPL_VERBOSE_HELP(VERBOSE_SHOW_HELP, ("help-mpi-btl-udapl.txt", "netmask not found", true, orte_process_info.nodename, btl_addr_string)); return OMPI_ERROR; } /* report if_mask used by address */ BTL_UDAPL_VERBOSE_OUTPUT(VERBOSE_INFORM, ("uDAPL BTL address %s : if_mask = %d", btl_addr_string, udapl_btl->udapl_if_mask)); } else { /* current uDAPL BTL does not support IPv6 */ BTL_UDAPL_VERBOSE_HELP(VERBOSE_SHOW_HELP, ("help-mpi-btl-udapl.txt", "IPv4 only", true, orte_process_info.nodename)); return OMPI_ERROR; } } return OMPI_SUCCESS; } /* * */ int mca_btl_udapl_add_procs( struct mca_btl_base_module_t* btl, size_t nprocs, struct ompi_proc_t **ompi_procs, struct mca_btl_base_endpoint_t** peers, ompi_bitmap_t* reachable) { mca_btl_udapl_module_t* udapl_btl = (mca_btl_udapl_module_t*)btl; int i, rc; for(i = 0; i < (int) nprocs; i++) { struct ompi_proc_t* ompi_proc = ompi_procs[i]; mca_btl_udapl_proc_t* udapl_proc; mca_btl_base_endpoint_t* udapl_endpoint; if(ompi_proc == ompi_proc_local()) continue; if(NULL == (udapl_proc = mca_btl_udapl_proc_create(ompi_proc))) { continue; } OPAL_THREAD_LOCK(&udapl_proc->proc_lock); /* The btl_proc datastructure is shared by all uDAPL BTL * instances that are trying to reach this destination. * Cache the peer instance on the btl_proc. */ udapl_endpoint = OBJ_NEW(mca_btl_udapl_endpoint_t); if(NULL == udapl_endpoint) { OPAL_THREAD_UNLOCK(&udapl_proc->proc_lock); return OMPI_ERR_OUT_OF_RESOURCE; } udapl_endpoint->endpoint_btl = udapl_btl; rc = mca_btl_udapl_proc_insert(udapl_proc, udapl_endpoint); if(rc != OMPI_SUCCESS) { OBJ_RELEASE(udapl_endpoint); OPAL_THREAD_UNLOCK(&udapl_proc->proc_lock); continue; } ompi_bitmap_set_bit(reachable, i); OPAL_THREAD_UNLOCK(&udapl_proc->proc_lock); peers[i] = udapl_endpoint; } /* resize based on number of processes */ if (OMPI_SUCCESS != mca_btl_udapl_set_peer_parameters(udapl_btl, nprocs)) { return OMPI_ERR_OUT_OF_RESOURCE; } return OMPI_SUCCESS; } int mca_btl_udapl_del_procs(struct mca_btl_base_module_t* btl, size_t nprocs, struct ompi_proc_t **procs, struct mca_btl_base_endpoint_t ** peers) { /* TODO */ return OMPI_SUCCESS; } /** * Allocate a segment. * * @param btl (IN) BTL module * @param size (IN) Request segment size. */ mca_btl_base_descriptor_t* mca_btl_udapl_alloc( struct mca_btl_base_module_t* btl, struct mca_btl_base_endpoint_t* endpoint, uint8_t order, size_t size, uint32_t flags) { mca_btl_udapl_module_t* udapl_btl = (mca_btl_udapl_module_t*) btl; mca_btl_udapl_frag_t* frag; int rc; int pad = 0; /* compute pad as needed */ MCA_BTL_UDAPL_FRAG_CALC_ALIGNMENT_PAD(pad, (size + sizeof(mca_btl_udapl_footer_t))); if((size + pad) <= btl->btl_eager_limit) { MCA_BTL_UDAPL_FRAG_ALLOC_EAGER(udapl_btl, frag, rc); } else if(size <= btl->btl_max_send_size) { MCA_BTL_UDAPL_FRAG_ALLOC_MAX(udapl_btl, frag, rc); } else { return NULL; } if (NULL == frag) { return NULL; } frag->segment.seg_len = size; /* Set up the LMR triplet from the frag segment. * Note: The triplet.segment_len is set to what is required for * actually sending the fragment, if later it is determined * that rdma can be used to transfer the fragment the * triplet.segment_len will have to change. */ frag->triplet.virtual_address = (DAT_VADDR)(uintptr_t)frag->segment.seg_addr.pval; frag->triplet.segment_length = frag->segment.seg_len + sizeof(mca_btl_udapl_footer_t); assert(frag->triplet.lmr_context == frag->registration->lmr_triplet.lmr_context); frag->btl = udapl_btl; frag->base.des_src = &frag->segment; frag->base.des_src_cnt = 1; frag->base.des_dst = NULL; frag->base.des_dst_cnt = 0; frag->base.des_flags = flags; frag->base.order = MCA_BTL_NO_ORDER; return &frag->base; } /** * Return a segment */ int mca_btl_udapl_free( struct mca_btl_base_module_t* btl, mca_btl_base_descriptor_t* des) { mca_btl_udapl_frag_t* frag = (mca_btl_udapl_frag_t*)des; if(0 == frag->size) { if (NULL != frag->registration) { btl->btl_mpool->mpool_deregister(btl->btl_mpool, &(frag->registration->base)); frag->registration = NULL; } MCA_BTL_UDAPL_FRAG_RETURN_USER(btl, frag); } else if(frag->size == mca_btl_udapl_component.udapl_eager_frag_size) { MCA_BTL_UDAPL_FRAG_RETURN_EAGER(btl, frag); } else if(frag->size == mca_btl_udapl_component.udapl_max_frag_size) { MCA_BTL_UDAPL_FRAG_RETURN_MAX(btl, frag); } else { BTL_UDAPL_VERBOSE_OUTPUT(VERBOSE_DIAGNOSE, ("mca_btl_udapl_free: invalid descriptor\n")); return OMPI_ERR_BAD_PARAM; } return OMPI_SUCCESS; } /** * Pack data and return a descriptor that can be * used for send/put. * * @param btl (IN) BTL module * @param peer (IN) BTL peer addressing */ mca_btl_base_descriptor_t* mca_btl_udapl_prepare_src( struct mca_btl_base_module_t* btl, struct mca_btl_base_endpoint_t* endpoint, struct mca_mpool_base_registration_t* registration, struct ompi_convertor_t* convertor, uint8_t order, size_t reserve, size_t* size, uint32_t flags ) { mca_btl_udapl_frag_t* frag = NULL; struct iovec iov; uint32_t iov_count = 1; size_t max_data = *size; int rc; int pad = 0; /* compute pad as needed */ MCA_BTL_UDAPL_FRAG_CALC_ALIGNMENT_PAD(pad, (max_data + reserve + sizeof(mca_btl_udapl_footer_t))); if(ompi_convertor_need_buffers(convertor) == false && 0 == reserve) { if(registration != NULL || max_data > btl->btl_max_send_size) { MCA_BTL_UDAPL_FRAG_ALLOC_USER(btl, frag, rc); if(NULL == frag){ return NULL; } iov.iov_len = max_data; iov.iov_base = NULL; ompi_convertor_pack(convertor, &iov, &iov_count, &max_data ); *size = max_data; if(NULL == registration) { rc = btl->btl_mpool->mpool_register(btl->btl_mpool, iov.iov_base, max_data, 0, ®istration); if(rc != OMPI_SUCCESS) { MCA_BTL_UDAPL_FRAG_RETURN_USER(btl,frag); return NULL; } /* keep track of the registration we did */ frag->registration = (mca_btl_udapl_reg_t*)registration; } frag->segment.seg_len = max_data; frag->segment.seg_addr.pval = iov.iov_base; frag->triplet.segment_length = max_data; frag->triplet.virtual_address = (DAT_VADDR)(uintptr_t)iov.iov_base; frag->triplet.lmr_context = ((mca_btl_udapl_reg_t*)registration)->lmr_triplet.lmr_context; /* initialize base descriptor */ frag->base.des_src = &frag->segment; frag->base.des_src_cnt = 1; frag->base.des_dst = NULL; frag->base.des_dst_cnt = 0; frag->base.des_flags = flags; frag->base.order = MCA_BTL_NO_ORDER; return &frag->base; } } if(max_data + pad + reserve <= btl->btl_eager_limit) { /* the data is small enough to fit in the eager frag and * memory is not prepinned */ MCA_BTL_UDAPL_FRAG_ALLOC_EAGER(btl, frag, rc); } if(NULL == frag) { /* the data doesn't fit into eager frag or eager frag is * not available */ MCA_BTL_UDAPL_FRAG_ALLOC_MAX(btl, frag, rc); if(NULL == frag) { return NULL; } if(max_data + reserve > btl->btl_max_send_size) { max_data = btl->btl_max_send_size - reserve; } } iov.iov_len = max_data; iov.iov_base = (char *) frag->segment.seg_addr.pval + reserve; rc = ompi_convertor_pack(convertor, &iov, &iov_count, &max_data ); if(rc < 0) { MCA_BTL_UDAPL_FRAG_RETURN_MAX(btl, frag); return NULL; } *size = max_data; /* setup lengths and addresses to send out data */ frag->segment.seg_len = max_data + reserve; frag->triplet.segment_length = max_data + reserve + sizeof(mca_btl_udapl_footer_t); frag->triplet.virtual_address = (DAT_VADDR)(uintptr_t)frag->segment.seg_addr.pval; /* initialize base descriptor */ frag->base.des_src = &frag->segment; frag->base.des_src_cnt = 1; frag->base.des_dst = NULL; frag->base.des_dst_cnt = 0; frag->base.des_flags = flags; frag->base.order = MCA_BTL_NO_ORDER; return &frag->base; } /** * Prepare a descriptor for send/rdma using the supplied * convertor. If the convertor references data that is contiguous, * the descriptor may simply point to the user buffer. Otherwise, * this routine is responsible for allocating buffer space and * packing if required. * * @param btl (IN) BTL module * @param endpoint (IN) BTL peer addressing * @param convertor (IN) Data type convertor * @param reserve (IN) Additional bytes requested by upper layer to precede user data * @param size (IN/OUT) Number of bytes to prepare (IN), number of bytes actually prepared (OUT) */ mca_btl_base_descriptor_t* mca_btl_udapl_prepare_dst( struct mca_btl_base_module_t* btl, struct mca_btl_base_endpoint_t* endpoint, struct mca_mpool_base_registration_t* registration, struct ompi_convertor_t* convertor, uint8_t order, size_t reserve, size_t* size, uint32_t flags) { mca_btl_udapl_frag_t* frag; int rc; MCA_BTL_UDAPL_FRAG_ALLOC_USER(btl, frag, rc); if(NULL == frag) { return NULL; } frag->segment.seg_len = *size; ompi_convertor_get_current_pointer( convertor, (void**)&(frag->segment.seg_addr.pval) ); if(NULL == registration) { /* didn't get a memory registration passed in, so must * register the region now */ rc = btl->btl_mpool->mpool_register(btl->btl_mpool, frag->segment.seg_addr.pval, frag->segment.seg_len, 0, ®istration); if(OMPI_SUCCESS != rc || NULL == registration) { MCA_BTL_UDAPL_FRAG_RETURN_USER(btl,frag); return NULL; } frag->registration = (mca_btl_udapl_reg_t*)registration; } frag->base.des_src = NULL; frag->base.des_src_cnt = 0; frag->base.des_dst = &frag->segment; frag->base.des_dst_cnt = 1; frag->base.des_flags = flags; frag->segment.seg_key.key32[0] = ((mca_btl_udapl_reg_t*)registration)->rmr_context; frag->base.order = MCA_BTL_NO_ORDER; return &frag->base; } /** * Initiate an asynchronous send. * * @param btl (IN) BTL module * @param endpoint (IN) BTL addressing information * @param descriptor (IN) Description of the data to be transferred * @param tag (IN) The tag value used to notify the peer. */ int mca_btl_udapl_send( struct mca_btl_base_module_t* btl, struct mca_btl_base_endpoint_t* endpoint, struct mca_btl_base_descriptor_t* des, mca_btl_base_tag_t tag) { mca_btl_udapl_frag_t* frag = (mca_btl_udapl_frag_t*)des; frag->endpoint = endpoint; frag->ftr = (mca_btl_udapl_footer_t *) ((char *)frag->segment.seg_addr.pval + frag->segment.seg_len); frag->ftr->tag = tag; frag->type = MCA_BTL_UDAPL_SEND; /* TODO - will inlining this give worthwhile performance? */ return mca_btl_udapl_endpoint_send(endpoint, frag); } /** * Initiate an asynchronous put. * * @param btl (IN) BTL module * @param endpoint (IN) BTL addressing information * @param descriptor (IN) Description of the data to be transferred */ int mca_btl_udapl_put( mca_btl_base_module_t* btl, mca_btl_base_endpoint_t* endpoint, mca_btl_base_descriptor_t* des) { DAT_RMR_TRIPLET remote_buffer; DAT_DTO_COOKIE cookie; int rc = OMPI_SUCCESS; mca_btl_udapl_frag_t* frag = (mca_btl_udapl_frag_t*)des; mca_btl_base_segment_t *dst_segment = des->des_dst; frag->btl = (mca_btl_udapl_module_t *)btl; frag->endpoint = endpoint; frag->type = MCA_BTL_UDAPL_PUT; if (OPAL_THREAD_ADD32(&endpoint->endpoint_lwqe_tokens[BTL_UDAPL_MAX_CONNECTION], -1) < 0) { /* no local work queue tokens available */ OPAL_THREAD_ADD32(&endpoint->endpoint_lwqe_tokens[BTL_UDAPL_MAX_CONNECTION], 1); OPAL_THREAD_LOCK(&endpoint->endpoint_lock); opal_list_append(&endpoint->endpoint_max_frags, (opal_list_item_t*)frag); OPAL_THREAD_UNLOCK(&endpoint->endpoint_lock); opal_progress(); } else { /* work queue tokens available, try to send */ if(OPAL_THREAD_ADD32(&endpoint->endpoint_sr_tokens[BTL_UDAPL_MAX_CONNECTION], -1) < 0) { OPAL_THREAD_ADD32(&endpoint->endpoint_lwqe_tokens[BTL_UDAPL_MAX_CONNECTION], 1); OPAL_THREAD_ADD32(&endpoint->endpoint_sr_tokens[BTL_UDAPL_MAX_CONNECTION], 1); OPAL_THREAD_LOCK(&endpoint->endpoint_lock); opal_list_append(&endpoint->endpoint_max_frags, (opal_list_item_t*)frag); OPAL_THREAD_UNLOCK(&endpoint->endpoint_lock); opal_progress(); } else { frag->triplet.segment_length = frag->segment.seg_len; remote_buffer.rmr_context = (DAT_RMR_CONTEXT)dst_segment->seg_key.key32[0]; remote_buffer.target_address = (DAT_VADDR)(uintptr_t)dst_segment->seg_addr.lval; remote_buffer.segment_length = dst_segment->seg_len; cookie.as_ptr = frag; OPAL_THREAD_LOCK(&endpoint->endpoint_lock); rc = dat_ep_post_rdma_write(endpoint->endpoint_max, 1, &frag->triplet, cookie, &remote_buffer, DAT_COMPLETION_DEFAULT_FLAG); OPAL_THREAD_UNLOCK(&endpoint->endpoint_lock); if(DAT_SUCCESS != rc) { char* major; char* minor; dat_strerror(rc, (const char**)&major, (const char**)&minor); BTL_ERROR(("ERROR: %s %s %s\n", "dat_ep_post_rdma_write", major, minor)); rc = OMPI_ERROR; } } } return rc; } /** * Initiate an asynchronous get. * * @param btl (IN) BTL module * @param endpoint (IN) BTL addressing information * @param descriptor (IN) Description of the data to be transferred * */ int mca_btl_udapl_get( mca_btl_base_module_t* btl, mca_btl_base_endpoint_t* endpoint, mca_btl_base_descriptor_t* des) { BTL_UDAPL_VERBOSE_OUTPUT(VERBOSE_DEVELOPER, ("udapl_get\n")); return OMPI_ERR_NOT_IMPLEMENTED; } int mca_btl_udapl_ft_event(int state) { if(OPAL_CRS_CHECKPOINT == state) { ; } else if(OPAL_CRS_CONTINUE == state) { ; } else if(OPAL_CRS_RESTART == state) { ; } else if(OPAL_CRS_TERM == state ) { ; } else { ; } return OMPI_SUCCESS; }